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Author’s Reply?
R. M. HARALICK

Abstract—We present evidence that the Laplacian zero-crossing opera-
tor does not use neighborhood information as effectively as the second
directional derivative edge operator. We show that the use of a Gaussian
smoother with standard deviation 5.0 for the Laplacian of a Gaussian
edge operator with a neighborhood size of 50 X 50 both misses and
misplaces edges on an aerial image of a mobile home park. Contrary
to Grimson and Hildreth’s results, our results of the Laplacian edge
detector on a noisy test checkerboard image are also not as good as the
second directional derivative edge operator. We conclude by discussing
a number of open issues on edge operator evaluation.

I. INTRODUCTION

Grimson and Hildreth [3] suggest that comparisons between
edge detectors should be done without regard to considerations
of neighborhood size. Their suggestion for an edge detector is
to eliminate noise on the input image by smoothing with a
sufficiently broad Gaussian filter, take the Laplacian of the
smoothed image, and mark pixels as edges if in some direction
the pixel on the convolved image has a zero-crossing with a high
enough slope. They state that for the test checkerboard image
with 20 X 20 checks and a check contrast-to-noise ratio of 2:1
using a Gaussian smoother with standard deviation of 5.0, the
probability of a true edge being assigned an edge by their edge
detector is about 0.9 when the zero crossing slope is given a
threshold in a way which equalizes the number of true edges
assigned as nonedges with the number of nonedges assigned as
edges. They argue for a neighborhood size in the range of
45 X 45 rather than the truncated neighborhood size of 11 X
11 used in Haralick.'

Although Grimson and Hildreth [3] do not mention it in
their correspondence, they did, in private correspondence, note
that the equation given by Haralick! for the Laplacian of a
Gaussian consistently had a typographical error of a misplaced
parenthesis. Computer programs and results, however, were
correct. .

We attempted to replicate the Grimson-Hildreth result using
a Gaussian smoother with standard deviation of 5.0 with a neigh-
borhood size of 50 X 50. Any pixel which had a zero crossing
slope greater than 10 zero-crossings of the smoothed Laplacian
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was assigned an edge. True edges were declared for any pixel
of the no-noise checkerboard, which was black but bordered a
white pixel, or which was a white pixel and bordered a black
pixel. Our results indicate that, given a pixel is a true edge, the
probability that the pixel is assigned an edge is 0.7217. Given
that a pixel is assigned as an edge, the probability that it is a
true edge pixel is 0.7155. This differs considerably from their
result. It would be worthwhile to carefully review each of our
procedures to determine why this difference arises. Is it due
to a different definition of true edge? Is it due to a difference
in the zero-crossirg slope computation?

Even if the replication agreed with the Grimson-Hildreth
experiment, the situation would be more complicated than it
appears on the surface. From a signal content/noise content
point of view, the standard deviation of the Gaussian filter
must be set based on the size distribution of the homogeneous
regions, their relative contrasts, and the amount of noise. A
standard deviation of 5.0 for a Gaussian averager may leave
objects such as the 20 X 20 checks intact, but would tend to
smooth out of existence objects which are small or thin. Thus,
there are circumstances in which a standard deviation of 5.0
would be inappropriately large, and it is precisely for this reason
that a fixed window size was selected to do the experiments.

To see the folly of not fixing the size of the window, con-
sider an image whose size is as large as we like, whose left-hand
side is noisy black, and whose right-hand side is noisy white.
Suppose the signal-to-noise ratio is reasonable. Under these
circumstances, consider how we would want to evaluate edge
operators. Since the geometry is utterly simple and the objects
are as large as we would like, each edge operator proponent
could find a window of sufficiently large size so that the edge
operator produces a result of prespecified accuracy. Obviously,
in this situation the above evaluation is meaningless. What we
must do is perform the evaluation under conditions in which
the pixel information provided to the edge operator is limited
and then perform the evaluation under the limiting informa-
tion conditions. Under these circumstances, an edge operator
could be said to be uniformly better than other edge operators
if under each possible information limiting condition it per-
forms better than all the other edge operators. Thus, perfor-
mance in controlled experiments must be performance as a
function of information utilized. The key issue is, how well
does the operator utilize a fixed information set?

II. EXPERIMENTS

To show the problem of an excessively large standard devia-
tion for the Gaussian smoother, we try to determine the edges
of the aerial image of a mobile home park, shown in Fig. 1.
We perform three experiments. In the first experiment, a
Gaussian standard deviation of 5.0 is used with an adequate
45 X 45 window as the smoother preceding the Laplacian. The
zero-crossings obtained having a nonzero slope are shown in
Fig. 2. Notice how many edges are not detected and that many
edges are misplaced around nearly straight boundaries as well
as around corners. This is only a reasonable edge image if the
rows of the mobile homes are the desired objects. It is not a
reasonable edge image if the boundaries of the individual homes
are desired.

In the second experiment, a Gaussian standard deviation of
0.8 is used with an adequate 7 X 7 window as the smoother
preceding the Laplacian. The zero-crossings obtained having
a slope greater than 2 are shown in Fig. 3. 25 percent of the
pixels are assigned edges. Although noisy, at least this image
shows the individual edges around the mobile homes.

The third experiment uses the second directional derivative
zero-crossing edge operator. The equally weighted least squares
bivariate cubic fit is done in a 7 X 7 neighborhood, and a pixel
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Fig. 1. An aerial image of a trailer park.

Fig. 2. The zero-crossings of a Laplacian edge detector having a Gaussian
standard deviation of 5.0 and using a window of 45 X 45. 22 percent
of the pixels are assigned as edges.

Fig. 3. The zero-crossings of a Laplacian edge detector having a Gaussian
standard deviation of 0.8 and using a window of 7 X 7. 25 percent of
the pixels are assigned as edges.
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Fig. 4. The second directional derivative edge detector using an equally
weighted cubic fit in a 7 X 7 window. 25 percent of the pixels are
assigned as edges.

Fig. 5. The zero-crossings of a Laplacian edge detector using an equally
weighted cubic fit in a 7 X 7 window. 25 percent of the pixels are
assigned as edges.

is declared as an edge pixel if in the gradient direction a nega-
tively sloped zero-crossing of the second directional derivative
occurs within a distance of 0.85 of the center of the pixel and
the gradient magnitude is greater than 12. The resulting image
has 25 percent of the pixels assigned as edges and is shown in
Fig. 4. The results are not as noisy as the Laplacian of Fig. 3.
The edges are placed accurately, and they tend to be connected.

We tried an interesting variation in which we used the fitting
coefficients from the bivariate cubic fit to estimate the Laplac-
ian. The resulting zero-crossings are shown in Fig. 5, in which
the zero-crossing threshold is chosen so that 25 percent of the
pixels are assigned as edges. They appear more connected than
the zero-crossings of the Laplacian of a Gaussian operator.

III.

There are some interesting issues which have not yet been
fully discussed or understood. Whether the edge operator is a
Laplacian zero-crossing one or a second directional derivative
zero-crossing one, the operator must estimate partial derivatives
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Fig. 6. The checkerboard test image (upper left-hand side), the true
edge image (lower left-hand side), the zero-crossing of the Laplacian
image using a Gaussian standard deviation of 5.0 (upper right-hand
side), and the second directional derivative edge operator with a Gauss-
ian presmoother having standard deviation 0.88, followed by an equally
weighted cubic fitin a 9 X 9 window (lower right-hand side).

up through the third order if a zero-crossing slope is used. For
a fixed neighborhood size, what is the most effective way to
estimate these partial derivatives? The Marr and Hildreth
scheme is equivalent to averaging and then taking finite differ-
ences to compute the partial derivatives. The Haralick scheme
performs a least squares estimate assuming a local cubic poly-
nomial model. Finite differences and least squares yield the
same result only when the polynomial model has as many pa-
rameters as pixels in the neighborhood. The least squares
estimate can be generalized to a weighted least square (Hashi-
moto and Sklansky [4] have already suggested a binomial
weighted least square), and it is possible to presmooth followed
by a least squares estimate. It is also possible to pose the
estimation problem as a robust estimation problem, which in
effect makes the weights used in the least squares fit adaptive.
We tried an example of presmoothing with a Gaussian filter
having a standard deviation of 0.88 followed by a9 X 9 equally
weighted fit. Fig. 6 shows the checkerboard test image; the
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perfect edge image; the zero-crossings of the Laplacian of a
Gaussian with a 5.0 standard deviation (upper right-hand side)
result, which does not replicate the stated accuracy of the
Gaussian-Hildreth experiment; and the zero-crossings of the
second directional derivative edge detector (lower right-hand
side). For the directional derivative edge operator, 0.8391 is
the probability of a pixel being a true edge pixel given that it is
assigned an edge pixel. The probability of a pixel being assigned
an edge, given that it is a true edge, is also equal to 0.8391.

The Marr-Hildreth scheme chooses a direction which maxi-
mizes the zero-crossing slope of the Laplacian. The Haralick!
and Canny [2] schemes choose the gradient direction, although
they compute it in a different way. Are there other reasonable
directional choices or computational techniques? What kind
of experiment could be done to evaluatv which is the better
choice? What kind of analysis could be done to evaluate the
choices in a theoretical way?

Both techniques cause edges to be displaced under certain
conditions. In regions of nonlinear gray tone intensity surface,
the Laplacian technique can spatially displace edges by as much
as the standard deviation of the Gaussian smoother; it can even
miss edges also (Berzins [1], Leclerc and Zucker [5]). Edges
which curve rapidly around corners can be displaced by both
techniques. There are difficulties around saddle points, espe-
cially in the second directional derivative technique which
requires a nonzero gradient.

These sorts of issues and problems need to be addressed.
Perhaps there could be a reader’s forum on this to help us all
understand the most effective way to think about the problem.
Write up your idea and submit it as a note or reply to this
correspondence.
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