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Image Analysis Using Mathematical Morphology

ROBERT M. HARALICK, FELLOW, IEEE, STANLEY R. STERNBERG, AND XINHUA ZHUANG

Abstract-For the purposes of object or defect identification re-
quired in industrial vision applications, the operations of mathematical
morphology are more useful than the convolution operations employed
in signal processing because the morphological operators relate di-
rectly to shape. The tutorial provided in this paper reviews both binary
morphology and gray scale morphology, covering the operations of di-
lation, erosion, opening, and closing and their relations. Examples are
given for each morphological concept and explanations are given for
many of their interrelationships.

Index Terms-Closing, dilation, erosion, filtering, image analysis,
morphology, opening, shape analysis.

I. INTRODUCTION
M¢ATHEMATICAL morphology provides an ap-

proach to the processing of digital images which is
based on shape. Appropriately used, mathematical mor-
phological operations tend to simplify image data pre-
serving their essential shape characteristics and eliminat-
ing irrelevancies. As the identification of objects, object
features, and assembly defects correlate directly with
shape, it becomes apparent that the natural processing ap-
proach to deal with the machine vision recognition pro-
cess and the visually guided robot problem is mathemat-
ical morphology.
Morphologic operations are among the first kinds of im-

age operators used. Kirsch, Cahn, Ray, and Urban [13]
discussed some binary 3 x 3 morphologic operators.
Other early papers include Unger [37] and Moore [21].
Machines which perform morphologic operations are

not new. They are the essence of what cellular logic ma-
chines such as the Golay logic processor [8], Diff 3 [9],
PICAP [15], the Leitz Texture Analysis System TAS [14],
the CLIP processor arrays [3], and the Delft Image Pro-
cessor DIP [6] all do. A number of companies now man-
ufacture industrial vision machines which incorporate
video rate morphological operations. These companies in-
clude Machine Vision International, Maitre, Synthetic
Vision Systems, Vicom, Applied Intelligence Systems,
Inc., and Leitz.
The 1985 IEEE Computer Society Workshop on Com-

puter Architecture For Pattern Analysis and Image Data-
base Management had an entire session devoted to com-
puter architecture specialized to perform morphological
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operations. Papers included those by McCubbrey and
Lougheed [19], Wilson [39], Kimmel, Jaffe, Mander-
ville, and Lavin [12], Leonard [16], Pratt [27], and Har-
alick [11]. Gerritsen and Verbeek [7] show how convo-
lution followed by a table look up operation can
accomplish binary morphologic operations.

But although the techniques are being used in the in-
dustrial world, the basis and theory of mathematical mor-
phology tend to be (with the exception of the highly math-
ematical books by Matheron [18] and Serra [31]) not
covered in the textbooks or journals which discuss image
processing or computer vision. It is the intent of this tu-
torial to help fill this void.
The paper is divided into three parts. Section II dis-

cusses the basic operations of dilation and erosion in an
N-dimensional Euclidean space. Section III discusses the
derived operations of opening and closing. Section IV
gives the corresponding definition for the dilation and ero-
sion operations for gray tone images and shows how with
these definitions all the properties of dilation and erosion,
opening, and closing previously derived and explained in
Sections II and III hold.

II. DILATION AND EROSION

The language of mathematical morphology is that of set
theory. Sets in mathematical morphology represent the
shapes which are manifested on binary or gray tone im-
ages. The set of all the black pixels in a black and white
image, (a binary image) consitutes a complete description
of the binary image. Sets in Euclidean 2-space denote
foreground regions in binary images. Sets in Euclidean 3-
space may denote time varying binary imagery or static
gray scale imagery as well as binary solids. Sets in higher
dimensional spaces may incorporate additional image in-
formation, like color, or multiple perspective imagery.
Mathematical morphological transformations apply to sets
of any dimensions, those like Euclidean N-space, or those
like its discrete or digitized equivalent, the set of N-tuples
of integers, ZN. For the sake of simplicity we will refer
to either of these sets as EN.
Those points in a set being morphologically trans-

formed are considered as the selected set of points and
those in the complement set are considered as not se-
lected. Hence, morphology from this point of view is bi-
nary morphology. We begin our discussion with the bi-
nary morphological operations of dilation and erosion.

A. Dilation
Dilation is the morphological transformation which

combines two sets using vector addition of set elements.
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If A and B are sets in N-space (EN) with elements a and
b, respectively, a = (al, * * * , all) and b = (b1, * - * ,

bN) being N-tuples of element coordinates, then the di-
lation of A by B is the set of all possible vector sums of
pairs of elements, one coming from A and one coming
from B.

Definition 1: Let A and B be subsets of EN. The dila-
tion of A by B is denoted by A ( B and is defined by

A s B = {ceENIc = a + b

for some a e A and b e B}.

Example: This illustrates an instance of the dilation op-
eration. The coordinate system we use for all the exam-
ples in the next few sections is (row, column).

Fig. 1. The upper left shows the input image consisting of two objects.
The lower right shows the octagonal structuring clement. The upper right
shows the input iniage dilated by the octagonal structuring element.

A = {(0,1),(1,1),(2,1),(2,2),(3,0)}

B = {(0,0), (0, 1)} B

A AeB

A ei B = ((0,1), (1, 1), (2,1), (2,2), (3,0)

(0,2), (1,2), (2,2), (2,3), (3,1)1

Dilation as a set theoretic operation was proposed by
H. Minkowski 120] to characterize integral measures of
certain open (sparse) sets. Dilation as an image process-
ing operation was employed by several early investigators
in image processing as smoothing operations 113], [37],
[21], [8], [28], 1291. Dilation as an image operator for
shape extraction and estimation of image parameters was

explored by Matheron [181 and Serra [301. All of these
early applications dealt with binary images only.

Matheron uses the term "dilatation" for dilation and
both Matheron and Serra define dilation slightly differ-
ently. In essense, they define the dilation of A by B as the
set {c e EN Ic = a - b for some a eA and b eB}.

In morphological dilation, the roles of the sets A and B
are symmetric, that is, the dilation operation is commu-
tative because addition is commutative.

Proposition 2:

A a) B = B a A.

Proof.

A E B = {clc = a + b for some a eA, b e B}

= {clc = b + a for some a e A, b e B}

= B .D A.

In practice, A and B are handled quite differently. The
first operand A is considered as the image undergoing
analysis, while the second operand B is referred to as the
structuring element, to be thought of as constituting a sin-
gle shape parameter of the dilation transformation. In the

Fig. 2. The upper left shows the input image consisting of two objects.
The upper right shows the input image dilated by the structuring clement
I (0, 0), ( 14, 0) ). The lower left shows the input image dilated by the
structuring element 1(0 0), (0, 14) }. The lower right shows the input
image dilated by the structuring element { (0, 0), ( 14, 0), (0, 14) ).

remainder of the paper, we will refer to A as the image
and B as the structuring element.

Dilation by disk structuring elements correspond to
isotropic swelling or expansion algorithms common to bi-
nary image processing. Dilation by small squares (3 x
3) is a neighborhood operation easily implemented by ad-
jacency connected array architectures (grids) and is the
one many image processing people know by the name
"fill," "expand," or "grow." Some example dilation
transformations are illustrated in Figs. I and 2.
Neighborhood connected image processors such as

CLIP [4], Cytocomputer 1321, [341, and MPP [I , [261
can implement some dilations (not all) by structuring ele-
ments larger than the neighborhood size by iteratively di-
lating with a sequence of neighborhood structuring ele-
ments. In particular, if image A is to be dilated by
structuring element D which itself can be expressed as the
dilation of B by C, then A ED D can be computed as

A e D = A e (B E C) = (A e B) e C

since addition is associative.
The form (A E B) e C represents a considerable sav-

ings in number of operations to be performed when A is
the image and B e C is the structuring element. The sav-
ings come about because a brute force dilation by B e C
might take as many as N2 operations while first dilating
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Fig. 3. The upper left shows the input image consisting of two objects.
The upper right shows the input image dilated by the structuring element
{(0, 0) (0, 14) 1. The lower left shows the input image dilated by the
structuring element I (0. 0). ( 14.0 ), (0, 14) ( 14, 14) 1, which is shown
in the lower right. Notice that the dilated image of the lower left can be
obtained by dilating the image shown in the upper right by the structuring
element { (0, 0), ( 14, 0) }. This is a consequence of the chain rule for
dilations and because { (0, 0), ( 14, 0)} s {(0, 0), (0, 14)} = {(0,
0), (0, 14), (14, 0), (14, 14)}.

A by B and then dilating the result by C could take as few
as 2N operations, where N is the number of elements in
B and in C. This computational complexity advantage is
not as strong for machines which can implement dilations
only as neighborhood operations.

Proposition 3:

A e (B e C) = (A ED B) ( C.

Proof: x e A (B e C ) if and only if there exists
a e A, b e B, and c E C such that x = a + (b + c). x e
(A B) ( C if and only if there exists a e A, b e B,
and c e C such that x = (a + b) + c. But a + (b + c)
= (a + b) + c since addition is associative. Therefore,
A e (B s C) = (A ED B) e C.

Proposition 3 is commonly referred to as the "chain
rule" for dilations. An example of performing a dilation
transformation as a chain of dilations is shown in Fig. 3.
Notice that this dilation transformation which can be done
as a chain of dilations is not able to be done as a chain of
neighborhood operations.

Since dilation is commutative, the order of application
of the constituent dilations is immaterial.

Dilating an image as an iterative sequence of neighbor-
hood operations is not necessarily the most efficient or

universal approach to implementing the dilation transfor-
mation. For example, not all structuring elements can be
decomposed into iterative neighborhood dilations. An ex-

ample of a dilation transformation which cannot be im-
plemented as an iterative sequence of neighborhood op-

erations is the dilation by any of the structuring elements
{(0, 0), (0, 14)}, {(0, 0), (14, 0)} or {(0, 0), (0,
14), (14, 0) } which are shown in Fig. 2.
Also, the implementation may not be particularly effi-

cient in terms of processing time or computer hardware
requirements. An altemative involves considering dila-
tions in terms of image translations. So first we need the
definition for translation.

Definition 4: Let A be a subset of EN and x e EN. The

translation of A by x is denoted by (A )x and is defined by

(A)~, = {c e EN Ic = a + x for some a e A}.

Example: This illustrates an instance of translation.

A = {(0, 1), (1, 1), (2, 1), (2, 2), (3, 0)}
x = (0, 1)

(A)x = {(°, 2), (1, 2), (2, 2), (2, 3), (3, 1)}.

6~~~~~~~~~~

A (A)(o,0)

The dilation ofA by B can be computed as the union of
translations ofA by the elements of B.

Proposition 5:

A a B= U (A))b.
beB

Proof. Suppose x e A @ B. Then for some a e A and
b e B, x = a + b. Hence, x e (A)b and therefore x e
UbeB (A)b-
Supposex e UbeB (A )b. Then for some b e B, x e (A)b.

But x E (A)b implies there exists an a e A such that x =
a + b. Now by definition of dilation, a e A, b e B, and
x = a + bimplyxcA D B.

Historically, the dilation transformation was defined by
Minkowski in this manner, hence the name Minkowski
addition is applied to Proposition 5 in the literature (for
example, see [101). Unfortunately, Minkowksi failed to
define the dual of his set addition operation, and Min-
kowski subtraction expressed as the intersection of trans-
lations of A by the elements of B was not formally pro-
posed until done so by Hadwiger.

Proposition 5 emphasizes the role of image shifting to
implement dilation. In pipeline digital image processors
employing raster scanning, image shifting is accom-
plished by delay elements in the transmission path. But
delay elements can only cause an image shift in a direc-
tion opposite to the row scanning direction of the raster
conversion. Thus it is important to know that dilating a
shifted image, which arises from previous pipeline de-
lays, shifts the dilated result by an equivalent amount.
This fact permits pipeline processors to successively op-
erate morphologically on shifted images and to undo the
total resulting shift by performing an opposite shift by the
scrolling operation in the output image buffer. We call
this property the translation invariance of dilation.

Translation Invariance ofDilation Proposition 6:

(A)x e B = (A ED B).
Proof. y e (A) e B if and only if for some z e (AX)

and b e B, y = z + b. But z e (A), if and only if z = a
+ x for some a e A. Hence, y = (a + x) + b = (a +
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b) + x. Now by definition of dilation and translation y E
(A E B)X.
A corollary to Proposition 6 applies to dilations imple-

mented through the chain rule (Proposition 3). The cor-
ollary states that shifting any one of the structuring ele-
ments in a dilation decomposition shifts the dilated image
by an equivalent amount.

Corollary 7:

A (D B1 3i ..E (B,)x (D .. ED BN
=(A ED BlI E*D * ED Bn D *... E* BN )X

Image shift can be compensated for in the definition of
the structuring element. In particular, let the structuring
element B be compensating for a shift in the image A by
taking B to be shifted in the opposite direction. Then the
shift in B compensates for the shift in A.

Proposition 8:

(A)x E (B)x = A ED B.

Proof:
(A)X E (B), = (A D (B)_X)X

= (A E B)X
= A E B.

Similarly, compensating shifts within the sequence of
decomposed structuring element dilations can balance im-
age shifts and cause an unshifted result.

Corollary 9:

(A)x D B, ED ... E (B,)_x D .. (ED BN

= A ED BI3ED . . .E Bn ED3 . . . ED BN
In addition to being commutative, the dilation transfor-

mation is necessarily extensive when the origin belongs
to the structuring element, extensivity meaning that the
dilated result contains the original.
Example: This example shows that when the origin is

not in the structuring element B, it may happen that the
dilation of A by B has nothing in common with A.

H
A AeB

A corollary to Proposition 10 states that if the origin
belongs to each of the structuring elements, in a dilation
composition, each structuring element in the decomposi-
tion is necessarily contained in the original composed
structuring element.

Corollary 11: If 0 E B, ,BN then Bm E BI eD ...

E BN,m=1,m= ,N.
The dilation transformation is increasing, that is, con-

tainment relationships are maintained through dilation.

Dilation Is Increasing Proposition 12: A C B implies
A E D C B ED D.

Proof: Suppose A C B. Let x E A e D. Then for
some a E A and d E D, x = a + d. Since a E A and A C
B, a eB. Buta eBanddeDimpliesx eB ( D.

Corollary 13: A c B implies D e A ' D e B.
The order of an image intersection operation and a di-

lation operation cannot be interchanged. Rather, the result
of intersecting two images followed by a dilation of the
intersection result is contained in the intersection of the
dilation of the two images.

Proposition 14:

(A n B) E C C (A E C) n (B ED C)
(A E (B n C) C (A E B) n (A E C)

Proof: Suppose x E (A n B) ( C. Then for some y
eAA B and c E C, x = y + c. Now y eAA B implies
y e A and y e B. But y e A, c E C, and x = y + c implies
x eA (D C; y E B, c E C, andx =y + cimpliesx e B e3
C. Hencexe(A E) C) n (Be C).
(A ED (BnA c) C (A e B) n (A E) C) comes about

immediately from the previous result since dilation is
commutative.
On the other hand, the order of image union and dila-

tion can be interchanged. The dilation of the union of two
images is equal to the union of the dilations of these im-
ages.

Proposition 15:

'(A U B) E C = (A e C) U (B ED C)
Proof:

(AUB) E C= U (C)X
xeA U B

= [ U (C) ] U [XU (C)]
= (A E C) U (B e C).

By the commutativity of dilation,
the following.

Corollary 16:

we immediately have

A E (B U C) = (A E B) U (A E C).
This equality is significant. It permits for a further de-

composition of a structuring element into a union of struc-
turing elements. Previously we saw that the decomposi-
tion of a structuring element into the dilation of elemental
structuring elements led to a chain rule for dilation. Here
we see that decomposing a structuring element into the
union of elemental structuring elements leads to another
method of evaluating the dilation.
The distinction between structuring element decompo-

sition by dilation and by union deserves further mention.
The issue bears upon the efficiency of computing the di-
lations. Consider the structuring element of Fig. 4.

Structuring element B of Fig. 4 top consists of 16
points, hence it can be decomposed into the union of 16
structuring elements, each structuring element consisting
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Fig. 4. This figure shows how the chain rule dilation decomposition can
save operations. To dilate an image by the structuring element shown in
the top half requires 15 operations. To dilate using the chain decompo-
sition shown in the bottom half requires only 4 operations.

Fig. 5. The upper left shows the input image consisting of two blobs. The
upper right shows the input image eroded by the structuring element { (0,
0), (-14, 0)}. The lower left shows the input image eroded by the
structuring element f (0, 0) (0, -14 )}. The lower right shows the input
image eroded by the structuring element I (0, 0), (0, -14), ( -14,0) }.

of a single point which is suitably displaced from the
origin. Dilation by a structuring element consisting of a
single point is simply a shift of the original image, hence
Proposition 15 becomes equivalent to the expression of
Proposition 5 for the dilation, involving 15 shifts and 15
unions. By contrast, the decomposition of structuring ele-
ment B into the four elemental structuring elements of Fig.
4 bottom permits dilation by B through the chain rule of
Proposition 3. Here we see that only four shifts and four
unions are required. Computationally, the difference in-
volves a shift and union of the previously computed result
in the case of Proposition 3's chain rule, while decom-
position by union as in Proposition 15 independently ac-
cumulates the individual shifts of the original image.

B. Erosion
Erosion is the morphological dual to dilation. It is the

morphological transformation which combines two sets
using the vector subtraction of set elements. If A and B
are sets in Euclidean N-space, then the erosion ofA by B
is the set of all elements x for which x + b e A for every
b e B. Some image processing people use the name shrink
or reduce for erosion.

Definition 17: The erosion of A by B is denoted by A
e B and is defined by

A e B = {x e EN Ix + be A for every b e B}

Example: This illustrates an instance of erosion.

A =((1, O), (1, 1), (1, 2), (1, 3), (1, 4), (1, 5),
(2, 1), (3, 1), (4, 1), (S, 1),}

B= {(0, O), (0, I)}

A e B = {(1, 0), (1, 1), (1, 2), (1, 3), (1, 4)}

B

AeB

Expressed as a difference of elements a and b, Definition
17 becomes

A e B = {x e EN I for every b e B, there exists an

a e A such that x = a - b}

This is the definition used for erosion by 1101.
The utility of the erosion transformation is better ap-

preciated when the erosion is expressed in a different
form. The erosion of an image A by a structuring element
B is the set of all elements x of EN for which B translated
to x is contained in A. In fact, this was the definition used
for erosion by [181]. The proof is immediate from the def-
inition of erosion and the definition of translation.

Proposition 18:

A e B = {xeENI(B)' AI.
Thus the structuring element B may be visualized as a
probe which slides across the image A, testing the spatial
nature ofA at every point. Where B translated to x can be
contained in A (by placing the origin of B at x), then x
belongs to the erosion A e B. The erosion transformation
is illustrated in Fig. 5.
The careful reader should beware that the symbol e

used by 131] does not designate erosion. Rather it desig-
nates the Minkowski subtraction which is the intersection
of all translations of A by the elements b e B. Whereas
the dilation transformation and the Minkowski addition of
sets are identical, the erosion transformation and the Min-
kowski subtraction differ in a significant way. Erosion of
an image A by a structuring element B is the intersection
of all translations of A by the points -b, where b e B.

Proposition 19:
A e B = n (A)_b.

beB

Proof. Let x e A e B. Then for every b e B, x + b
e A. But x + b e A implies x e (A) -b. Hence for every b
e B, x e (A)_b. This implies x e nbeB (A)-b-

Let x e n bcB (A)-b. Then for every b e B, x e (A).-b.
Hence, for every b e B, x + b e A. Now by definition of
erosion x e A e B.
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Example: This illustrates how erosion can by com-
puted as an intersection of translates of A.

B

A e B = A(o,o) n A_(o,

The erosion transformation is popularly conceived of as

a shrinking of the original image. In set terms, the eroded
set is often thought of as being contained in the original
set. A transformation having this property is called anti-
extensive. However, the erosion transformation is nec-

essarily anti-extensive only if the origin belongs to the
structuring element.

Proposition 20: If 0 E B, then A e B C A.
Proof: Let x E A e B. Then x + b E A for every b

e B. Since 0 e B, x + 0 E A. Hence x E A.
Example: This illustrates how eroding with a structur-

ing element which does not contain the origin can lead to
a result which has nothing in common with the set being
eroded.

K-i I JI

A00 0

*1 1B 1

B

A e B

Like dilation, erosion is a translation invariant and in-
creasing transformation.

Translation Invariance of Erosion Proposition 21:

Ax e B = (A e B)x
A e Bx = (A e B)_x.

Proof: y E Ax e B if and only if for every b E B, y
+ b E Ax. But y + b E Ax if and only if y + b -x E A.
Now, y + b - x = (y - x) + b. Hence for every be
B, ( y - x) + b E A. By definition of erosion, y - x E A
e B and, therefore, y E (A e B)x.
y EA e Bx if and only if y + b EA for every b E Bx.

But y + b EA for every b EBx if and only if y - x eA
e B. Finally y - x E A e B if and only if y E (A e

B) -x
If image A is contained in image B, then the erosion of

A is contained in the erosion of B.

Erosion Is Increasing Proposition 22: A C B implies
A e K c B e K.

Proof: Let x E A e K. Then x + k E A for every k
E K. But A C B. Hence, x + k e B for every k E K. By
definition of erosion, x E B e K.
Example: This illustrates an instance showing the in-

U ~ ~~KU

A AeK

EKE~~~
B BeK

creasing property of erosion. On the other hand, if A and
B are structuring elements and B is contained in A, then
the erosion of an image D by A is necessarily more severe
than erosion by B, that is, D eroded by A will necessarily
be contained in D eroded by B.

Proposition 23: A v B implies D e A C D e B.
Proof: Let x E D e A. Then x + a E D for every a

e A. But B ' A. Hence, x + a E D for every a E B. Now
by definition of erosion, x E D e B.
Example: This illustrates an instance showing that

larger structuring elements have a more severe effect than
smaller ones on the erosion process.

II
0 100 B _EBE~~~~

D DeB

A

D DEA

This proposition leads to a natural ordering of the ero-
sions by structuring elements having the same shape but
different sizes. It is the basis of the morphological dis-
tance transformations. Fig. 6 illustrates these distance re-
lationships.
The dilation and erosion transformations bear a marked

similarity, in that what one does to the image foreground
the other does to the image background. Indeed, their
similarity can be formalized as a duality relationship. Re-
call that two operators are dual when the negation of a
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Fig. 6. The successive erosion of the image in the top left by a diamond
shaped structuring element. Pixels which are white in the ith erosion are
white pixels in the input image which have a 4-distance of greater than
i pixels to the black background.

formulation employing the first operator is equal to that
formulation employing operator on the negated variables.
An example is DeMorgan's law, illustrating the duality
of union and intersection,

(A U B)' = Ac n B'.

Here the negation of a set A is its complement,

AC= {xeEnIx A}.

In morphology, negation of a set is considered in a ge-
ometrical sense: that of reversing the orientation of the
set with respect to its coordinate axes. Such reversing is
called reflection.

Definition 24: Let B C EN. The reflection of B is de-
noted by B and is defined by

B = {x|forsomebeB,x = -b}.

The reflection occurs about the origin. Matheron [18] re-
fers to B as "the symmetrical set of B with respect to the
origin." Serra [311 refers to B as "B transpose."
As given in Theorem 25, the duality of dilation and

erosion employs both logical and geometric negation be-
cause of the different roles of the image and the structur-
ing element in an expression employing these morpho-
logical operators.

Erosion Dilation Duality Theorem 25: (A e B)' = Ac
kB.
Proof. x e (A e B)" if and only if x 0 A e B. x

A e B if and only if there exists b e B such that x + b
A. There exists b e B such that x + b e A" if and only if
there exists b e B such that x e (Ac).b. There exists b e
B such that x e (A')-,, if and only if x e Ub.B (Ac)-b-
Now, x e UbEB (A')-b if and only if x e Ubhe (A')b;
and x e U beA (A),)b if and only if x c A' $ B.
Example: This illustrates an instance of the relation-

ship (A e B)" = A'c B.

B

AF AAreB__ _

1* * * * * *.

*T* XTrj01

0 .

A' 9 A

The difference between the dilation and erosion trans-
formations is illuminated in the algebraic properties of the
erosion as contrasted with the dilation. First, the erosion
of the intersection of two images is equal to the intersec-
tion of their erosions. This contrasts with Proposition 14
where the relationship is one of containment.

Proposition 26:
(A n B) e K = (A e K) n (B e K).

Proof: x e (A n B) e K if and only if for every k
eK,x + keA n B.x + keA n Bif and only ifx +
k e A and x + k e B. x + k e A for every k e K if and
only ifxeA e K.x + keAforeverykeKifandonly
ifxeB e K.x + keAforeverykeKandx + keB
for every k eK if and only if x e (A e K) n (B e K).
Example: This illustrates an instance of the relation-

ship (A n B) e K = (A e K) n (B e K).

A.A<. . _ T*Tll 1

A AeK

4 4T1>rX 1iiK

(An B) e K= (A e K) n (Be K)

On the other hand, whereas the dilation of the unions
of two images is equal to the union of their dilations
(Proposition 15), for the erosion transformation the rela-
tionship is one of containment.

Proposition 27: (A U B) e K v (A e K) U (B e

K).
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Proof: Let x e (A e K) U (B e K). Then x e A
e KorxeB e K. If xeA e KthensinceA U B D
A, x e (A U B) e K. If x e B e K then since A U B D
B, x E (A U B) e K.
Example: This illustrates an instance in which (A U

B) e K strictly contains (A e K) U (B e K).

tJ K ~~
A A E3 K

K

B

(A U B) e K (A e K) u (BeK)

But erosion is not commutative, A e B * B e A.
Hence the behavior of A e (B U C) indicated in the
equality of Proposition 28 is different than the behavior
of (A U B) e C as indicated in Proposition 27.

Proposition 28: A e (B U C) = (A e B) n (A e

C)
Proof: x e A e (B U C) if and only ifx + ye A

for every y e B U C. x + y e A for every y e B U C if
and only if x + y eA for every y e B and x + y eA for
every ye C. x + ye A for every y e B if and only ifx e
A e B. x + yeA forevery y E Cif and only if xeA e

C. x + y e A for every y e B and x + y e A for every y

eCifandonlyifxe(A.e B) n (A e C).
Example: This illustrates an instance of the relation-

ship A e (B U C) = (A e B) n (A e C).

F. ** | * ir-___B

0_ _

(A E B) n (A C)

The practical utility of Proposition 28 is that it indicates
how to compute erosions with structuring elements which
can only be decomposed as the union of individual struc-
turing elements.
Although structuring elements can be decomposed

through union into simpler structuring elements to sim-
plify the erosion transformation, structuring elements
cannot be decomposed through intersection and maintain
an equality. Rather, the intersection decomposition leads
to a containment relationship.

Proposition 29: A e (B n C) D (A e B) U (A e

C).
Proof: Letxe(A e B) U (A e C). ThenxeA

e B or x e A e C. If x e A e B, then x + b E A for
every b e B. If x eA e C, thenx + b eA forevery b e
C. Hence, x + b e A for every b e B n C. Now by
definition of erosion, x e A e (B n c).
Example: This illustrates an instance in which A e (B

n C) strictly contains (A e B) U (A e C).

BY-

A E B

A A E C
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Aec

BnC

Ae(BnC)

Finally, with respect to structuring element decompo-
sition, a chain rule for erosion holds when the structuring
element is decomposable through dilation,

A e (B E C) = (A e B) e C.

This relation is as important as the chain rule relation
for dilation because it pennits a large erosion to be com-
puted by two successive smaller erosions.

Proposition 30: (A e B) e C = A e (B e C).
Proof. Let .r E (A e B) e C. Then for every c E C,

X + c E A e B. But x + C E A e B implies x + c + b
e A for every b EB. But x + b + c A for every b E B
andCeCimpliesx + deA foreverydEB e C.
Letx E A e (B ED C). Thenx -4 d E A forevery d E

B e C. Hencex + b + cEA for every b EB and cE C.
Now (x + c) + b e A for every b E B implies x + ceA
e B. Butx + ceA e BforeveryceCimpliesxe(A
e B) e C.
Corollary 31 extends this result to structuring elements

decomposed as the dilation of K structuring elements.
Corollary 31: A e (B, e . BK) =ED (A e

B,) e ... e BK)
It is immediately apparent from the corollary that be-

cause dilation is commutative, the order in which succes-
sive erosions are applied is immaterial.

Fig. 7 illustrates the utility of the chain rule for ero-
sions.

Reversing the position of dilation and erosion in Prop-
osition 30 does not lead to an equality as in Proposition
30 but leads to a containment relation as given in Propo-
sition 32. In some sense this indicates that when perform-
ing erosion and dilation, performing erosion first is more
severe than performing dilation first.

Proposition 32: A e (B e C) S (A @ B) e C.
Proof: Let x e A e (B e C). Then for some a e A

and B e C, x = a + y. But y e B e C implies y + c E
B for every c E C. Now y + c E B and a E A implies y +
c + aEA E B. Finally y + c + a e A e Bforeveryc
E C implies x = y + a E (A e B) e C.

Fig. 7. The upper left shows the input image. The upper right shows the
input image eroded by the structuring element { (0, 0). (0, -14) }. The
lower left shows the eroded image of the upper right eroded by the struc-
turing element { (0, 0), ( -14, 0) 1. This result is equivalent to eroding
the input image by the structuring elemcnt {(0, 0), (0, -14), (-14,
0), ( -14, -14 )} which is shown in the lower right.

Example: This illustrates an instance in which A e (B
e C) is strictly contained in (A e B) e C.

B

A
I

AeB

BeC

A((BeC) (A ( B) 9 C

Although dilation and erosion are dual, this does not
imply that we can freely perform cancellation on mor-
phological equalities. For example, if A = B e C, then
dilating both sides of the expression by C results in A e
C = B e C (D C * B. However, a containment relation-
ship is maintained, as indicated in Proposition 33.

Proposition 33: A S B e C if and only if B v A e3
C.

Proof. Suppose A S B e C. Let x e A a C. Then
there exists a E A and C E C such that x = a + c. But a
E A and A S B e C implies a e B e C. Hence, for every
c' e B, a + c' e B. In particular, c e C. Thus a + c e B.
But x = a + c. Therefore, x e B.
Suppose A s C S B. Let x e A. Let c e C. Then x +

540



HARALICK et al.: IMAGE ANALYSIS USING MATHEMAI'ICAI. MORPHOLOGY

ceA D C. ButA e C C Bsothatx + c C B. Finally
x + c C BforanyceCimpliesxeB e C.
The containment is maintained for chained erosions, as

follows.
Corollary 34:

A C (... (B e C,) e e CN if and only

if .. (A ED C,) @D.. ) ED CN C B.

111. OPENINGS AND CLOSINGS

In practice, dilations and erosions are usually employed
in pairs, either dilation of an image followed by the ero-
sion of the dilated result, or image erosion followed by
dilation. In either case, the result of iteratively applied
dilations and erosions is an elimination of specific image
detail smaller than the structuring element without the
global geometric distortion of unsuppressed features. For
example, opening an image with a disk structuring ele-
ment smooths the contour, breaks narrow isthmuses, and
eliminates small islands and sharp peaks or capes. Clos-
ing an image with a disk structuring element smooths the
contours, fuses narrow breaks and long thin gulfs, elimi-
nates small holes, and fills gaps on the contours.
Of particular significance is the fact that image trans-

formations employing iteratively applied dilations and
erosions are idempotent, that is, their reapplication effects
no further changes to the previously transformed result.
The practical importance of idempotent transformations is
that they comprise complete and closed stages of image
analysis algorithms because shapes can be naturally de-
scribed in terms of under what structuring elements they
can be opened or can be closed and yet remain the same.
Their functionality corresponds closely to the specifica-
tion of a signal by its bandwidth. Morphologically filter-
ing an image by an opening or closing operation corre-
sponds to the ideal nonrealizable bandpass filters of
conventional linear filtering. Once an image is ideal band-
passed filtered, further ideal bandpass filtering does not
alter the result.

This property motivates the importance for having def-
initions of opening and closing, concepts first studied by
Matheron 1171, 1181 who was interested in axiomatizing
the concept of size. Both Matheron's 1181 definitions and
Serra's [311 definitions for opening and closing are iden-
tical to the ones given here, but their formulas appear dif-
ferent because they use the symbol e to mean Minkowski
subtraction rather than erosion.

Definition 35: The opening of image B by structuring
element K is denoted by B o K and is defined as B o K =
(B e K) e K.

Definition 36: The closing of image B by structuring
element K is denoted by B * K and is defined by B * K
(B e K) e K.

If B is unchanged by opening it with K, we say that B
is open with respect to K, while if B is unchanged by
closing it with K, then B is closed with respect to K.

Fig. 8. The upper leht shows the inptit image. In the upper right, the input
image is dilated by a structuring element consisting of a 5 x 5 square.
In the lower left, the dilated image is eroded by a 5 x 5 square struc-
turing element. It is the closing ol the input image. In the lower right.
the closed image is dilated by a 5 x 5 square structuring element. It is
the same as the initially dilated image shown in the upper right.

We approach the issue of idempotency of opening and
closing by first discussing a class of sets which are unal-
tered by erosion followed by dilation with a given struc-
turing element K. This class consists of all sets which can
be expressed as some set dilated by K.

Proposition 37: A E K = (A * K) 0 K = (A * K) @
K.

Proof: Let G = A @ K, H G e K, and I = H e
K. Now, by Proposition 33, G A @ K implies A C G
e K = H; H = G e K implies GC H ( K = I. But A
' H implies A E K c H @ K. Since G = A @ K and I
= H E K, G C 1. Finally, G v land G CI imply 0 =
1. Hence,

A E K = H E K = (G e K) @ K

=((A e K) e K) @ K = (A K) e K.

Proposition 37 is illustrated in Fig. 8. The idempotency
of closing follows itmmediately as given by Theorem 38.

Theorem 38: (A * K) * K = A * K.
Proof:

A E K = (A * K) E K

(A E K) e K = ((A * K) @ K) e K

A * K = ((A * K) * K).

Similarly, images eroded by K are unaltered by further
dilation and erosion by K.

Proposition 39: A e K - (A o K) e K = (A e K)
* K.

Proof. Let G = A e K, H G @ K, and ! = H e
K. Now, G = A e K implies A ' G @ K = H; H = G
@ K implies G C H e K = 1. But A O H implies A e
K v H e K so that G 11. Finally G C I and G v I
imply G = I = H e K = (G E K) e K. Since G = A
e K, A e K = ((A e K) s K) e K = (A o K) e K.
The idempotency of opening follows immediately as given
by Theorem 40.
Theorem 40: A oK = (A o K) o K.
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Proof.

A e K= (A oK) e K

(A e K) @ K = ((A 0 K) e K) e K

A o K = (A o K) o K.
As with chained dilations and erosions, we can extend
these results for chained openings and closings.
Openings and closings have other properties. For ex-

ample, it follows immediately from the increasing prop-
erty of dilation (Proposition 12) and the increasing prop-
erty of erosion (Proposition 22) that both opening and
closing are increasing.

It follows immediately from the translation invariance
of dilation (Proposition 6) and the translation invariance
of erosion (Proposition 21) that both opening and closing
are translation invariant. Unlike dilation and erosion,
opening and closing are invariant to translations of the
structuring elements. That is, A 0 (B), = A o B and AX
(B)X = A * B. This also follows directly from Proposi-
tions 6 and 21. As stated in Proposition 41, the opening
transformation is antiextensive, i.e., the opening of A by
structuring element B is necessarily contained in A, re-
gardless of whether or not the origin belongs to B.

Antiextensivity ofOpening Proposition 41: A 0 B S A.
Proof: Letx eA o B. Thenx e (A e B) e B. Hence

there exist u e A e B and v e B such that x = u + v.
Now u e A e B implies u + b e A for every b e B. In
particular, v e B. Thus u + v e A. But x = u + v so that
x e A.

Example: Illustrates how opening can produce a result
which is strictly contained in the original.

A AeB AoB=(AeB)EB

B

Fig. 9 illustrates an opening by a structuring element
which does not include its origin.
The closing transformation is extensive, i.e., the clos-

ing of A by structuring element B contains A regardless
of whether or not B contains its origin.

Extensivity of Closing Proposition 42: A S A * B.
Proof. Let a e A. Let b e B. Then a + b e A e B.

But a + b e A e B for every b e B implies a e (A e B)
e B.
Example: This illustrates an instance of the relation-

ship A S A * B.

Fig. 9. The upper left shows the input image. In the upper right, the input
image is eroded by the box boundary structuring element shown in the
lower right. Notice that because the box is big enough to surround the
hole and still be inside the blob with the hole, the eroded image has one
white point whose position is in the hole. The lower left shows the image
of the upper right dilated by the box boundary structuring element. This
is the opening of the input image by the box boundary structuring ele-
ment.

Fig. 10. The upper left shows the input image. In the upper right, the input
image is dilated by a structuring element consisting of an II x 11 square
shown in lower right. In the lower left, the dilated image is eroded by a
11 x 11 square structuring element. This results in the closing of the
input image.

-r 1 1 1 1 1 1 1 .].1 .L I IIL

A AEB A B=(A$EB)eB

B

Fig. 10 illustrates a closing by a square structuring ele-
ment.
Openings and closings, like erosion and dilations, are

dual transformations. The complement of the closing of
A by B is the opening of Ac by B. This is illustrated in
Fig. 11.
Duality of Opening and Closing Theorem 43: (A * B)'

= A 0B.
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Fig. 11. The upper left shows the input image which is the complement of
the input image of Fig. 10. In the upper right, the input image is eroded
by a structuring consisting of an 11 x 11 square (shown in lower right).
In the lower left, the eroded image is dilated by the 11 x 11 square
structuring element. This results in the opening of the input image. Com-
paring Fig. 11 to Fig. 10, the opening of the complement is the comple-
ment of the closing for the symmetric square structuring element.

Proof.

(A * B)C = [(A e B) e B]C
= (A 9 B)C * A

= (Ac e A) AA
= AC 0 B.

Proposition 44 gives a geometric characterization to the
opening operation. The opening of A by B is the union of
all translations of B that are contained in A.

Proposition 44:

A °B = {x e AIfor some y, x eBy 5 A}

= U By.
{yiByIA)

Proof. Suppose x eA o B, then x e (A e B) e B.
Hence there exists a y e A e B and b e B such that x =
y + b. SinceycA e B,y + beAwithbeBimpliesx
eBBy.
Suppose x e A and for some y, x e By C A, then for

every z e B, z + y e A and there must exist some b e B
such that x = b + y. But y + z e A for every z e B implies
by definition of erosion that y e A e B. And x = b + y
implies by definition of dilation that x e (A e B) e B =
A o B.
By the duality of opening and closing, it is immediate

that the closing of A by B is the complement of the union
of all translations of B that are contained in AC. That is,
A * B = (Ac o A) = [ U{y Iby IA'c} ByI c. Proposition 45

gives another geometric characterization to the closing
operation.

Proposition 45:

A * B = {x e ENIx e By implies Ay n A * 0}

= ln By
ty1hynA=90}

Proof: By Theorem 43, A * B = (Ac o b)c.
By Proposition 44, Ac OB {xe EN Ifor some y, x e

By c Ac }. Hence,

A * B = (Ac 0 A)c = {x e ENJfor some y, Xe By
andBy cArAc

= {x e ENJfor some y, x eBy and By
n A = }c

= {x e ENIx eB,y implies By n
A * 0}

Propositions 44 and 45 immediately imply that A 0 Bx
=A oBy andA *B, = A By for anyxandyin EN.
Hence the origin of the structuring element makes no dif-
ference in the results of an opening or closing.

Also,

I u hyf- 1
L ,,AysAc) 'by] [l,,IAnfAl=0

By DeMorgan's Law,

1ty1AynA1=0}
U AC

I yIh.nAc =9)}

IV. GRAY SCALE MORPHOLOGY
The binary morphological operations of dilation, ero-

sion, opening, and closing are all naturally extended to
gray scale imagery by the use of a min or max operation.
Nakagawa and Rosenfeld [22] first discussed the use of
neighborhood min and max operators. The general exten-
sions, due to Stemnberg [33], [351, keep all the relation-
ships discussed in Sections II and III. Peleg and Rosen-
feld [24] use gray scale morphology to generalize the
medial axis transform to gray scale imaging. Peleg, Naor,
Hartley, and Avnir [23] use gray scale morphology to
measure changes in texture properties as a function of res-
olution. Werman and Peleg [38] use gray scale morphol-
ogy for texture feature extraction. Favre, Muggli, Stucki,
and Bonderet [5] use gray scale morphology for the de-
tection of platelet thrombosis detection in cross sections
of blood vessels. Coleman and Sampson [2] use gray scale
morphology on range data imagery to help mate a robot
gripper to an object.
We will develop the extension in the following way.

First we introduce the concept of the top surface of a set
and the related concept of the umbra of a surface. Then
gray scale dilation will be defined as the surface of the
dilation of the umbras. From this definition we will pro-
ceed to the representation which indicates that gray scale
dilation can be computed in terms of a maximum opera-
tion and a set of addition operations. A similar plan is
followed for erosion which can be evaluated in terms of
a minimum operation and a set of subtraction operations.
Of course, having a definition and a means of evaluat-

ing the defined operations does not imply that the prop-
erties of gray scale dilation and erosion are the same as
binary dilation and erosion. To establish that the relation-
ships are identical, we explore some of the relationships
between the umbra and surface operation. Our explana-
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successive column positions and a finite portion of its um-
bra which lies on or below the function f. The actual um-
bra has infinite extent belowf. The reader should note that
because the gray scale morphology so closely involves
functions defined on the real line or plane, our example
illustrations use the ordinary (x, y) coordinate frame in-
stead of the row column coordinate frame employed in the
examples of the binary morphology.

Fig. 12. The concept of top or top surface of a set.

tion shows that umbra and surface operations are essen-
tially inverses of each other. Then we illustrate how the
umbra operation is a homomorphism from the gray scale
morphology to the binary morphology. Having the homo-
morphism in hand, all the interesting relationships follow
by appropriately unwrapping and wrapping the involved
sets or functions.

A. Gray Scale Dilation and Erosion
We begin with the concepts of surface of a set and the

umbra of a surface. Suppose a set A in Euclidean N-space
is given. We adopt the convention that the first (N - 1)
coordinates of the N-tuples of A constitute the spatial do-
main of A and the Nth coordinate is for the surface. For
gray scale imagery, N = 3. The top or top surface of A
is a function defined on the projection of A onto its first
(N - 1) coordinates. For each (N - 1 )-tuple x, the top
surface of A at x is the highest value y such that the N-
tuple (x, y) E A. This is illustrated in Fig. 12. If the space
we work in is Euclidean, we can express this using the
concept of supremum. If the space is discrete, we use the
more familiar concept of maximum. Since we have sup-
pressed the underlying space in what follows, we use

maximum throughout. The careful reader will want to
translate maximum to supremum under the appropriate
circumstances.

Definition 46: Let A C EN and F = {x E EN-1 for
some y E E, (x, y) E A }. The top or top surface of A,
denoted by T[A]: F E, is defined by

T[A](x) = max { yI(x, y) E A}

Definition 47: A set A C EN-l x E is an umbra if and
only if (x, y) e A implies that (x, y) E A for every z <

Y.
For any function f defined on some subset F of Euclid-

ean (N - 1 )-space the umbra of f is a set consisting of
the surface f and everything below the surface.

Definition 48: Let F C EN- 1 andf: F -- E. The umbra

off, denoted by U[f ], U [ f ] c F x E, is defined by

U f] = {(x, y) E F x E| y f(x)}.
Obviously, the umbra off is an umbra.
Example: This illustrates a discretized one-dimen-

sional function f defined as a domain consisting of seven

.
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* 0*
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0

0

0

0

0

0
11

Having defined the operations of taking a top surface
of a set and the umbra of a surface, we can define gray
scale dilation. The gray scale dilation of two functions is
defined as the surface of the dilation of their umbras.

Definition 49: Let F, K c EN- 1 andf: F -- E and k:

K -+ E. The dilation off by k is denoted byf E k,f

k: F E K -- E, and is defined by

f e k= T[U[f] E U[k]].
Example: This illustrates a second discretized one-di-

mensional function k defined on a domain consisting of
three successive column positions and a finite portion of
its umbra which lies on or below the function k. The di-
lation of the umbras off (from the previous example) and
k are shown and the surface of the dilation of the umbras
off and k are shown.

kw
k~

0 *--

*f 10 0.

*1 10 0 0*

0 0 0 0

0 0 0 0

U[IeU[k

U[k]

0

0

0

0

0

0

i 1.4 W.

1tII
T[U[f ffl U[k]

The definition of gray scale dilation tells us concep-

tually how to compute the gray scale dilation, but this
conceptual way is not a reasonable way to compute it in
hardware. The following theorem establishes that gray

scale dilation can be accomplished by taking the maxi-
mum of a set of sums. Hence, gray scale dilation has the
same complexity as convolution. However, instead of
doing the summation of products as in convolution, a

maximum of sums is performed.
Proposition 50: Letf: F -+ E and k: K -+ E. Thenf e

y

T[A]

A/_I
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k: F e K -- E can be computed by
(f E k)(x) = max {f(x - z) + k(z)}

zeK
x -zeF

Proof: Suppose z=(f ED k)(x). Thenz = T U[Uf]
E U [k]] (x). By definition of surface,

z = max {y (x, y) E [U[f ] e U[k]]k}

By definition of dilation,

z = max {a + b I for some u E K satisfying x u E F,

(x - u, a) e U[f] and (u, b) e U[k]}.
By definition of umbra, the largest a such that (x - u, a)
E U [ f ] is a = f (x - u). Likewise, the largest b such
that (u, b) E U [ k] is b = k (u). Hence

z = max {f(x - u) + k(u)|u E K, (x - u) E F}
= max {f(x - u) + k(u)}.

ueK
(x -u)eF

The definition for gray scale erosion proceeds in a sim-
ilar way to the definition of gray scale dilation. The gray
scale erosion of one function by another is the surface of
the binary erosions of the umbra of one with the umbra of
the other.

Definition 51: Let F C EN- 1 and K c EN- 1. Letf: F
E and k: K -+ E. The erosion off by k is denoted byf

e k,f e k:F e K E, and is definedby
f e k= T[U[f] e U[k]].

Example: Using the same fuinction f and k of the pre-
vious example, illustrated here is the erosion off by k by
taking the surface of the erosion of the umbra off by the
umbra of k.

0

* 0@

U[f] e Ujk]

i

*_

e_T[U[ f I e) U[k]]

Evaluating a gray scale erosion is accomplished by tak-
ing the minimum of a set of differences. Hence its com-

plexity is the same as dilation. Its form is like correlation
with the summation of correlation replaced by the mini-
mum operation and the product of correlation replaced by
a subtraction operation. If the underlying space is Euclid-
ean, substitute infimum for minimum.

Proposition 52: Let f:F -- E and k:K -+ E. Then f

e k:F e K -- E can be computed by (f e k) (x) =

minzEK { f (x + z) - k(z) }.

Proof: Suppose z = (f e k) (x). Then, z =

T[U [f ] e U[k] ] (x). By definition of surface, z = max

{ y (x, y) E U[f] e U[k] }. By definition of erosion

z = max { y for every (u, v)
E U[k], (x, Y) + (u, v) e U[f]}.

By definition of umbra,

z = max { y for every u E K, v c k(u), y

+ vs f(x + u)}
= max { y Ifor every u E K, v

< k(u), y c f(x + u) - v}.

But y ' f(x + u) - v for every v . k(u) implies y .
f(x + u) - k(u). Hence,

z = max { y for every u E K, y c f (x + u) - k(u)}.
Buty .f(x + u) - k(u)foreveryuEKimplies

y c min [f(x + u) -k(u)].
ueK

Now,

z = max yI y . min [f (x + u) -k(u)]I

= min [f(x + u) - k(u)].
uEK

Fig. 13 illustrates an example of gray scale dilation and
erosion.
The basic relationship between the surface and umbra

operations is that they are, in a certain sense, inverses of
each other. More precisely, the surface operation will al-
ways undo the umbra operation. That is, the surface op-
eration is an inverse to the umbra operation as given in
the next proposition.

Proposition 53: Let F C EN- 1 and f: F -+ E. Then
T[U[f ]] = f.

Proof: Let y E T[ U[f]](x). Then y = max { z I (x,
z) E ULf ] }. Now (x, z) E U f ] implies z < f (x). Also,
(x, f (x)) E U [f]. Thus y cannot get larger thanf (x)
and since (x,f(x)) E U[f], y can get as large asf(x).
Thus y = f (x).

Corollary 54: UIT[!IU[f]] = U[f].
However the umbra operation is not an inverse to the

surface operation. Without any constraints on the set A,
the strongest statement which can be made is that the um-
bra of the surface of A contains A. This is illustrated in
Fig. 14.

Proposition 55: LetA C EN. Then A C U[T[A]].
Proof: Let x E EN- 1 and y e E. Suppose, (x, y) E

A. Letz = T[A] (x) = max {v I(x, v)eA}. Hence, z
. y. But by definition of the umbra operation z =

T[A] (x) implies (x, w) E U[T[A]] for all w c z. In
particular, y . z. Hence, (x, y) E U[T[A]].
When the set A is an umbra, then the umbra of the sur-

face of A is itself A. In this case the umbra operation is
an inverse to the surface operation.

Proposition 56: If A is an umbra, then A = UI[T[A ].
Proof: By Proposition 54, A C U[ T[A]]. So we just

need to show that A D U[T[A]]. Suppose (x, y) E
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(a)

(b)

(c)

Fig. 13. A woman's face in the image form and in a perspective projection
surface plot form. This image is morphologically processed with a pa-

raboloid structuring element given by 6(8 - r2 _ c2), -2 c r c 2,
-2 c c c 2. (b) The erosion of the girl's face in image form and per-

spective projection surface plot form. (c) The dilation of the girl's face
in image form and perspective projection surface plot form.

Y

U [T[A]]

X

Fig. 14. The umbra of the top surface of a set.

U[IT[A]] and A is an umbra. By definition of the umbra
operation (x, y) e U[T[A]] implies y c T[AI (x) and
there exists some z such that (x, z) e A. Now if there
exists some z such that (x, z) e A, (x, T[A] (x)) e A.
Since A is an umbra, (x, T[A] (x)) e A implies that (x,
w) e A for every w c T[A] (x). In particular y c
T[A] (x). Hence (x, y) e A.
Having established that the surface operation is always

an inverse to the umbra operation and that the umbra op-
eration is the inverse to the surface operation when the set
being operated on itself is an umbra, we are almost ready
to develop the umbra homomorphism theorem. First we
need to establish that the dilation of one umbra by another
is an umbra and that the erosion of one umbra by another
is also an umbra.

Proposition 57: Suppose A and B are umbras. Then A
e B and A e B are umbras.

Proof: Suppose (x, y) e A D B. Let w c y. We
need to demonstrate that (x, w) e A e B. By definition
of dilation, (x, y) e A * B implies that there exists (u,
v) e B such that (x - u, y - v) e A. Now w c y implies
w - v c y - v. And A is an umbra so that (x - u, y -

v) e A and w - vS y - v implies (x - u, w - v) e A.
But by definition of dilation, (x - u, w - v) e A and (u,
v) eB implies (x, w) e A e B which means that A e B
is an umbra.
Suppose (x, y) e A e B. Let w c y. We need to dem-

onstrate that (x, w) e A e B. By definition of erosion,
(x, y) e A e B implies that for every (u, v) e B, (x, y)
+ (u, v) = (x + u, y + v) e A. Now w c y implies w
+ v c y + v. Since A is an umbra and (x + u, y + v)
e A and w + v c y + v, then (x + u, w + v) e A. But
by definition of erosion if (x, w) + (u, v) e A for every
(u, v) e B then (x, w) e A e B. Hence A e B is an
umbra.
Now we are ready for the umbra homomorphism theo-

rem which states that the operation of taking an umbra is
a homomorphism from the gray scale morphology to the
binary morphology.
Umbra Homomorphism Theorem 58: Let F, K c

EN-landf:F - Eandk:K- E. Then

1) U[f e k] = U[f]I U[k]
and

2) U[f e k] = UIf] e U[k]

Proof: 1) f e k = TIUlf] e U[k] ] so that U[ f
e k] = U[T[U[f ] e U[kI]]]. But U[f ] a U[k] is
an umbra and for sets which are umbras the umbra oper-
ation undoes the surface operation. Hence UI f @ k] =

U[T[U[f] * U[k]]] = U[f] * U[k].
2) f e k = T[U[f ] e U[k]] so that U[f e k] =

U[T[U[f] e U[k]]]. But Ulf ] e U[k] is an umbra
and for sets which are umbras, the umbra operation un-
does the surface operation. Hence,

U[f e k] = U[T[U[f] e U[k]]] = U[f] e U[k].

To illustrate how the umbra homomorphism property is
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used to prove relationships by first wrapping the relation-
ship by re-expressing it in terms of umbra and surface
operations and then transforming it through the umbra
homomorphism property and finally by unwrapping it
using the definitions of gray scale dilation and erosion,
we state and prove the commutivity and associativity of
gray scale dilation and the chain rule for gray scale ero-
sion.

Proposition 59: f e k = k @D f.
Proof:

f E k = T[U[f]f U[k]]
= T[U[k] E U[f]]

=k e f.
Proposition 60: k, e (k2 (* k3) = (k, ED k2) E k3.
Proof:

k1 e (k2 D k3) = T[U[k1] E U[k2 (D k3]]
= T[U[ki] ED (UDk2] UIk3])]
= T[(U[ki] U[k2]) * U[k31]
= T[U[k, o k2] * U1k3]]

= (ki 9 k2) '9 k3.
Proposition 61:
Proof:

(f e ki) e k2 =f e (k, e k2).

(f e k1) e k2 = T[U[f e k1] e U[k2]]

= T[(U[f] e U[k1]) e U[k2]]
= T[U[f] e (U[k1] U[k2])]
= T[UU[f] e U[k1 o k2]]

=f e (k1 e k2).

Gray scale opening and closing are defined in an anal-
ogous way to opening and closing in the binary mophol-
ogy and they have similar properties.

Definition 62: Letf:F - E and k:K - E. The gray
scale opening off by structuring element k is denoted by
fo k and is defined byfo k = (f e k) e k.

Definition 63: Letf:F - E and k:K - E. The gray
scale closing off by structuring element k is denoted by
f * k and is defined byf * k = (f * k) e k.

Fig. 15 shows an example of gray scale opening and
closing.
To prove the idempotency of gray scale opening and

closing, we need the following property relating functions
to their umbras.

Proposition 64: Let f: F - E and g: G - E. Suppose
F S G. Thenf c g if and only if U[f I C U[ g].

Proof: Supposef < g. Let (x, y) E U[ f]. Then by
definition of umbra, y c f (x). But x e F and F C G so
that x e G. By supposition, f (x) c g(x). Hence, y <

g(x). Now by definition of umbra, (x, y) e U[ g].
Suppose Ulf I S Ut g]. Let y = f (x). Certainly, (x,

(a)

(D)

Fig. 15. The gray scale opening and closing operation. (a) The gray scale
opening of the girl's face in image form and in perspective projection
surface plot form. The structuring element is the paraboloid described in
Fig. 13. (b) The gray scale closing of the girl's face in image form and
in perspective projection surface plot form.

y) e U[fI. But U[fl ' U[g] so that (x, y) eU[g].
Now by definition of umbra, y c g(x).
Having this property, the analog to Proposition 33 fol-

lows.
Proposition 65: g < f e k if and only iff 2 g e k.
Proof: g c f e k if and only if Ul g]J U[f e

kI]. But U[fe ck] = U[fI e U[k]. Now U[g] C Uf]
e U[kIif and only if U[ f I v UI g I ED U[k]. But U g]
E U[k] = U[g ED k]. Finally, U[f J v U[g (D k] if
and only iff 2 g e k.
Another property which is immediately obvious is that

if one set is contained in a second, then the surface of the
first will be no higher at each point than the surface of the
second.

Proposition 66: Let A C EN- x EandD S EN-l X
E. Then A C D implies T[A] (x) < TiDJ (x).

Proof: Let x e EN- X be given. Then, since A C D,
T[A](x) = max z c max z = T[D] (x).

(x,z)EA (X.Z)ED

From this fact, it quickly follows that the gray scale
opening of a function must be no larger than the function
at each point in their common domain. This is the gray
scale analog to the antiextensivity property of the binary
morphology opening.

Proposition 67: (f o k) (x) < f (x) for every x e
Fo K.
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Proof:
fo k - (f e k) ± k T[U(f e k) e U[k]]

-T[(U| f ] e U[k]) E3 U[k]].
But (U[f1 e U[k]) e U[k] C U[Lf ], hence by Prop-
osition 63,

T[(U[f ] e U[k]) E U[k]] (x) . T[U[f ]] (x)
for every x E (F e K) e K. Since T[U[f]] -f,
TV(U[f] e Ulk]) E Uf[k]J(x) f(x).

Likewise, the gray scale closing of a function must be
no smaller than the function at each point in their common
domain. This is the gray scale analog to the extensivity
property of the binary morphology closing.

Proposition 68: f (x) < ( f * k) (x) for every x E F.
Proof:

fo k - (f ED k) e k - T[U[f ED k] e U[k]]

T[(U[,f] ED U[k]) e U[k]].
But (U[f] D U[kj) e U[k] D U[f]; hence

T[(U[f] e U[k]) E UIkl] (x) . TU[ f]] (x) for
everyxeF. Since T[U[fI] f,f(x) . T (Ujf] D

U[k]) e U[k]l (X).
Now the idempotency property of opening and closing

can be proved by the umbra homomorphism theorem.
Proposition 69. (f o k) o k - f 0 k.

Proof:
(f° k) 0 k - 7[(U[f k] e U[k]) E U[k]]

I[(((U[f ] e U[k]) 3D U[k]) e U[k])
D U[k]]

rT[(U[f I U[k]) ° U[k]]
T[U[f] U[kI]

T[(U[f] e U[k]) E U[k]]
T[U[fe k] E U[k]]
T[U[( f e k) E k]]

T[U[f ° k]]
-fc, k.

Proposition 70: (f * k) * k-f * k.
Proof:

(f. k) * k -T[('UJff k] ($ UI[k]) e U[k]]
= T[(((U[f] ED U[k]) e U[k]) e U[k])

e U[k] ]

T[(U[ff] * U[k]) * U[k]]
- TU[ f] * U[k]]
- T[(U[f] (3 U[k]) e U[k]]
T[U[(f k) e k]]
47[U[f* k]]

=f k.

There is a geometric interpretation to the gray scale
opening and to the gray scale closing in the same manner
that there is a geometric meaning to the binary morpho-
logical opening and closing (Propositions 44 and 45). To
obtain the opening off by a paraboloid structuring ele-
ment, for example, take the paraboloid, apex up, and slide
it under all the surface off pushing it hard up against the
surface. The apex of the paraboloid may not be able to
touch all points off. For example, if f has a spike nar-
rower than the paraboloid, the top of the apex may only
reach as far as the mouth of the spike. The opening is the
surface of the highest points reached by any part of the
paraboloid as it slides under all the surface of/f The for-
mal statement of this is given in Proposition 71.

Proposition 71:

f k - T U U[k]Aj
I* U[k X1 U[,f] }

Proof:

fok= T[U[f e k] s U[k]]
= T[(U[f] e U[k]) e U[k]]

- T[U[f] ° U[k]]

- TL U (U[k])
{ Z (Ut kl )zC Ut f ]I}

We have not mentioned the duality relationship be-
tween gray scale dilation and erosion. We need this in
order to give the geometric interpretation to closing. The
duality relationship is analogous to the relationship given
in Theorem 25. Before stating and proving it, we need the
definition of gray scale reflection.

Definition 72: Let f: F -+ E. The reflection off is de-
noted byf, f:F-E, and is defined byf(x) =f( -x).
Gray Scale Dilation Erosion Duality Theorem 73: Let

f:F-> Eandk:K E. Letxe(F a K) n (F e K)
be given. Then (f e k)()x ((-f) e k) (x).

Proof:

-(f E k) (x) -max [ f (x - z) + k(z) ]
zeK

X- eF

= min [-f (x
z K

x-z-F

z) - k(z)]

- mi [-f (x + z) - k(z)]
.r +z EF

- ((-f) E k) (x)

It follows immediately from the gray scale dilation and
erosion duality that there is a gray scale opening and clos-
ing duality.
Gray Scale Opening and Closing Duality Theorem

74: -(f k)-(-f)k.
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Proof:

-(f k)= -((f e k) e k)
I IV=(-(f e k)) e k

- ((-f) @ k ek
(-f).k.

Having the gray scale opening and closing duality, we
immediately havef * k = - (( -f ) o k). In essence, this
means that we can think of closing like opening. To close
f with a paraboloid structuring element, we take the re-
flection of the paraboloid in the sense of Definition 72,
turn it upside down (apex down), and slide it all over the
top of the surface of f. The closing is the surface of all
the lowest points reached by the sliding paraboloid.

V. SUMMARY
We have developed the basic relationships in binary

morphology and have then developed the extensions of
these relationships in gray scale morphology. We have
shown that morphological openings are increasing, an-
tiextensive, translation invariant, and idempotent. We
have shown that morphological closings are increasing,
extensive, translation invariant, and idempotent. For fur-
ther algebraic depth on opening and closings, see [18] or
[31].
We intend to publish two follow-on tutorials to the

present one. The first will discuss a variety of topics in-
cluding sieves, sampling, morphologic topography,
thickenings, thinnings, boundaries, skeletons, connectiv-
ity, convexity, morphologic derivative estimation, and
bounding derivatives by gray scale morphologic openings
and closings. The second will be on application where we
will discuss morphologic solutions to a variety of indus-
trial vision problems.
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