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Structural Descriptions and Inexact Matching

LINDA G. SHAPIRO, SENIOR MEMBER, IEEE, AND ROBERT M. HARALICK, SENIOR MEMBER, IEEE

Abstract—In this paper we formally define the structural description
of an object and the concepts of exact and inexact matching of two
structural descriptions. We discuss the problems associated with a
brute-force backtracking tree search for inexact matching and develop
several different algorithms to make the tree search more efficient.
We develop the formula for the expected number of nodes in the
tree for backtracking alone and with a forward checking algorithm.
Finally, we present experimental results showing that forward check-
ing is the most efficient of the algorithms tested.

Index Terms—Backtracking, forward checking, inexact matching,
look-ahead matching, relational homomorphism, relaxation, struc-
tural description, tree search.

I. INTRODUCTION

STRUCTURAL description of an object consists of the

descriptions of its parts and their interrelationships.
For example, a simple chair is made up of six parts: a back,
a seat, and four legs. The back, seat, and legs can sometimes
be described as rectangular parallelepipeds with various con-
straints on their lengths, widths, and depths. The interrela-
tionships between the parts specify how they fit together.
For instance, the top of the seat and the front of the back
may be at right angles to each other.

The parts of an object can be primitive (nondecomposable)
or they may be further broken down into subparts. When the
parts of an object are not primitives, the structural description
of the object consists of one level of descriptions for each
level of subparts. Such a multilevel description is called a
hierarchic description and is useful for complex objects with
many repetitions of parts and subparts.

In this paper we will be concerned only with single-level
structural descriptions consisting of a set of primitive parts
and their interrelationships. We will formally define the struc-
tural description of an object and the concept of a match be-
tween two structural descriptions. We will extend the con-
cept of a match to an inexact match and describe and compare
several algorithms for inexact matching using a tree search
with backtracking alone, with an operation called forward
checking, and with an operation called looking ahead. All
the ideas in this paper can be further extended to multilevel
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descriptions using hierarchic structures (see Shapiro and
Haralick [14]) and hierarchic relaxation (see Davis [3] and
Zucker and Mohammed [18]).

II. STRUCTURAL DESCRIPTIONS AND ExAcT
MATCHING

A structural description D of an object is a pair D = (P, R).
P={P1,---, Pn} is a set of primitives, one for each of the n
primitive parts of the object. Each primitive Pi is a binary
relation Pi C A X V where 4 is a set of possible attributes and
V is a set of possible values. R ={PR1,---,PRK} is aset of
named N-ary relations over P. Foreachk=1,--- K. PRk is
a pair (VRk, Rk) where NRk is a name for relation Rk, and for
some positive integer Mk, Rk C PM¥  Thus, set P represents
the parts of an object, and set R represents the interrelation-
ships among the parts. Note that the elements of any relation
Rk may include as components primitives, attributes, values,
and any symbols necessary to specify the given relationship.

One way that structural descriptions are used is to define
prototype objects (see Barrow er al. [2] and Haralick and
Kartus [5]). The structural descriptions of prototype objects
are called stored models and are used as part of the knowledge
base of a recognition system. Such a system inputs candidate
objects, computes their structural descriptions, and tries to
identify each candidate with a stored model. Thus, instead of
asking whether two structural descriptions match each other,
we will only ask whether a candidate structural description
matches a prototype structural description. This one-way
matching will be defined in terms of exact matching in this
section and in terms of inexact matching in Section III.

Note that the dictionary definition of the verb “match” is
“to correspond; to be of corresponding size, shape, color,
pattern, etc.” [1]. When we speak of two objects matching,
we often assume that matching is a symmetric process; A
matches B if and only if B matches 4. The matching defined
in this paper is not necessarily a symmetric process. The next
few paragraphs describe some figures illustrating which kinds
of matching are not necessarily symmetric and which kind is
symmetric.

In exact matching, a candidate primitive Cj matches a proto-
type primitive Pi if the binary relation Pi is a subset of the
binary relation Cj. Thus, every attribute-value pair (a,v) in
the primitive Pi is also an element of the primitive Cj. To
define the matching of a candidate relation to a prototype
relation, we need the concept of composing a relation with
a mapping and the concept of a relational homomorphism.

Let R C PV be an N-ary relation over a set P, and & be a
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Fig. 1. The composition of binary relation R with mapping 4.

Ve wWN -
LR IR R Y
WO O wW>

Roh € S

Fig. 2. A relational homomorphism 4 from binary relation R to binary
relation S.

function h: P-> Q mapping elements of P into a set Q0. We
define the composition R © h of R with h by

Roh={(ql, -+ ,qN) €Q| there exists

(pl, -+ ,pN)ER with h(pi)=gqi, i=1,---,N}.
Fig. 1 illustrates the composition of a binary relation with a
mapping.

Let S C OV be a second N-ary relation. A relational homo-
morphism from R to S is a mapping A: P— Q that satisfies
RohCS. That is, when a relational homomorphism is ap-
plied to each component of an N-tuple of R, the result is an
N-tuple of S. Fig. 2 illustrates the concept of a relational
homomorphism.

A relational homomorphism maps the primitives of P to a
subset of the primitives of Q having all the same interrela-
tionships that the original primitives of P had. If Pisa much
smaller set than Q, then finding a one-one relational homo-
morphism is equivalent to finding a copy of a small object as
part of a larger object. Finding a chair in an office scene is
an example of such a task. If P and Q are about the same size,
then finding a relational homomorphism is equivalent to deter-
mining that the two objects are similar. A relational mono-
morphism is a relational homomorphism that is one-one.
Such a function maps each primitive in P to a unique primitive
in Q. A monomorphism indicates a stronger match than a
homomorphism. Fig. 3 illustrates a relational monomorphism.
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Ve WN -
2R 20 2R 22
moQw>

Roh € S; h is one-one

Fig. 3. A relational monomorphism # from binary relation R to binary
relation S. There is a copy of R in S.

Roh = S and h is 1-1

R
LR 2R AR 1
Mo Ow>

or equivalently,
Roh €S, Soh™! € R, and h is 1-1

Fig. 4. A relational isomorphism 4 from binary relation R to binary
relation S.

h:

e W -
LR R R
Mmoo w>

Reh ¢ S, h is 1-1, and h is onto

Fig. 5. A relational monomorphlsm from binary relation R onto bmary
relation S. This mapping 4 is not a relational isomorphism since h1
is not a relational monomorphism from S to R.

Finally, a relational isomorphism h from an N-ary relation R
to an N-ary relation S is a one-one relational homomorphism
from R to S, and A™! is a relational homomorphism from S to
R. In this case, P and Q have the same number of elements,
each primitive in P maps to a unique primitive in Q, and every
primitive in Q is mapped to by some primitive of P. Also,
every tuple in R has a corresponding tuple in S, and vice
versa. An isomorphism is the strongest kind of match: a
symmetric match. Fig. 4 illustrates a relational isomorphism,
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Prototype Object Candidate Object

Fig. 6. A prototype object and a candidate object, both made up of
primitive parts.

and Fig. 5 shows the difference between a relational iso-
morphism and a relational monomorphism. :

In this paper, we will only require relational homomor-
phisms for matching, but the reader should realize that algo-
rithms for the monomorphism and isomorphism are essentially

Prototype Description Dp
Dp = {P,RP}
P={P1,P2,P3,P4,6P5}
RP = {(Left, Left_P), (Above, Above _P)}
Left_P = {(P1,P4), (P4, P3)}
Above_P = {(P2, P4), (P4, P5)}
P1 = {(shape, rectangular), (color, white)}
P2 = {(shape, triangular)}
P3 = {(shape, rectangular)}
P4 = {(shape, circular)}
P5 = {(color, black)}

identical to the homomorphism algorithms. The only differ-
ence is that the incorporation of the stronger constraints will
tend to make the algorithms execute quicker.

Now we are ready to define the meaning of an exact match
from one structural description to another. First, there must
be a function 4 which gives the correspondence from the prim-
itives of the first description to the primitives of the second
description. Second, # must be a relational homomorphism
from each relation of the first description to the relation with
the same name of the second description. More precisely, let
Dp =(P,R) be a prototype structural description and Dc =
(Q, S) be a candidate structural description. Let P= {P1,- - -,
Pn}, 0={0Q1,---,0m}, R={(NR1,R1),---,(NRk, Rk)},
and S = {(¥S1,S81), - -, (NSk,Sk)}. We say that Dc matches
Dp if there is a mapping h: P - Q satisfying

1) h(Pi) = Qj implies Pi C Qj, and
2) NRi = NSj implies Ri o h C Sj.

That is, if a relation Ri in Dp has the same name as a relation
Sj in De, then h, which makes the correspondence from the
primitives of the prototype to the primitives of the candidate,
must be a relational homomorphism from Ri to Sj.
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For example, consider the prototype object and candidate
object shown in Fig. 6. Given below are a structural descrip-
tion Dp for the prototype object and a structural description
Dc for the candidate object. The parts of the prototype are
the primitives P1, P2, P3, P4, and PS5, and the parts of the
candidate are the primitives C1, C2, C3, C4, and C5. The
primitives have possible attributes {shape, color} and possible
values {rectangular, triangular, circular} for shape and {black,
white} for color. Note that more attributes have been mea-
sured for the candidate object than for the prototype object.
This is because, at the time of measurement, it is not clear
what prototype the candidate will match, and the attributes
required for several different prototypes may have to be mea-
sured. The relations named Left are sets of pairs of the form
(x,y) where x is adjacent to and directly left of y. The rela-
tions named Above are sets of pairs of the form (x, y) where
x is adjacent to and directly above y.

Candidate Description Dc
Dc = {C,RC}
C={C1,C2,C3,C4,C5}
RC = {(Left, Left_C), (Above, Above_C)}
Left _C= {(C1,C4),(C4,C3}
Above__C = {(C2,C4),(C4,C5)}

C1 = {(shape, rectangular), (color, white)}
C2 = {(shape, triangular), (color, white)}
C3 = {(shape, rectangular), (color, black)}
C4 = {(shape, circular)}

CS = {(shape, triangular), (color, black)}

The candidate description Dc matches the prototype de-
scription Dp via the mapping h: P — C given by h(Pi) = Ci,
i=1,---,5. Note that the conditions of a match are satisfied
even though C5 has a different shape than PS5, and C3 has a
different color than P3. This is because the prototype primi-
tive PS only specifies a color attribute, and the prototype
primitive P3 only specifies a shape attribute. Note also that
Left_Po h=Left_C and Above_Po h = Above_.C, instead
of just satisfying the subset condition. In this case, the candi-
date is a homomorphic image of the prototype.

III. WEIGHTED PROTOTYPE STRUCTURAL
DESCRIPTIONS AND INEXACT MATCHING

In a world where there is no observation noise and no
random alterations of the entities for any entity class, exact
matching of structural descriptions is an appropriate pro-
cedure. Unfortunately, in the real world, random structural
alterations of entities occur if for no other reason than the
fact that observation or measurement of structural relation-
ships has some associated random noise component. Thus,
we cannot expect two entities of the same class to have
exactly matching structural descriptions.
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This naturally leads to the concept of inexact matching.
Here we seek matches which are not necessarily perfect, only
good enough. The model which is behind the inexact match-
ing assumes that the ideal structural description for an entity
is randomly altered. Associated with each possible altered
structural description is the probability that such a structural
description will result from the random alteration process.
We expect that structural descriptions in which there are
only a few alterations will have higher probability of occuring
than those with many alterations. We might also know that
certain structural alterations are less likely to happen than
others.

As soon as we admit that the inexactness occurs because of
random alteration, we must become sensitive to the fact that
the inexact matches we might find might be entirely due to
a chance match with an altered structural description for an
entity of an entirely different entity class. This kind of event
is much more likely to happen with inexact matching than
with exact matching.

One way of handling this situation is to compute our con-
fidence in the inexact match, where confidence is measured
not on the basis of the inexactness of the match, but by the
likelihood ratio whose numerator is the probability that the
alteration determined by the inexact match would occur for
the structural description of an entity in the class, and whose
denominator is the probability that the computed inexact
match would arise from just a chance inexact match to a com-
pletely random structural description. Thus, the probability
model naturally sets up the information required to measure
our confidence in the inexact match.

We leave the detailed discussion of the associated probability
models to another paper. In this paper we concentrate on
giving a precise meaning to the inexactness of an inexact
match, keeping in the back of our minds that associated with
every value of inexactness will be two probabilities: the
probability that the computed inexactness arises from an
alteration of the structural description for an entity in the
given entity class, and the probability that it arises from in-
exactly matching a random structural description.

In inexact matching, the parts of the candidate object may
not be exactly the same as the parts of the prototype object—
in fact, some of them may be badly distorted or missing
altogether. Similarly, some of the interrelationships present
in the prototype may not hold in the candidate. The prob-
lem of distorted parts has been addressed by Tsai and Fu
[15]. Since our main concern in this paper is with relation-
ships, we will handle the part matching problem with a simple
distance measure. That is, for each attribute a there is a
threshold ta by which the value of @ in a candidate primitive
can differ from the value of @ in the corresponding prototype
primitive. Thus, a candidate primitive Cj inexactly matches
a prototype primitive Pi if for every pair (2, v) in the proto-
type primitive Pi, there is a pair (a,v") in the candidate prim-
itive Cj with |v - v'[ < ta. The distance measure is not neces-
sarily numeric and must be defined for each application.
Similarly, the thresholds depend on the application and the
data.
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In handling missing parts and missing relationships, we
want to take into account the fact that some parts are more
important than others and some relationships are more im- |
portant than others. We represent this fact by assigning a
weight to each part and each N-tuple in the model. This ex-
tends our definition of the prototype as follows.

A weighted prototype structural description D is a 4-tuple
D=(P,wp,R, WR) where P={P1,---,Pn} is a set of prim-
itives as before, and wp is a primitive-weighting function,
wp: P—[0,1] that assigns a weight to each primitive in P
and satisfies Z;wp(Pi)=1. R={(NR1,R1), --,(NRK,
RK)} is again a set of named N-ary relations over P. WR =
{wl,---,wK} is a set of N-tuple-weighting functions. For
each k=1,--- K, wk assigns weights to the Mk-tuples of
relation Rk. Thus, each wk is a function wk: Rk - [0, 1]
satisfying Z, c gz wk(r) =1. Note that requiring the sum of
the weights to be one was an arbitrary choice. Any number
will do as long as it is used consistently in all models.

e-Homomorphisms

Since the prototype relations are now weighted, the rela-
tional homomorphisms must take these weights into ac-
count. Suppose R is an N-ary relation over a set P, w: R >
[0,1] is a weighting function for R, and S is an N-ary rela-
tion over set Q. Let h be a mapping h: P~ Q from set P to
set 0. An N-tuple r of R is satisfied by h with respect to S
if h(r) is an element of S. An e-homomorphism from R to S
with respect to w is a mapping 4: P - Q such that

2

rER
h(r)&gs

w(r)<e.

That is, the sum of the weights on those N-tuples that are
not satisfied by A with respect to S is less than the threshold
€.

The inexact matching problem may now be stated as fol-
lows. Let Dp be a weighted prototype structural descrip-
tion, and let Dc be a candidate structural description. Sup-
pose Dp =(P,wp,RP, WRP) where P={P1,---,Pn}, RP=
{(NR1, R1), - - - , (NRk, Rk)}, and WRP = {wl, - - - , wk}.
Suppose Dc = (C,RC) where C={Cl,---,Cm} and RC=
{(¥vS1,81), -, (NSK,SK)}. Let A be the set of attributes
in P and C, and let V be the set of values for the attributes.
Then Dc inexactly matches Dp with respect to the attribute-
value thresholds T = {tala € A}, the missing parts threshold
tm, and the relation thresholds £ = {ei |PR1'€RP} if there
is a mapping A: P CU {null} that satisfies the following.

1) If h(Pi)=Cj€C, then Cj inexactly matches Pi with
respect to 7.

) 2

pieP
h(Pi) = null

wp(Pi)< tm.

3) If NRi=NSj, then h is an ei-homomorphism with
respect to wi from Ri to Sj.
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In searching for a match between a prototype object and
a candidate object, we are looking for a mapping from the
primitives of the prototype to the primitives of the candidate.
The mapping must satisfy: 1) that each candidate primitive
inexactly matches its corresponding prototype primitive ac-
cording to a threshold associated with the prototype primi-
tive; 2) that the sum of the weights of those prototype prim-
itives that do not map to a candidate primitive must not
exceed another threshold; and 3) that it is an e-homomor-
phism from each prototype relation to a candidate relation,
where the threshold € is associated with the prototype relation.

One idea that we have not mentioned is the concept of a
best match. A best match is a mapping that somehow mini-
mizes the error incurred. Since for n primitives and k relations
in a structural description, there are n+ k + 1 error measure-
ments involved in an inexact match, the definition of a best
match is not immediately obvious. A mapping might incur n
errors on one relation and satisfy no N-tuples of a second rela-
tion. Or, it might do well in primitive matching and relation
matching, but only involve ten percent of the prototype
primitives.

The definition of a best match depends on the priorities
required for the matching task to be performed. For that
reason we will not attempt to define a best match in this
paper. However, the reader should note that once the con-
cept of a best match has been defined, there are standard
ways of modifying the tree search described in Section IV so
that the best match will be found.

IV. MATCHING STRUCTURAL DESCRIPTIONS

The relational homomorphism problem (for 0-homomor-
phisms or exact matches) has been shown to be a special case
of a more general problem called the consistent labeling prob-
lem (Haralick and Shapiro [8]). The consistent labeling prob-
lem is defined as follows.

Let U be a set of objects called units and L be a set of ob-
jects called labels. Let T C UY be a unit constraint relation.
That is, if an N-tuple (ul,---,uN) is an element of T, then
the label of one unit ui and the N-tuple is constrained by the
labels of the other units in the N-tuple. Let R C (U X L)V be
a unit-label constraint relation. That is, if an N-tuple [(ul,
11),---,(uN,IN)] [written as (ul,/1,---,uN,IN)] is an
element of R, then unit ¥l may have label /1, unit u2 may
have label /2, - - -, and unit NV may have label /N, all simul-
taneously. The consistent labeling problem is to find a map-
ping f: U~ L satisfying if (ul,---,uN) is in T, then (ul,
f(ul), -+ ,uN,f(uN)) is in R. The 4-tuple (U,L,T,R) is
called a compatibility model, and f is called a consistent
labeling.

The relational homomorphism problem fits into this model
as follows. Let Rp C PV be a relation that is part of the pro-
totype and Rc CCN be the corresponding relation in the
candidate. If we take U=P, L =C, T=Rp, and R=Rp X
Rc, then fis a relational homomorphism from Rp to Rc if
and only if fis a consistent labeling with respect to the com-
patibility model (U,L,T,R). This was proved in Haralick
and Shapiro [8].
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The general consistent labeling problem and thus the rela-
tional homomorphism problem can be solved by a tree search
incorporating a look-ahead, forward checking, and/or relaxa-
tion operator. In this section, we make the extension to e-
consistent labelings and define some look-ahead operators to
aid in the problem of finding them. The problem of finding
e-homomorphisms will then be solved by finding e-consistent
labelings.

Look-Ahead for Inexact Matching

Let (U,L, T, R) be a compatibility model. We will assume
that if an N-tuple (ul,---,uN) is an element of T, then T
does not contain any permutations of (ul,---,uN). Also,
we expect no two components of any N-tuple in T to have
the same value.

Let Ew: TX LN >[0,1] be a nonnegative function.

Ew(ul,---,uN,I1, -+ IN) is the error that occurs when
the N-tuple (I1,---,IN) of labels is applied to units (ul,

The inexact consistent labeling problem is to find all map-
pings h: U—L so that the sum of the errors incurred by 4
on all N-tuples of units that constrain one another is less
than a given €0. That is, we must find all 4 satisfying

> Ew(ul, -+ ,uN,h(ul), -, h(uN))<e0.
(u1l, .-, uN)ET

Note that when Ew(ul,---,uN,I1,- -, IN) is defined to.
be w(ul,---,uN) when ((ul,11), -+ ,(uN,IN)) is not an

element of R and O otherwise (where w is the weighting

function discussed in Section III), then the inexact consistent

labeling problem is equivalent to the problem of finding

e-homomorphisms.

The labeling problem is combinatorial in nature and can be
solved by a brute force backtracking tree search. As discussed
by Mackworth [10], the backtracking strategy suffers from
thrashing behavior. That is, the search fails at several differ-
ent places in the tree, all for the same reasons. If the reason
for failure could be remembered or anticipated, then the tree
search could be made more efficient.

In order to illustrate the concepts to be developed in this sec-
tion, we will use the following continuing example. Suppose
U=1{1,2,3,4}, T={(1,2)1,3)(1,4)(2, 3)2,4) 3, 4},
L={A,B,C,D},N=2,e=2,andR =

{(1,B,2,4)(1,8,2,B)(1,C,2,B)(1,C,2,C)(1,D,2,B)
1,D,2,0)(1,D,2,D)(1,A,3,B)(1,4,3,D)
(1,8,3,B)(1,B,3,0)(1,B,3,D)(1,D,3,D)
(1,4,4,4)(1,B,4,B)(1,C,4,4)(1,C,4,B)
(1,C,4,0)(1,D,4,B)(2,4,3,0)(2,B,3,4)
(2,B,3,D)(2,C,3,D)(2,D,3,4)(2,D,3,0)
(2,4,4,D)(2,B,4,0)(2,C,4,D)(2,D,4,4)
(2,D,4,B)(3,4,4,D)(3,B,4,4)(3,B,4,D)
(3,C,4,4)(3,D,4,C)(3,D,4,D)}.
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Also assume that w(ul,u2) =% for every pair (ul,u2) of
units and that Ew(ul,u2,ll,l2)=% when ((u1,11), (u2,
12)) is not in R and O otherwise. The brute-force backtrack-
ing tree search generates a tree of 44 nodes. A 22 node
portion of the tree for unit 1 having labels 4 and B is as
follows:

1A
2A
2B
3D
2C
3D
2D
1B
2A
3B
3C
3D
2B
3A
3B
3C
3D
4C
2C
3D
2D
3C.

Notice that although label 1 for unit 4 is impossible in any
consistent labeling [since there is no (1,4,2,X) for any
label X in R], the brute force search spends some time thrash-
ing on the (1, 4) subtree.

To understand this thrashing behavior better, consider why
the tree search could fail without or expecting it to fail.
We might not expect it to fail because of our shortsightedness:
we have taken into account the error incurred against all past
units (those units which have already been assigned labels)
but have not taken into account the minimum error that the
current labeling must incur against future units or the mini-
mum error that future units have with future units.

To take these errors into account we must divide T into
various pieces based upon the set Up of past units which have
been assigned labels and the set Uf of future units which
have not been assigned labels. T intersect Up® is the set of
all N-tuples composed of units which have already been as-
signed labels and which, therefore, have an exact error of

z

Ew(ul, -+ uN, h(ul), - - - , h(uN)).
(ut, -+, uN)e

T intersect UpN

Suppose in our example that the tree search has assigned
label A to unit 1 and label B to unit 2. Then Up = {1, 2},
and T intersect Up? = {(1,2)}. Since (1,4,2,B) is not in
R, the exact error accumulated so far is £ .

T intersect UFY is the set of all N-tuples composed of units
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which have not already been assigned labels. Hence, the
partial labeling % which is only defined over Up cannot in-
fluence or force any errors in T intersect Uf"Y. We may take
the smallest possible future error due to N-tuples of units
in T intersect UfN as zero, or if we like a better lower bound,
we can use
> min

1, unye (1, IN)

T intersect U,

Ew(ul, -, uN,I1,---IN).

Back in our example, when unit 1 has label 4 and unit 2 has
label B, then Uf={3,4}, and T intersect Uf? ={(3,4)}.
Then the above expression reduces to the minimum over
13 and 14 of Ew(3, 4, I3, 14). Since (3, 4, 4, D) is in R, the
future error is, this time, zero.

T has N-tuples other than those in T intersect Up” and T

“intersect UfY. For example, there are those N-tuples having

(V- 1) units from Up and one unit from Uf. This subset of
T will have an associated minimum error that strongly de-
pends on the partial labeling 4. We can give an explicit ex-
pression for this minimum error if we define the subset T'(u,
i; Up) of T by

T(u,i;Up)={(ul, - ,uN)ET|ui=u
and n #iimplies un € Up}.

Obviously,

N
U T(u,i;Up)
uEUfi=1

is the set of all N-tuples in T having (n - 1) components being
units in Up and one component being some future unit in Uf.
Also notice that since no two components of an N-tuple in T
can have the same value, T(u, i; Up) intersect T(u,j; Up) is
the empty set when i #j. Hence, for a given future unit « and
label /, the quantity

epf (u, l; Up, h)

N

=y >
i=1 (ul, -+, uN)E T(u,i; Up)
u,u(@+1), -, uN,h(ul), -,
(- 1), L a(u@+1)), -, h(uN))

is the error that the current labeling 4 on past units in Up
causes on future unit u with label /. Should this error be
greater than the error budget for future units, label / can be
excluded from further consideration.

The smallest error that future unit u can incur given h is
min; 7 epf(u,l;Up, h). The smallest error that the future
units individually incur given the partial labeling 4 is

> min epf(u,; Up, h).
uEUfIEL

Ew@l, -, u@-1),

Should this error exceed the error budget for future units, then
the tree search must either try the next label on the current
unit or backtrack. In our example, when unit 1 has label A
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and unit 2 has label B, then for future unit 3, epf (3,4; {1, 2},
{(1,4),2,B)) =Ew(1,3,4,A) + Ew(2,3,B,4). The N-
tuple (1,4,3,4) is not in R; the N-tuple (2,B,3,4) is in R.
The error incurred here is thus + +0=2. Similarly, epf(3,
B; {1, 2}, {(1, 4), (2, B)Y) = ¢, epf (3, C; {1, 2}, {(1, 4),
(2,B)}) =1,and epf(3,D; {1,2}, {(1,4),(2,B)}) =0. Also,
epf(4, 4; {1, 2}, {(1, 4), (2, B)}) = ¢, epf(4, B; {1, 2},
{(1,4), 2, B)) = 1, epf(4, C; {1,2}, {(1,4),2,B)}) = £,
and epf(4,D; {1,2}, {(1,4),(2,B)) = 1.

The minimum over /€L of epf(3,7; {1,2}, {(1,4),(2,
B)}) is 0, and the minimum over /€L of epf(4,1, {1,2},
{(1,4),(2,B)}) is £. Thus, the smallest error that the future
units 3 and 4 can incur given the partial labeling {(1,A4),
(2,B)} is 0+ % =%. Since we already had an exact error of
1. we now can forsee a total error of at least 3 which is larger
than e =0.2.

There are yet other subsets of N-tuples in T which we have
not accounted for and for which the labeling % forces some
error. The next one we might consider is that set of NV-tuples
from T having (V- 2) of its components being units in Up
and two of its components being units in Uf. To help us
give an explicit expression for this error, we define the sub-
set T(u,i,v,j; Up) of T by

T(u,i,v,j; Up)
={(ul,- - ,uN)€T|ui=u, uj=v, and
n # i, j implies un € Up}.
Then considering the unit set to be ordered by the greater
than relation >,

N N o
U U U Tw.i,v,j:Up)
UuEUfvEUSfi=1 j=1

v>u
is precisely the set of all N-tuples in T having (V- 2) com-
ponents being in Up and two components being in Uf. These
sets are all mutually exclusive when u # v. Hence, for a given
pair of future unit-label pairs (u, /) and (v, m) the quantity

Ew(ul,---,

eff (u.1,v,m; Up, h)
4 ut, -+, uN)E€ T(u, i, v, j; Up)

N
2
i=1j=1(

U, v, ulN h(ul), L

—

sm, -, h(uN))

is the error that the current labeling 2 on Up causes on the
future unit-label pairs (u, I) and (v, m). One lower bound of
the error that future units (a pair at a time) incur on each
other is

min ). min eff (u,l,v,m; Up, h).
ueur 'SLyeurmEL
v>u

Also the minimal total error any particular future unit-label
pair (u,!) incurs against the other future units can be ob-
tained as
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Y. min eff(u,l,v,m; Up, h).
vEUS meL
vFU
From this we obtain another lower bound of the error that
future units (a pair at a time) incur on one another as
1> min ) min eff(u,l,v,m;Up, h).

2
uEUf'eL ueUmeL
vFuU

Each of these error bounds, as discussed in the next subsec-
tion, can be used in the context of the standard backtracking
tree search to make it smarter by precomputing, remembering,
or anticipating some of the causes for future failures, thereby
avoiding them and making the tree search more efficient.
Haralick and Elliott [9] discuss the specialization of these
ideas to exact relational homomorphism problems arising
from binary constraint satisfaction problems.

V. TREE SEARCHING
In this section we discuss some different algorithms for

tree searching that find inexact matches by determining
e-homomorphisms.

A. Backtracking

In the standard backtracking approach, each partial labeling
h defined on the set of past units Up incurrs an error ep(Up,
h), where

ep(Up, h)
= 2

(ul,-- -, uN)e
T intersect UpN

Ew(ul,- -, uN,h(ul), -, h(uN)).

If at any time in the tree search the error incurred by this
partial labeling exceeds the error budget, the tree search
must either try the next label for the current unit or if there
is no next label, it must backtrack.

B. Forward Checking

Forward checking proceeds in a manner similar to back-
tracking. But it recognizes that in addition to the error
ep(Up, h) which the partial labeling % incurs against the
past units Up, the partial labeling # commits the past units
with their assigned labels from % to have a minimum error
with the future units Uf. By doing some forward checking,
letting the past units with their assigned labels broadcast to
each future unit-label pair this incurred error, it becomes
easy to keep track of a lower bound for the error the past
units must have with the future units. Recall that epf(u, /;
Up, h) is the total error accumulated by future unit-label pair
(u, 1) from all the past units in Up with their assigned labels
from A. If for any label / for current unit u, the quantity

ep(Up, h) + epf(u,l;Up,h) + 2. min epf(v, m; Up, )

ueUf’"EL
v#EU

exceeds the error budget, then forward checking fails and
we must either try the next label for the current unit or
backtrack.
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In our continuing example, the portion of the tree searched
for unit 1 having labels 4 and B with forward checking is

1A
1B
2A
2B
3D
4C
2D.

Notice that the 22 nodes processed with the brute force back-
tracking search has been reduced to 7 nodes.

C. Looking Ahead by One

Looking ahead by one proceeds in a manner similar to for-
ward checking. But it recognizes that in addition to the
minimum error that a partial labeling creates by past units
against past units and past units against future units, there
is some minimum error of future units against future units.

We called eff(u, I, v, m; Up, h) the error that future unit-label

pair (u,[) has with future unit label pair (v, m) taking into ac-
count that past units in Up must have the labels assigned to
them by A. Then the minimum error that a future unit-label
pair (u,!) incurs with the future units (taken one at a time)
is

> min eff(u,l,v,m; Up, h).
ueUmeL
vFEU

If for any unit-label pair (u, /) the quantity

ep(Up, h) + > mm epf (v, m; Up, h)
veur™

+ Y. min eff(u,l,v,m, Up,h)
UEUmeL
v#EU

exceeds the error budget, then the pair (u, I) can be dropped
from consideration as a possible participant in the extension
of labeling #. This idea may be applied iteratively, where-
upon it becomes a weighted discrete relaxation operator, the
natural generalization of the discrete relaxation operator origi-
nally defined by Ullman [16], independently rediscovered by
Waltz [17], and also discussed in Rosenfeld et al. [12], Hara-
lick et al. [6], Haralick [7], Haralick and Shapiro [8], and
Gaschnig [4].

After the current unit has had a label instantiated for it and
has become a past unit, another lower bound can be computed
for the future error. We have already observed that the small-
est error future units can have with future units taken one at
a time given the partial labeling 4 on Up is

min

leL

> min eff(u,l,v,m;Up, h).
uesur €L

veurme
v>u

Hence, looking ahead by one also uses the quantity
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ep(Up,h)+ 3 m1n epf(u 1;Up, h)
uceUf Ie
+ Z min Z min eff(u,!,v,m; Up, h)
ueurt€lyeurme
v>u

in the error budget check. If this quantity exceeds the error
budget, looking ahead by one fails and we must either try the
next label for the current unit or backtrack.

In our example, the portion of the tree searched for unit 1
having labels 4 and B with look-ahead by one is

1B
- 2B
3D
4C.

Thus, look-ahead by one, in this small problem, eliminated
backtracking and thrashing entirely.

D. Looking Ahead by Two

Looking ahead by two does the same sort of thing done by
looking ahead by one, but, in addition, it takes into account
the minimum error incurred by a pair of future unit-label
pairs as they look ahead to other future units. Recall that the
error incurred by future unit-label pair (u,!) against future
unit-label pair (x,q) is computed by eff(u,l,x,q; Up, h).
For a given pair ((u, ), (v, m)) of future unit-label pairs, the
best label g that another future unit x can have is one which
minimizes eff(u,l,x,q;Up, h) + eff v,m,x,q;Up,h). The
smallest error that ((u, ), (v, m)) can incur on all future units
including itself is then

eff (u,l,v,m; Up, h)

+ 2 min [eff(u,l,x,q;Up,h)
xeUf 1€L
X Fu,v

+ eff(va m9x, q; Up, h)] *
Whenever the above quantity plus the quantity

ep(Up, ) + 2 min epf (x, q, Up, k)
xeuf q<

exceeds the error budget, looking ahead by two may throw
out the pair of unit-label pairs ((«, [), (v, m)). Thus, looking
ahead by two needs a two-dimensional unit label table. Note
that before looking ahead by two performs its look-ahead
by two, it performs the look-ahead by one. If that succeeds,
it then performs the look-ahead by two. Applied iteratively,
this becomes a weighted discrete relaxation operator, the
natural generalization of the operator used by Montanari
[11] and the ®, operator of Haralick et al. [6].

In this section we have described several look-ahead or
relaxation operators to be used in conjunction with a tree
search to find e-homomorphisms. We have defined the op-
erators based on only a single relation. These operators
can and should be used cooperatively when more than one
relation is involved. For further information on cooperative
calculation, see Zucker [18] and Davis [3].



512

VI. PERFORMANCE EVALUATION

Our past experiments in inexact matching have been in
shape matching (Shapiro [13]). In these experiments, a
SNOBOLA4 program found homomorphisms from a pair of
ternary relations representing a prototype shape to a second
pair of ternary relations representing a candidate shape. In
order to more thoroughly test our inexact matching algo-
rithms, we have developed a statistical model that allows us
to generate random binary relation consistent labeling prob-
lems and a set of criteria on which to compare the perfor-
mance of the algorithms in finding e-consistent labelings.
Haralick and Elliott [9] used a similar model to explore the
behavior of various algorithms for finding exact or zero-
consistent labelings.

In this section we will define the criteria used and discuss
the generation of the random problems. We will also use an
appropriate random model to develop the expected number
of nodes per level in the tree search. Finally, we will describe
the experimental results.

A. Criteria for Evaluating Search Algorithms

In Section IV we discussed the brute force tree search with
backtracking that finds e-consistent labelings. The algorithms
for the tree search with forward checking and with look-ahead
by one have been implemented and are given in Appendix I.
The following terminology refers to these algorithms.

A consistency check for binary relations is the operation
that determines if a pair ((u1,71), (u2,12)) is an element of
the unit-label constraint relation. All three of the algorithms
require consistency checks. A back check is a consistency
check performed in the context of straight backtracking.
Back checks are the only consistency checks performed by
the straight backtracking algorithm. No back checks are per-
formed by the forward checking or look-ahead by one algo-
rithms. A look-ahead is a consistency check performed in
the context of forward checking or look-ahead by one. Look-
aheads are executed in routine UPDATE for forward checking
and in routine PSI for look-ahead by one. The straight back-
tracking tree search, of course, does no looking ahead.

The forward checking and look-ahead by one algorithms use
a table to keep track of accumulated error. The table, referred
to as ULTAB in the algorithms, is actually astack of tables, one
for each level in the tree. At the current level ULTAB(U, L)
gives the error accumulated by the forward checking and look-
ahead by one operations for unit U and label L. Labels whose
accumulated error for a given unit is too high are no longer
eligible labels for that unit. A lookup is a table lookup per-
formed in the context of forward checking or look-ahead by
one. Lookups are counted both when adding information and
retrieving information from ULTAB. Finally, the term node
refers to a node of the tree in the tree search and represents
the operation of assigning a particular label to a unit. The
criteria measured by the program include number of con-
sistency checks, number of back checks, number of look-
aheads, number of lookups, and number of nodes in the tree.
These quantities can be measured for the entire tree and for
each level in the tree. We also recorded the time to perform
a tree search although this is machine and language dependent.
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The time is, of course, highly correlated with total number of
consistency checks.

B. Generation of Random Consistent Labeling Problems

We generated random Cconsistent labeling problems to use
in thoroughly testing the search algorithms. In this section
we define the statistical model for generating consistent
labeling problems.

Let N be the number of units, L be the number of labels,
and € be the inexact matching threshold of the problems to
be generated. We will assume that all pairs of units (u1,u2)
with ul #u2 constrain one another, and that if ((ul,71),
(u2,12)) is an element of the unit-label constraint relation,
so is ((u2,12), (ul,11)). Thus, the unit constraint relation
has, effectively, N(V - 1)/2 unit pairs. We assign each such
unit pair an equal weight of 2/(N(V - 1)). That is, for each
unit pair (ul,u2), w(ul,u2)=2/(N(N - 1)), and Ew(ul, u2,
11,12) =w(ul, u2) if ((u1,11), (u2,12)) & R and O otherwise.

The generation of the unit-label constraint relation R is
based on the assumption that the probability that a given con-
sistency check succeeds is independent of the pair of units or
labels involved and independent of whatever labels may al-
ready have been assigned to past units in the tree search.
That is,

) P(((u,]), @', 1) ER)
=P(((v,m), (v',m")) €ER), and
2) P(((u(K+1),I(K+1)),(u,))ER|IL, - ,IK
are consistent labels of ul, - - - , uk)
=P(uE+1),I(K+1)),u,))ER)
~ for every unit u and label /.

Given that every possible element of R is equally probable,
we can use a random number generator to determine which
pairs of the form ((u, 1), ',1")), 1 <u,u' <N, 1<LI'<L,
are elements of R and which are not. Let the parameter p
specify what percentage of these possible pairs are actually
elements of R. For example, if N=8, L =8, ¢=0.08, and
p =04, then there are 87/2 =28 pairs in the unit constraint
relation, the weight of each pair is 1/28 or 0.0357, and the
generated unit-label constraint relation will contain 40 per-
cent of all possible elements, randomly chosen. Since € is
0.08, an e-consistent labeling may have zero errors (the
sum of the weights of the unsatisfied unit constraints = 0.0),
one error (the sum of the weights of the unsatisfied unit
constraints = 0.0357), or two errors (the sum of the weights
of the unsatisfied unit constraints = 0.0714). However, if
there are three errors, then the sum of the weights of the
unsatisfied unit constraints is 0.1061 which is greater than
€ = 0.08. Thus, a labeling with three errors is not a 0.08 con-
sistent labeling.

C. Expected Number of Nodes in the Tree for Backtracking
and for Forward Checking

1) Backtracking: At level K, K units have been assigned
labels. With L possible labels per unit there are LX different
functions that assign labels to the K units. We need to deter-
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mine the probability that any of these LX labelings is success-
ful through level K. Successful means that there are no more
than M consistency tests that fail for the labeling.

Since at level K, a labeling must have passed K(K - 1)/2
consistency tests, the maximum number of consistency tests
that a labeling could fail and yet still succeed as a labeling
is min {M, K(K - 1)/2}. Now, for any number of failures m,
0<m<min{M,K(K - 1)/2}, the probability that m tests
have failed out of the K(K - 1)/2 performed is

(K(Kr‘n /2 )pK(K—l)/2 “m( - pym.

The probability that min {M, K(K - 1)/2} or fewer tests have
failed is

min {M, K(K-l)/2}(K(K - 1)/2

>pK(K—1)/2—m(1 _ p)m.
m

m=0

Hence, the expected number of labelings from the LX pos-
sible labelings that will have succeeded is

min {M, K/K-1)/2} ([K(K - 1)/2 “1)/2 -

m=0
2) Forward Checking: For a labeling to have succeeded
through level K in forward checking, the labeling must have
succeeded in the sense of backtracking. It also must succeed
in the following sense. Let Nf be the number of failures
committed by the labels of the past units with themselves.
Thus, Nf = #{(u, v)|u, vE€ Up and (u, f(u), v, f(v)) is not in
R}. Let Mf be the sum of the smallest number of failures
some label for each future unit has with the labels of the past
units. Then Nf plus Mf must be within the failure tolerance.
To compute this probability, we distribute the total number
M of allowed failures in all possible ways among the past and
future units.
We allow m failures for the past units and F(k) failures for
the kth future unit, k=K +1,---,N. As before the probabil-
ity of exactly m failures in the past units is

(K(K’-nl)/Z) pKUE =Dz =m (| _ ym.

The probability of F(k) or more failures in K consistency tests
for a label of the kth future unit is

s (Sa-prern
n=F(k)

The probability that all L labels fail F(K + k) or more con-
sistency tests out of K tests for each label is '

[n=Z::(k) (f) a- p)npx_,,]L

Then the probability that the smallest number of tests failed
by some label is exactly F(k) is

X, K _ n K—n]L
[,,§(k)<n>(l "o

T & o]
n=F(k+1)

Also, the probability Q(F(K + 1), - - - , F(IV)) that future units
K +1 through N have their best labels fail exactly F(K + 1),
<o+, F(N) times is Q(F(K + 1), -+ - , F(N)) equals

N K K L
1- n K—n]
k=11_([+1 ([n=;(k) (i’l )( p) P

_ [n=Fi((;¢+l) (f) a- p)npK-n]L).

Therefore, the expected number of labeling to succeed through
level K is

LK min {M,§K—1/2} (K(K - 1)/2)

m=0 m

N min {K,M-m}
_pK(K 1)/2 m(l _p)m
F(k+1)=0

min{K, M-m-F(K+1)-----F@®-1)}
F(N)=0
QFEK +1),- -, F(V)).

3) Experimental Results Comparing the Three Search Meth-
ods: In comparing backtracking alone, backtracking plus for-
ward checking, and backtracking plus look-ahead by one, we
looked at the number of consistency checks, the number of
nodes, and the execution time for a tree search. In general,
we found that backtracking plus forward checking had the
least number of consistency checks and the least time, back-
tracking plus look ahead by one was next, and backtracking
alone had the highest number of consistency checks and the
most time. Fig. 7 shows the total number of consistency
checks as a function of number of units for the three differ-
ent search algorithms with p=0.5 and e=0.1. Fig. 8 shows
the time in milliseconds on an IBM 370/158 of number of
units. The times are, of course, dependent on the machine,
the language, and the compiler. In this set of experiments,
the number of labels was the same as the number of units and
each data point shows the average result of five trials.

With respect to the size of the portion of the tree actually
searched, we found that backtracking alone searched the most
nodes, backtracking with forward checking was next, and
backtracking with look-ahead by one searched the fewest
nodes. Fig. 9 shows the number of nodes searched as a func-
tion of level in the tree for problems with eight units, eight
labels, p=0.5, and € =0.1. Thus, the forward checking and
looking ahead by one beat the straight backtracking in number
of consistency checks, time, and number of nodes. The look-
ing ahead by one beat the forward checking in number of
nodes searched, but used many more consistency checks (and
therefore time) to do so. This would indicate that, as was the
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® BACKTRACKING ALONE
® BACKTRACKING WITH LOOKAHEAD BY ONE

0 BACKTRACKING WITH FORWARD CHECKING

TOTAL NUMBER OF CONSISTENCY CHECKS

3 5 Y & 5
NUMBER OF UNITS

Fig. 7. The number of consistency checks as a function of number
units for p = 0.5, e = 0.1, and three different search methods.

T T T T T
© BACKTRACKING ALONE

® BACKTRACKING WITH LOOKAHEAD BY ONE
# BACKTRACKING WITH FORWARD CHECKING

TIME IN MILLISECONDS

60'
T

| L . 5

3 3 y 5
NUMBER OF UNITS

Fig. 8. The number of milliseconds of CPU time on an IBM 370/158
as a function of number units for p = 0.5, e = 0.1, and three differ-
ent search methods.

case for exact matching (Haralick and Elliott [9]), in inexact
matching, forward checking is the most efficient of the three
methods of search.

4) Optimizing Tree Search Order: In [9] Haralick and
Elliot showed that, for exact matching, the number of con-
sistency checks could be minimized by ordering the tree search
so that the units most likely to fail are done first. A unit is
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4 BACKTRACKING WITH FORWARD CHECKING
® BACKTRACKING WITH LOOKAHEAD BY ONE

NUMBER OF NODES

Sn
T

10 -4

n L L L s "
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Fig. 9. The number of nodes processed as a function of level in the
tree for N =8, L =8, p = 0.5, ¢ = 0.1, and three different search
methods.

likely to fail if most of the labels have been ruled out for it.
The forward checking routine keeps track for each future
unit of the number of labels that have not yet been ruled
out for that unit. At each level, the tree search procedure
decides which unit to try at that level by choosing the unit
with the smallest number of labels left. As in the exact match-
ing experiments, we found that ordering the search in this
manner did cut the number of consistency checks by a small
amount. Fig. 10 shows the comparison of number of con-
sistency checks as a function of number of units for p=0.5,
€ =0.1, backtracking with forward checking, and backtrack-
ing with forward checking plus ordering by worst unit first.

5) Counting Table Lookups and Look Aheads: The forward
checking and the look ahead by one operators use a table to
keep track of the status of each possible label for each future
unit. The table, ULTAB, works as follows. ULTAB(, /)
holds the error so far accumulated for future unit i and label j.
Initially, ULTAB(Z, ) is set to 0.0 for all units i and labels j.
When a label / is assigned to a unit u, this assignment affects
all the future units that do not yet have labels. For each fu-
ture unit i and label j where ((u, 1), (,7)) is not an element of
the unit-label constraint relation, ULTAB(Z, ) is incremented
by the weight of (u, i) [in our program 2/(N(N - 1)]. When-
ever the error of the labeling so far plus the minimum possible
error for all future units plus ULTAB(Z,j) becomes greater
than the error threshold e, then label j is no longer a possible
label for unit i. In this case, NUM(7), also considered a part
of the table, is decremented by one to indicate one less pos-
sible label for unit 7. Finally, the minimum error of all labels
for unit 7 is stored in MINERR(?) and also considered part
of the table.

Whenever the table is accessed, either for a store or a fetch,
the number of lookups is incremented by one. In forward



SHAPIRO AND HARALICK: STRUCTURAL DESCRIPTIONS AND INEXACT MATCHING

T T T T

®BACKTRACKING WITH FORWARD CHECKING
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WORST UNIT FIRST
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Fig. 10. Ordering the tree search by worst unit first reduces the total
number of consistency checks (p = 0.5, e = 0.1).
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Fig. 11. Lookups as a function of level for p = 0.5, e = 0.1, and back-
tracking with forward checking.

checking, for a node at level K where there are N - K future
units, the program counts 1+2 * (V- K) = (L + 1) lookups
per completely processed node. For the same node, the pro-
gram counts (V- K) # L look aheads (consistency checks dur-
ing forward checking). For look ahead by one, the program
performs an additional (N-K)*L «(Q2+(N-K-1)*L)
lookups and (N - K)* L % (N - K~ 1) = L look aheads. Fig.
11 illustrates lookups as a function of level in the tree, and
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Look aheads as a function of level for p =0.5, e =0.1, and
backtracking.
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Fig. 13. Lookups as a function of level for p = 0.5, e = 0.1, and back-
tracking with look ahead by one.

Fig. 12 illustrates look aheads as a function of level for 5,6, 7,
8, and 9 units, p =0.5, € =0.1, and forward checking. Fig. 13
illustrates lookups as a function of level in the tree, and Fig.
14 illustrates look aheads as a function of level in the tree for
5,6, 7,8, and 9 units, p = 0.5, € = 0.1, and look ahead by one.

6) The Size of the Problem as a Function of Error: Because
forward checking proved to be the most efficient search meth-
od, we ran a separate series of experiments for forward check-
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Fig. 14. Look aheads as a function of level for p = 0.5, e =0.1, and
backtracking with look ahead by one.
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ing only. In these experiments we varied the error allowance
while holding everything else constant. In order to better
compare these results for 5, 6, 7, 8,9, and 10 units, we varied
€ in terms of the number of pairs of the unit constraint rela-
tion that could fail to be satisfied. We counted one error for
each pair of the unit constraint relation that was not satisfied
in a given labeling. We varied € so that for each number of
units, we could study number of labelings with 1,2,3,4,5,6,
and 7 errors. Fig. 15 illustrates the total number of labelings
for 5,6, 7, 8,9, and 10 units each with 2, 3,4, 5,6, and 7
errors for p =0.4 and backtracking with forward checking.
We start at two errors because, for p = 0.4, there are no label-
ings in some cases with O and 1 errors. These results indicate
that the inexact consistent labeling problem involves much
more work as € gets larger.

VII. CONCLUSION

We have defined the concept of an inexact match of a
candidate structural description to a prototype description
and have shown that inexact matching is a special case of the
inexact consistent labeling problem. We have discussed the
problems involved in finding e-consistent labelings and have
described and analyzed four methods: tree search with back-
tracking alone, tree search with backtracking and forward
checking, tree search with backtracking and look-ahead by
one, and tree search with backtracking and look-ahead by
two. We have given high-level algorithms for the first three
methods.

In order to test the algorithms, we have developed a sta-
tistical model that allows us to generate random binary rela-
tion e-consistent labeling problems. Our experiments indicate
that with respect to the number of consistency checks and
time, forward checking was best, looking ahead by one next,
and straight backtracking worst. Looking ahead by one
searches less nodes of the tree than forward checking, but
uses many more operations to do so. The extra operations
include consistency checks and table lookups. We have
shown how these vary as a function of level in the tree. The
number of table lookups is greater than, but appears to be
proportional to, the number of consistency checks.

We have developed formulas for the expected tree size for
forward checking versus straight backtracking and found that
the experimental results correspond closely to the theoretical
results. Finally, we have studied the size of the problem asa
function of the amount of error allowed. Our results show
that the inexact consistent labeling problem, and therefore
inexact matching, is a much harder problem than the exact
version.

APPENDIX |

SIMPLIFIED BACKTRACKING TREE SEARCH WITH
FORWARD CHECKING

comment ULTAB and MINERR are actually stacks, one table per level;

CONTROL := forward;

while CONTROL = forward or some units have been assigned labels

do
begin

if all units have a label then CONTROL := back;
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if CONTROL = back then back up one level,;
U := next unit to try;
CONTROL :=back;
while there are labels to try for unit U do
begin
" L := next label for U;
PERR := error of partial labeling so far;
BERR := FORER(ULTAB, U, L)
FERR := FUTMIN (future units)
if PERR + BERR + FERR < € then
begin
" ERRF := UPDATE (ULTAB, U, L,PERR + BERR);
if UPDATE fails then (try) next (label);
CONTROL := forward;
add (U, L) to the partial labeling;
if all units have labels then print the labeling;
move forward one level;
exit :
end
end
end

procedure FUTMIN (future units);
FUTMIN :=0;
for each future unit UF do

FUTMIN := FUTMIN + MINERR (UF)
end FUTMIN

procedure UPDATE(ULTAB, U, L, PASTERR);
UPDATE :=0;
for each future unit UF do
begin
"~ SMALLERR :=99999 ;
for each label LF that is still eligible for UF do

begin
if (U, L, UF, LF) is in the unit-label constraint relation
then ERR :=0

else ERR := WEIGHT (U, UF);
ULTAB(UF, LF) := ULTAB(UF, LF) + ERR;
if ULTAB(UF, LF) < SMALLERR
then SMALLERR := ULTAB(UF, LF)
end;
UPDATE := UPDATE + SMALLERR
if (UPDATE + PASTERR > ¢) then fail return;
MINERR(UF) := SMALLERR
end
end UPDATE

SIMPLIFIED BACKTRACKING TREE SEARCH WITH
Look-AHEAD By ONE

comment ULTAB and MINERR are actually stacks, one table per level;
CONTROL := forward;
while CONTROL = forward or some units have been assigned labels
do
begin
" if all units have a label then CONTROL := back;
if CONTROL = back then back up one level;
U := next unit to try;
CONTROL :=back;
while there are labels to try for unit U do
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begin
"L := next label for U;
PERR :=error of partial labeling so far;
BERR := FORER(ULTAB, U. L);
FERR := FUTMIN (future units);
if PERR + BERR + FERR < € then
begin
" ERRF := UPDATE(ULTAB, U, L, PERR + BERR)
if UPDATE fails then (try) next (label);
ERR1 :=PSI(ULTAB, U, L, PERR + BERR,ERRF)
if PSI fails then (try) next (label);
CONTROL := forward;
add (U, L) to the partial labeling;
if all units have labels then print the labeling;
move forward one level;
exit
end
end
end

procedure PSI(ULTAB, U, L, PASTERR, FUTERR);
PSI :=0; )
for each future unit UF do
begin
" UFSMALLERR :=99999.;
for each label LF that is still eligible for UF do
begin
" SUMV :=0;
for each future unit VF # UF do
begin
" VFSMALLERR :=99999.;-
for each label MF that is still eligible for VF do
begin
" if (UF, LF, VF, MF) is in the unit-label constraint relation
then ERR :=0
else ERR := WEIGHT (UF, VF);
if ERR + ULTAB(UF, LF) + ULTAB(VF, MF) +
PASTER + (FUTERR - MINERR (UF) -
MINERR(VF)) > € then (try) next (label);
if ERR < VFSMALLERR
then VFSMALLERR := ERR
end
SUMV := SUMV + VFSMALLER;
if SUMV + PASTERR + FUTERR > ¢
then begin
T 7 ULTAB(UF, LF) := infinity;
exit
end
end;
if SUMV < UFSMALLER then UFSMALLERR := SUMV
end;
PSI := PSI + UFSMALLERR/2;
if PSI + PASTERR + FUTERR > ¢
then fail return
end;
end PSI
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