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Correspondence

A Metric for Comparing Relational
Descriptions

LINDA G. SHAPIRO AND ROBERT M. HARALICK

Abstract-Relational models are frequently used in high-level com-
puter vision. Finding a correspondence between a relational model and
an image description is an important operation in the analysis of scenes.
In this paper the process of finding the correspondence is formalized
by defining a general relational distance measure that computes a
numeric distance between any two relational descriptions-a model and
an image description, two models, or two image descriptions. The dis-
tance measure is proved to be a metric, and is illustrated with examples
of distance between object models. A variant measure used in our past
studies is shown not to be a metric.

Index Terms-Matching, metric, relational distance, structural
description.

I. INTRODUCTION
Relational models of objects are frequently used in computer

vision systems that attempt to analyze images of real-world
scenes containing these objects. Part of the analysis process
deals with 1) constructing a relational description of a portion
of the image that is considered a possible two-dimensional view
of some object in the knowledge base of the vision system and
2) comparing this relational description to a relational model.
The result of the comparison should indicate the likelihood that
this portion of the image is a projection of the object repre-
sented by the relational model. This type of comparison, also
called relational matching, has been utilized in a number of
vision systems (see Section II). In this paper, we give a formal
description of the general relational distance measure we have
been using to compare two relational descriptions (or models),
prove it is a metric, and illustrate it with examples of distances
between object models. We also show that a variant measure
we have used in past studies is not a metric.
Having a measure which is a true distance between two rela-

tions is important because it then becomes easy to put the
matching problem into a meaningful and applicable Bayesian
decision framework. Class conditional probabilities can be de-
fined which are monotonic decreasing functions of the distance
between the test relation and a representative relation from the
class. This is precisely what happens in the multivariate nor-
mal density function where the Mahalanobis distance between
a test point and the class mean determines the probability
density. In this manner, it becomes possible to have structural
relational descriptions of patterns and be able to compute the
probability that a pattern arises from a given class typified
by a representative prototype pattern. Thereby, structural pat-
tern recognition and decision theory can be married together.
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II. RELATED LITERATURE
One of the early discussions of relational matching was a

paper by Barrow, Ambler, and Burstall [1] which compared
several strategies for finding a mapping from a relational descrip-
tion of a model to a relational description of an image. The
advent of discrete relaxation algorithms (for example, Waltz
[ 24 ]; Rosenfeld, Hummel, and Zucker [ 141 ; and Haralick and
Shapiro [8]) to speed up the exponential process of finding
such a mapping helped to popularize relational models and they
have been used in a number of systems.
Nevatia and Binford [13] used three-dimensional object

models consisting of generalized cylinders with normal cross
sections for primitives, plus connectivity relations and global
properties. Marr and Nishihara [ 10 ] had hierarchical relational
models also with generalized cylinder primitives. Schneier [ 16]
represented objects by primitives and relations, but with the
special feature that common primitives and relations are shared
across models and within models. The matching done in the
ACRONYM system (Brooks [2]) was also partly of a relational
nature. This system, however, encoded relational and other
constraints as symbolic expressions and used symbolic reason-
ing in the recognition of three-dimensional objects from single
perspective views. Relational matching has also been used in
two-dimensional shape matching (Shapiro [18], Davis [3]).
The subject of efficiently finding relational matches has been

addressed in a number of papers (Ullman [23] , Montanari [ 11 ],
Mackworth [ 9 ], Freuder [ 5 ], Gaschnig [6 ], those mentioned
above, and others). Haralick and Elliot [7] compared several
discrete relaxation operators and found that a very simple oper-
ator called forward checking worked best. Shapiro and Haralick
[ 19] extended this work to inexact matching. In [21] we de-
fined a distance measure for graphs and used it to organize a
database of models into clusters. An unknown graph could be
compared to representatives of each cluster instead of to each
graph in the database. The distance measure used in [21] was
a special case of the general relational distance defined in this
paper. Sanfelieu and Fu [ 15 ] developed a different relational
distance for graphs and used it to classify muscle tissue patterns.
The measure, which they use to compare an input graph to a
reference graph, is based on the cost of node recognition plus
the cost of the operations necessary to transform the input
graph to the reference graph. The measure is defined by

min {WnrCnr + WniCni+W'ndCnd +WbiCbi+WbdCbd}
all configurations

where wnr5 Wnij Wnd, Wbi, and Wbd are weights summing to 1
and Cnr, cni, cnd, C,bi, and Cbd are the costs of node recogni-
tion, node insertion, node deletion, branch insertion, and
branch deletion, respectively. In comparison, the general
distance measure is a bidirectional measure which takes into
account the last four of these costs, but makes no allowance
for node recognition. Sanfelieu's distance measure is not a
metric. Our general relational distance is the first measure of
the distance between two relational descriptions that is a metric.

III. A GENERAL RELATIONAL DISTANCE
A relational description Dx is a sequence of relations Dx =

{Rl, * ,RI} where for each i= 1, * *, I, there exists a posi-
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tive integer ni with Ri C Xni for some set X. Intuitively, X is
a set of the parts of the entity being described and the relations
Ri indicate various relationships among the parts. A relational
description may be used to describe an object model, a group
of regions on an image, a two-dimensional shape, a Chinese
character, or anything else having structure to it. We wish to
define a distance measure for pairs of relational descriptions.

Let DA = {R 1, * , RI} be a relational description with part
set A. Let DB = {S1, - - , SI} be a second relational description
with part set B. We will assume that JAI = IBI; if this is not the
case, we will add enough dummy parts to the smaller set to
make it the case. We will see later, that the relational distance
measure is only a metric if the mapping from A to B that de-
fines the distance is one-one and onto. Thus, the mapping will
be a permutation or relabeling function.
Let f be any one-one, onto mapping from A to B. For any

R C AN and S C BN, N a positive integer, we define the com-
position R Of by R 0f = {(b 1, - * , bN) E BNI there exists (a1,
* * , aN) E R with f (a,) = bn, n = 1, * * , N}. Thus, the com-
position operator takes N-tuples of R and maps them, compo-
nent by component, into N-tuples of BN.
The structural error of f for the ith pair of corresponding

relations (Ri and Si) in DA and DB is given by

Es(f) = JRi of- Sil + lSi of 1 - Ril.
The structural error indicates how many tuples in Ri are not
mapped by f to tuples in Si and how many tuples in Si are not
mapped by f 1to tuples in R i.
The total error off with respect to DA and DB is the sum of

the structural errors for each pair of corresponding relations.
That is,

E(f ) -EEsi(f )
i=l

The total error gives a quantitative idea of the difference be-
tween the two relational descriptions DA and DB with respect
to the mapping f.
The relational distance between DA and DB is then given by
GD(DA, DB) = min E(f).

1-1

f: A - B
onto

That is, the relational distance is the minimal total error ob-
tained for any one-one, onto mappingf from A to B. We call a
mapping f that minimizes total error a best mapping from DA
to DB. If there is more than one best mapping, we arbitrarily
select one as the designated best mapping. More than one best
mapping will occur when the relational descriptions involve
certain kinds of symmetries.
We have chosen, in this paper, to represent relations as sets of

N-tuples and to use the composition operator (0) to represent
the application of a function to each component of one or
more N-tuples. We made this choice because this notation is
consistent with all of our past work on matching and because
we feel this is the most general and most suitable notation for
the problem. This notation is also extendable to allow the
addition of labels or attributes to N-tuples of parts or units.
The reader should note that it is also possible to think of an

N-ary, relation R C AN as a bit vector. The bit vector has a
position for each possible N-tuple (aI, - , aN) z AN. Those
positions representing N-tuples of R have value 1 and the rest
have value 0. The composition operation R Of is achieved by
a permutation of the bit vector of R, resulting in the new bit
vector R Of. The structural error of a permutation f: A -+ B
with respect to relations R C AN and S C BN is merely the
number of one bits in the bit vectorR of XOR S, where XOR
stands for the Exclusive-OR operation. The total error and
relational distance definitions remain the same.

1 2

R1 2

3 r<

a b<

Roo f

R2 ° f
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Fig. 1. Illustrates the relations R 1, R1 o f, S 1, R 2, R 2 o f, and S2 . The

notation I77 1 indicates a hyperarc representing a triple.

The second notational approach was used in our discussion
of graph matching in [21] since it is the standard adjacency
matrix representation of graphs. It is not as naturally extend-
able to the addition of labels or attributes to the relations as
is the notation we use here.

Examples
Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Let DA = {RI C

A2, R2 CA3}, and DB {S1 CB2, S2 CB3}. Let R1 =
{(1, 2), (2, 3), (3, 4), (4, 2)} and Sl = f(a, b), (b, c), (d, b)}.
Let R2 = {(1, 2, 3)} and S2{(a, b, c)}. Let f be defined by
f(l) =a, f(2) =b, f(3) =c, f(4) = d. These relations are illus-
trated in Fig. 1. Then we have

JR1Of- S11= I{(a,b),(b,c),(c,d),(d,b)}
- {(a,b),(b,c),(d,b)}l= 1

IS, of-' - R I = l{(l, 2), (2, 3), (4, 2)}
- {(1, 2), (2, 3), (3, 4), (4, 2)}1= 0,

E(f) = 1 + 0= 1,

JR2 Of- S21 = I{(a,b, c)} {(a,b, c)}l =O,

IS2 of-' - R21 = f{(l, 2, 3)} - {(l, 2, 3)}1 = 0,
E2(f) = 0 + 0 = 0,
E(f) =El(f) +E2(f) = 1.

We note that f is the best mapping and therefore GD (DA, DB) =
1.
For a simple but practical example, consider a set of object

models constructed from simple parts with two binary relations:
the connection relation and the parallel relation. Fig. 2 illus-
trates a model (MI) and two other models (M2 andM3) that
are each a relational distance of 1 from the first model. The
model M4 shown in Fig. 3 is a variation of M3, but its relational
distance from M3 is 6, due to several missing relationships in-
duced by the additional two parts. Finally, the two models
(M5 and M6) of Fig. 4 have more dissimilarity and a relational
distance of 12.

IV. THE RELATIONAL DISTANCE IS A METRIC
In this section we prove that GD is a metric over the space

of relational descriptions. Let f be a one-one and onto func-
tion from A to B. We say that f is a relational isomorphism
if Eff) = 0. In this case DA and DB are said to be isomor-
phic. Intuitively, this means that the parts of DA perfectly
match the parts of DB with respect to all required attributes
and relationships.
Lemma: Let GD be the relational distance measure, and let

DA , DB, and DC be arbitrary relational descriptions.
1) GD(DA, DB) = 0 if and only if DA and DB are isomor-

phic.
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CONNECTION

(1, 2)
(1, 3)

CONNECTION

(1' ,2')
(1',3')

COINNECTION

(1",2")
(1",3")
(I ", 4")

2
3'

M/

1'

M3
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(2,3)
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0

PARALLEL

(2",3")

Fig. 2. Illustrates an object model Mi and two other models, M2 and
M3, that are each a relational distance of 1 from Mi.

1-1
f: A -B

onto

miin > IRjOf Sil+ISSi o(ft
f i=l

1-1
f': A - B

onto

min Si Of Ril + IRi Of Si,

1-1
f'; A-B

onto

min ISiof- Ril +RiROft- Sil
f i

PARALLELCONECTION

(4 *, 5*)
(4*,6*)
(l *, 5*)
(1*,6*)
(1*, 2*)
(1*,3*)

M4

Fig. 3. Illustrates a model, M4, that differs from M3 by a relational dis-
tance of 6.

M6M5

4 6

3 5

CONNECTION
(1, 2)
(2,3)+
(2,4)+
(2, 5)+
(2, 6)

PARALLEL
(3, 4)+
(3, 5)+
(3,6)+
(4, 5j+
(4,6)+
(5,6)+

31

CGONNECTION
(1 ,2')
(2' ,6')
(3' ,6')+
(4' ,6')+
(5' ,6')+

PARALLE L
0

I'ig. 4. Illustrates two models, M5 and M6, which differ from each
other by a relational distance of 12. The tuples marked with a plus
sign (+) are those that caused errors.

1-1

f: B-A
onto

= GD(DB, DA)

3) Let DA ={R, *, RI, DB ={S1, * S}, and DC
{T1, , Tj} where for each i = 1, I, Ri C Ani, Si C Bni
and Ti C Cni. Let fi C A X C be one-one, onto, and that f1

that minimizes GD(DA, Dc). Let f2 C C X B be one-one,
single-valued, and that f2 that minimizes GD(DB, Dc).
Let f: A -* B = fi Of2. Then f is one-one and onto and

produces some error E(f) with respect to DA and DB. E(f)
is greater than or equal to the minimum error GD(DA, DB).
We wish to show that

GD(DA, DB) < GD(DA, DC) + GD(DC, DB)

We will do this by showing that

E(f) < GD(DA, DC) + GD(DC, DB)

Let xCRi Of1O f2 - Si. Then x ERiOf1 Of2 and x f Si.
Since x CRi of1 Of2 and f2 is one-one and onto, there ex-

ists a unique yC ROi°f such that {y} ={x} Of and {x} =

{y}fO2. If y T1,thenyCRiOf -iT. IfyCTi,then{x}=
{Y} f2 is an element of Ti ° f2. Hence x C Ti ° f2 - Si.

Since for each x C Ri ° fi Of2 - Si either x C Ti f2 - Si or

y =xof-'CRiOf, - Ti,wehave

IRi fOf2 -Sil<IROf - Til+ITjf2 Sil.
Thus

L IRiO fi of2
i=l

I

SiI < RiRof,
i=1

Tii

I

+ ITiof2 - Sil
i=i

2) GD(DA,DB) = GD(DB,DA)-
3) GD(DA, DB) < GD(DA, DC) + GD(DC, DB)
Proof:

1) If f is an isomorphism between DA and.DB then Eff ) =
0. Thus, GD(DA, DB) = minf Eff) O. If GD(DA,DB) = 0,
then there exists one-one onto f with Eff ) = 0. Thus, f is an

isomorphism between DA and DBR
2) GD(DA, DB)

Similarly we can show

ISiOf21 ofj' - Ril<ITiOft - Ril +lSiOft - Ti.

Thus

IS of Ofjt1
i = 1

I

Ri < Tiof-j7 Ril
i=l

I

=min RiROf- Sil+ISiOf -Ril
f i=l

+ jSioft -Til.
i=1

Ril

92
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Adding, we get

(lRiOf, Of2 - Sil + lS of 1 Of1f Ril)
i=l

< E(IRE °f1 - Til + I Ti Of1 Ril)

+ (lTiOf2 - Sil + ISiSof Til)

which says

E(f) wrt DA and DB < GD(DA, DC) + GD(DC, DB).

But

GD(DA ,DB) .E(f).
So

GD (DA , DB ) < GD (DA , DC) + GD (DC, DB).
Thus, the relational distance of two relational descriptions

(whether they consist of one relation or several relations) is a
metric up to isomorphism.

V. A VARIANT RELATIONAL DISTANCE THAT
IS NOT A METRIC

In one of our past studies [20] ,we defined a similar relational
distance measure, but did not require Al = IBI. In this case,
the mapping f was a binary relation and, while required to be
single-valued and one-one, was not necessarily onto. Thus,
some parts from set A mapped to nothing in B and vice versa.
In this case, we defined the composition operation, the struc-
tural error, a completeness error, the total error, and the rela-
tional distance as follows.
Ri ° f = {(b 1, * * , b,,) C Bnil there exists (a1, **a,,) C R

with (a1,b1) Cf for j = 1, * *, ni}-
Es (f ) = lRi Of - Sil + lSi ° f-1 - Ril is the structural error

of f for the ith pair of corresponding relations in DA and DB
where IxI denotes the cardinality of set x.
Ei'(f)= Si- Rifl+IRi- SiOf-1 is the completeness

error of f for the ith pair of corresponding relations in DA
and DBR
E (f) = _1 c1Es (f) + c2E, (f) is the total error off with

respect to DA and DB where cl and c2 are nonnegative real
numbers.
GD'(DA, DB) = minfE'(f) is the relational distance of DA

and DB.

A Problem

Suppose we want to insist that the relational distance GD
satisfy the property that the best mapping used in the defini-
tion of GD' must have some minimum number of pairs. This
is important since the empty mapping always has 0 structural
error and is likely to be the minimum error mapping in many
cases. However, restricting the mapping can cause a problem.
Suppose for ease of illustration that GD' is based only on

structural error, not completeness error.
Consider the following example:

A = {1, 2, 3}, C= {1', 2', 3', 4', 5', 6'}, B = {4, 5, 6},

DA = {R1,R2},DC = {Tj, T2},DB =<Sl,S2}
R = {(l, 2), (2, 1), ( 1, 3), (2, 3), (1, 1), (2, 2), (3, 3)}

R2 = 0

T, = {(1', 2'),(2} , 1), (1, 3 ), (2, 3 ), (1', I'), (2', 2'),
(3',3))}

Dc

T2 T2

T

6'

Fig. 5. Illustrates three relational descriptions, each containing two
binary relations.

T2= {(4', 5'), (5', 6'), (6', 4'), (4', 4'), (5', 5'), (6', 6')}

S1 =0

S2 ={(4, 5), (5, 6), (6, 4), (4, 4), (5, 5), (6, 6)}.

This is illustrated in Fig. 5.
The best mapping with respect to DA and DC is f1 C A X

C defined by f1 = {(I, 1'), (2, 2'), (3, 3')} and the structural
error is 0. The best mapping with respect to DC and DB is
f2 C C X B defined by f2 = {(4', 4), (5', 5), (6', 6)}, and its
structural error is also 0. The compositionf=f1 Of2 of these
mappings is 0. If we had set no constraints on the size of the
best mapping, this would cause no problems.
But we have some constraint. If this constraint requires even

one pair to be in the best mapping f' C A X B, then f' will have
positive structural error since any pair (XA, XB) with XA C
A, and XB CB will have one arc (XA, XA ) in R 1 that is not in
S1 and one arc (XB, XB) in S2 that is not in R2. Thus, for
any mapping f' constrained to have even one pair, we have
E'(f') > 2. Since the general distance would be the minimum
error of all such constrained f's, the general distance would be
>2 and the triangle inequality would fail. (2 : 0 + 0). In this
example, the only way the triangle inequality can hold is for
f' to be 0 with error E'(f') = 0.
Now, what if we consider completeness error in this example?
Although f1 = {(l, 1'), (2, 2'), (3, 3')} is still the best map-

ping with respect to DA and Dc, its completeness error is R1
T, ff I + JR2 T2 f' + IT1 - R 1 f,I + T2 - R2 Of2l =
0 + 0 + 0 + I T2 6. Similarly, the completeness error off2 =
{(4', 4), (5', 5), (6', 6)} is IT, = 7. So E'(f, ) = 6 and E'(f2) =
7 and GD'(DA, Dc) = 6 and GD'(Dc, DB) = 7.
Again, suppose we require that the best mapping have at

least one pair. We want to find the best mapping with respect
to DA and DB. Again any mapping f ' with exactly one pair
will have structural error 2. And no matter how many pairs in
f ', its completeness error will be JR 1 - S off"I + JR 2 - S2
f'1 1 + IS1 - R Of 'I + IS2 - R 2o f'I = JR1 +1S21 = 7 + 6 =
13. Thus, an f' with exactly one pair has total error = 2 + 1 3 =
15! And 15 P 6 + 7. Similarly, as we add more pairs to f',
the structural error can only get worse while the completeness
error will remain 13. So, the sum of structural and complete-
ness error is also not a metric when size constrained.
Since it is extremely important that the null mapping not be

always chosen as the best mapping in comparing relational
descriptions, we have the choice of 1) adding dummy parts so
that all parts sets are all the same size and forcing f to be a one-
one, onto function from A to B or 2) allowing f to be a size-
constrained, one-one, single-valued binary relation and realizing
that GD' is not a metric, but may still be useful in comparing
relational descriptions. In choosing alternative 1), we force
the variant relational distance to become the relational distance
metric defined in this paper.

VI. CONCLUSIONS

In this paper we have reviewed relational modeling and rela-
tional matching. We have given a general form for measuring
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the degree to which two sequences of relations are isomorphic.
We have proved the measure to be a distance function or metric
in the formal sense.
The existence of a relational distance opens new decision

theoretic approaches to structural pattern recognition. It
makes it possible to work with class conditional distributions
of the relational models of objects. Given that we are observ-
ing an object of class A, a class which has an ideal or repre-
sentative relational model R, the probability that the observed
object has relational model S can be computed as a monotoni-
cally decreasing function of the relational distance between R
and S. With a mechanism to compute such probabilities it be-
comes easy to perform identification of the observed object
in a Bayesian manner by maximizing an expected utility or by
maximizing the probability of being correct. In future work,
we expect to derive estimation procedures for the monotonic
functions and give results for the identification of a variety of
three-dimensional objects.

REFERENCES

[1 H. G. Barrow, A. P. Ambler, and R. M. Burstall, "Some techniques
for recognizing structures in pictures," in Frontiers of Pattern
Recognition, S. Watanabe, Ed. New York: Academic, 1972, pp.
1-29.

[2] R. A. Brooks, "Symbolic reasoning among three-dimensional
models and two-dimensional images," Artif Intell. (Special Vol-
ume on Computer Vision), Al 17, 1981.

[31 L. S. Davis, "Shape matching using relaxation techniques," IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, pp. 60-72, Jan.
1979.

[41 C. D. Feustel and L.G. Shapiro, "The nearest neighbor problem
in an abstract metric space," Pattern Recog. Lett., vol. 1, no. 2,
pp. 125-128, Dec. 1982.

[5] E. C.Freuder, "Synthesizing constraint expression," Commun.
Ass. Comput. Mach., vol. 21, no. 11, 1978.

[6] J. Gaschnig, "A general backtrack algorithm that eliminates most
redundant tests," in Proc. 5thInt. Joint Conf Artif Intell., 1972.

[7] R. M. Haralick andG. Elliot, "Increasing tree search effi'ciency
for constraint satisfaction problems," in Proc. 6thInt. Joint Conf
Artif Intell., 1979.

[8] R. M. Haralick and L. G. Shapiro, "The consistent labeling prob-
lem: Part I," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-1,
pp. 173-184, Apr. 1979.

[9] A. Mackworth, "Consistency in network of relations," Artif In-
tell., vol. 8, pp. 99-118, 1977.

[10] D. Marr and H. K. Nishihara, "Spatial disposition of axes in a gen-
eralized cylinder representation of objects that do not encompass
the viewer," Al Lab., Mass. Inst. Technol., Cambridge, MA, Memo.
341, Dec. 1975.

[111 U. Montanari, "Networks of constraints: Fundamental properties
and applications to picture processing," Inform. Sci., vol. 7, pp.
95-132, 1974.

[12] P. G. Mulgaonkar, L. G. Shapiro, and R. M. Haralick, "Identifi-
cation of man-made objects using geometric and relational con-
straints," Dep. Comput. Sci., Virginia Polytech. Inst., State Univ.,
Blacksburg, Sept. 1982.

[131 R. Nevatia and T. 0. Binford, "Description and recognition of
curved objects," Artif Intell., vol. 8, pp. 77-90, 1977.

[141 A. Rosenfeld, R. A. Hummel, and S. W. Zucker, "Scene labeling
by relaxation operations," IEEE Trans. Syst., Man, Cybern., vol.
SMC-6, pp. 420-433, June 1976.

[15] A. Sanfelieu and K. S. Fu, "A distance measure between attributed
relational graphs for pattern recognition," IEEE Trans. Syst., Man,
Cybern., vol. SMC-13, May-June 1983.

[161 M. Schneier, "A compact relational structure representation," in
Workshop Represent. Three-Dimensional Obj., R. Bajcy, Director,
Univ. Penn., Philadelphia, PA, May 1-2, 1979.

[171 L. G. Shapiro, J. D. Moriarty, P. G. Mulgaonkar, and R. M. Hara-
lick, "A generalized blob model for three-dimensional object
representation," in IEEE Workshop Pict. Data Dcscript. Manage-
ment, Asilomar, CA, Aug. 1980.

[18] L. G. Shapiro, "A structural model of shape," IEEE Trans. Pat-
tern Anal. Mach. Intell., vol. PAMI-2, pp. 1 1 1-126, Mar. 1980.

[191 L.G. Shapiro and R. M. Haralick, "Structural descriptions and
inexact mathing," IEEE Trans. Pattern Anal. Mach. Intell., vol.
PAMI-3, pp. 504-519, Sept. 1981.

[20] L.G. Shapiro, J. D. Moriarty, R. M. Haralick, and P. G. Mulgaon-
kar, "Matching three-dimensional objects using a relational para-
digm," Pattern Recognition, vol. 17, no. 4, pp. 385-405, 1984.

[211 L.G. Shapiro and R. M. Haralick, "Organization of relational
models for scene analysis," IEEE Trans. Pattern Anal. Mach. In-
tell., vol. PAMI-4, Nov. 1982.

[22] , "Decomposition of two-dimensional shapes by graph-
theoretic clustering," IEEE Trans. Pattern Anal. Mach. Intell.,
vol. PAMI-1, pp. 10-20, Jan. 1979.

[23] J. R.Ullman, "An algorithm for subgraph homomorphisms,"
J. Ass. Comput. Mach., vol. 23, pp. 31-42, Jan. 1976.

[24] D. Waltz, "Understanding line drawings of scenes with shadows,"
in The Psychology of Computer Vision, P. Winston, Ed. New
York: McGraw-Hill, 1975, pp. 19-91.

A Top-Down Quadtree Traversal Algorithm

HANAN SAMET

Abstract-Many standard image processing operations can be imple-
mented using quadtrees as a simple tree traversal where, at each terminal
node, a computation is performed involving some of that node's neigh-
bors. Most of this work has involved the use of bottom-up neighbor-
finding techniques which search for a nearest common ancestor. Re-
cently, top-down techniques have been proposed which make use of a
neighbor vector as the tree is traversed. A simplified version of the top-
down method for a quadtree in the context of a general-purpose tree
traversal algorithm is presented. It differs, in part, from' prior work in
its ability to compute diagonally adjacent neighbors rather than just
horizontally and vertically adjacent neighbors. It builds a neighbor vec-
tor for each node using a minimal amount of information. Analysis of
the algorithm shows that its execution time is directly proportional to
the number of nodes in the tree. However, it does require some extra
storage. Use of the algorithm leads to lower execution time bounds for
some common quadtree image processing operations such as connected
component labeling.

Index Terms-Connected component labeling, image processing, image
representation, perimeter, quadtrees.

I. INTRODUCTION
The quadtree [7] (e.g., Fig. 1 ) is a hierarchical representation

which has been the subject of much research in recent years
[1 5]. It has been found to be useful in such applications as
image processing, computer graphics, pattern recognition, and
cartography. Many algorithms for standard operations in these
domains can be expressed as simple tree traversals where at
each node a computation is performed involving the use of
"bottom-up" neighbor-finding techniques [11 ]. Recently,
"top-down" methods which build a neighbor vector as the tree
is traversed have been independently proposed [ 5], [ 8], [ 131.
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