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Decomposition of Two-Dimensional Shapes by
Graph-Theoretic Clustering
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Abstract-This paper describes a technique for transforming a two-
dimensional shape into a binary relation whose clusters represent the
intuitively pleasing simple parts of the shape. The binary relation can
be defined on the set of boundary points of the shape or on the set of
line segments of a piecewise linear approximation to the boundary.
The relation includes all pairs of vertices (or segments) such that the
line segment joining the pair lies entirely interior to the boundary of
the shape. The graph-theoretic clustering method first determines
dense regions, which are local regions of high compactness, and then
forms clusters by merging together those dense regions having high
enough overlap. Using this procedure on handdrawn colon shapes
copied from an X-ray and on handprinted characters, the parts deter-
mined by the clustering often correspond well to decompositions that
a human might make.

Index Terms-Clustering, graph-theoretic clustering, relation cluster-
ing, shape, shape decomposition, shape matching.

I. INTRODUCTION

W. [E USE many pieces of information about an object in
order to recognize it. The size, shape, color, and posi-

tion of the object are obviously important. The recognition
decision may also be based on previous encounters with similar
objects. However, humans can recognize objects from gray-
scale pictures with limited views, and often can recognize or at
least guess at objects from their shapes alone. In this paper we
suggest an approach which might enable a computer to do so,
too.
A complex object may be composed of many parts, each

with its own shape. The entire object also has a shape-the
shape of its silhouette (or the set of shapes of the silhouettes
of its characteristic views). Since humans can recognize
objects from their silhouettes, it seems reasonable to develop
computer algorithms to analyze the shapes of silhouettes as
part of an effort to recognize the corresponding objects. In
this paper we will disregard the problems of extracting the
silhouettes from digitized pictures and assume that a repre-
sentation of the object boundary is provided. Such a repre-
sentation can consist of an ordered sequence of (x, y) coordi-
nates of points around the boundary of the object (obtained,
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Closed Planar Shape Polyglonal Approximation

Fig. 1. A closed planar shape and a polygonal approximation to it.

for example, from a chain encoding, Freeman [8]) or an
ordered sequence of line segments representing a piecewise
linear approximation to the boundary. The task of the com-
puter is to produce a structural description of the shape of the
object. This description would then be used by matching pro-
cedures attempting to recognize the object.
One test for a good object description is by comparison with

the perceptual judgment which humans make. There is a body
of psychological literature describing such judgments. How-
ever, in this paper we are not interested in finding algorithms
which exactly imitate human perceptual judgments. Instead,
we wish to explore algorithms which can produce from a
polygonal shape a description rich enough to permit successful
shape matching or similarity determination.
Consider the curved two-dimensional object shown in Fig. 1.

A human might describe this object as being composed of
three lobes of approximately the same size and about equally
spaced around the object. When a human looks at the picture,
the lobes stand out as almost separate entities; they are the
simple parts of the object. This motivates the need for an
algorithm to decompose an object into possibly overlapping
simple parts and a model for describing the relationships
among the parts. In this paper we will propose a new method
for decomposing a polygonal shape into meaningful parts.
Our method (which will be described in detail in Section III)

calculates a binary relation which captures important informa-
tion about the shape of a polygonal object. The binary rela-
tion is constructed as follows. Given two points P1 and P2 on
the boundary of the object, we can construct a straight line
from P1 to P2. If the line lies completely interior to the
boundary of the object, then the ordered pair (P1, P2) belongs
to the relation. Given a piecewise linear approximation to
the boundary of the object, we can calculate a similar relation
which approximates the same shape information using line
segments. We suggest that the clusters of either relation can
define the simple parts of the object.

0162-8828/79/0100-0010$00.75 © 1979 IEEE
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Section II briefly reviews some related literature. Section III
is the body of the paper and describes the clustering procedure
for the decomposition of a shape. Section IV suggests some
ways of working with boundary lines rather than with
boundary points.

II. RELATED LITERATURE
Pavlidis has tackled the shape-recognition problem from

several different approaches. One early approach was the de-
composition of shapes into primary convex subsets (Pavhldis
[14] ). The primary convex subsets and nuclei (regions where
primary convex subsets overlap) form the nodes of a labeled
graph representing the original shape (Pavlidis [15]). A
related approach was the decomposition into convex parts,
T-shaped parts, and spirals (Feng and Pavlidis [7]). A later
approach was the syntactic analysis of shapes and structural
description by -regular expressions (Pavlidis and Ali [17]).
Recent algorithms have used piecewise linear approximations
to the original shape as input data (Pavlidis and Horowitz
[16]). Pavlidis has also compiled an excellent bibliography on
algorithms for shape analysis (Pavlidis [18] ).
Maruyama [11] suggests a decomposition of shapes into

angularly simple regions. Each angularly simple region has at
least one interior point which can "see" its entire boundary.
Davis [3]-[5] has worked on the problems of shape repre-
sentation and matching. He decomposes a shape into a piece-
wise approximation represented by sides and angles. Two
shapes are considered similar if a mapping can be found from
the angles of one shape to the angles of the other. A relaxa-
tion procedure is used to determine the mapping with the con-
straint being the distance between the angles.
Other work in shape analysis, which is not as closely related

to our proposed work, includes the chain encodings of
Freeman [8], the medial axis transformation of Blum [2], and
the analysis of convex blobs by computing dominant points
(Rosenberg [19], [20] ; Langridge [101 ; O'Callaghan [13]).

III. DECOMPOSITION OF A SHAPE REPRESENTED BY
A SEQUENCE OF BOUNDARY POINTS

A. The Interior Line-Segment Relation
Let P = {P1, P2, - * , Pn } be an ordered set of points repre-

senting the vertices of a polygonal approximation to the
boundary of a planar shape. (The boundary may be open or
closed; however, our examples will be for closed boundaries.)
We would like to partition the set P into possibly overlapping
ordered subsets, where each subset represents a polygonal
approximation of a simple part of the original shape. {{P12,
P1, P2, P3}, {P4,Ps,P6, P7}, {P8,P9,P10,P11}}is an intuitive
partition of the points of Fig. 1.
Consider a line segment joining any two points of the polyg-

onal approximation to the shape. Such a line segment falls
into one of three categories.

1) The entire line segment lies interior to the boundary of
the polygonal approximation. (This includes the original edges
of the approximation.)
2) The entire line segment lies exterior to the boundary.
3) The line segment intersects the boundary in one or more

points.

p2 I nterior
Exterior p

2
Line Segment

10 } / f

Line Segment

Fig. 2. The three different kinds of line segments.

'P8

Fig. 3. How interior and exterior line segments relate to protrusions
and intrusions.

Fig. 2 illustrates the three kinds of line segments on the
curve of Fig. 1. The line segment from P4 to P7 lies inside the
boundary of the polygonal approximation and is called an
interior line segment. The line segment from P1 0 to P1 2 lies
outside the boundary of the polygonal approximation and is
called an exterior line segment. The line segment from P5 to
P9 intersects the boundary of the polygonal approximation at
two points and is an intersecting line segment.

Intuitively, a set of points which should be grouped together
as a simple part of the curve will be joined by interior line
segments. A set of points where all line segments between
points of the set are exterior line segments represents an intru-
sion to the object. Sets of points joined by intersecting line
segments have, in general, no spatial relationships.

Fig. 3 illustrates these concepts. The set of points {P1, P2,
P3, P27, P28, P29 }form a protrusion of the curve which is,
intuitively, a simple part of the curve. The sets of points
{Pxs, P16, P17, P18 } and {P19,P20,P21 } have only exterior line
segnents between them. These two sets correspond to the
two sides of a U-shaped intrusion to the object. We will show
how the relationship defined by the interior line segments can
be used to partition the object into simple parts. We expect,
in future research, to use the intrusions defined by the
exterior-line-segment relation to aid in the partitioning
algorithms.
The interior-line-segment relation LI consists of all pairs of

vertices (Pi, PF) such that the line segment joining Pi and Pi is
an interior line segment. We can represent this relation by a
graph G where each vertex is represented by a node, and an
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edge joining vertices Pi and Pi indicates that (Pi, Pi) and
(Pi, Pi) belong to LI. IfA is a subset of vertices ofP satisfying
the condition that every line segment joining two vertices of
A is an interior line segment, then the Cartesian product
A X A is contained in the relation LI, and A is a complete
subgraph of G representing a convex polygonal part of the
shape. Furthermore, if A is a maximal set with this property,
then it represents a maximal convex polygonal part of the
shape.

Clearly, partitioning a polygon into maximal convex parts
sometimes yields a good intuitive decomposition. Fig. 4 shows
a simple polygon and the graph representation of the relation
LI on the vertices of the polygon. In Fig. 4, the sets A 1 =

{P1,P2, P3,P4,PS,P6,P7,P8 } andA2 = {P8,P9)P10mPll P12
P13, P14, P15 , P16, P1 } are the maximal subsets such that A1 X
A1 andA2 X A2 belongtotherelationLI. A1 andA2 are also
the maximal convex polygonal parts of the original polygon
and represent the simple parts into which humans would most
likely partition the figure.
One important property of the relation LI for shape de-

composition is that LI is invariant under any linear transforma-
tion of the original vertices of the object. Thus translation,
rotation, scaling, skewing, projection, and perspective trans-
formation of the object will not alter its decomposition.
Fig. 5 shows the relation LI on several different transforma-
tions of a simple object.
While maximal convex polygons sometimes provide a basis

for decomposition, they are not tolerant of small perturba-
tions that might appear along the boundary of a polygonal
approximation of a digitized picture of a shape. For example,
Fig. 6 shows a polygon which is very similar in shape to the
polygon of Fig. 4, but with some "boundary noise" added.
The maximal convex subset decomposition will not divide this
polygon into the two natural parts, due to concavities intro-
duced by the noise.
We would like a simple-shaped part to be one which is max-

imal in size and is as close to being convex as possible. We call
a subset of vertices with this property a cluster of the relation
LI. In the next section we will discuss graph-theoretic cluster-
ing techniques which can be used to determine the clusters of
the relation LI and, therefore, a decomposition of the shape
into its simple-shaped parts.

B. A Graph-Theoretic Method for Determining Clusters
In Section Ill-A we defined a binary relation LI on a set of

points P representing a polygonal approximation to a planar
curve and proposed that the clusters of LI would represent
simple parts of the object bounded by the curve. In this sec-
tion we present a general clustering algorithm which can be
used to compute clusters of the LI relation. The graph-
theoretic clustering method is motivated by Gottlieb and
Kumar [9] and Auguston and Minker [1] who determined the
clusters of a graph by finding all the cliques of the graph and
iteratively merging those cliques having high enough overlap.
We begin with some definitions. Let S be a set and R C S X S

be a binary relation on S. The pair (S, R) is called a digraph
or, when R is symmetric, a graph. The elements of S are called

Fig. 4. A graph of the internal line segments of a simply decomposable
shape.

V2 V4

V, V4

VI V V1 V5

V7 V6 V7 V

(a) (b)

V4 V5
V4 V5

V3 V

V2 V31

(c) (d)

Fig. 5. The relation LI on a shape and on 4 linear transformations of
the shape. (a) Original object. (b) Scaled object. (c) Skewed object.
(d) Rotated object.

Fig. 6. A simple decomposable shape which is similar to the one in
Fig. 4, but whose decomposition does not correspond to its max-
imally convex parts.

nodes. If a pair of nodes (X, Y) belongs to R, then we say
that Y is a neighbor of X. The set of all nodes Y such that Y
is a neighbor ofX is called the neighborhood of X (neighbor-
hood (X)). (Note that unless R is symmetric, Y being a
neighbor of X does not imply that X is a neighbor of Y.) In
this paper we will be concemed with symmetric relations since
the relation LI is symmetric.

Fig. 7 illustrates a symmetric and reflexive relation on ten
nodes in graph representation. We will use this relation to
illustrate the concepts presented in this section.
In the spirit of Auguston and Minker [1], we define a cluster

as a maximal chain of dense or highly connected neighbor-
hoods. Auguston and Minker used cliques, the most highly
compact neighborhoods possible. However, in order to reduce
the strictness of the clique criterion as well as the computa-
tional burden of finding all cliques, we will define a density
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Fig. 7. A 10-node graph which is used to illustrate how the graph-
theoretic clustering procedure works.

function and use it to determine the dense region around each
node.
The conditional density D(XI Y) of node X given node Y is

defined as the number of nodes in the neighborhood of Y
which have X as a neighbor. That is

D(XIY)=#{NESI(N,X)ER and (Y,N)eR}.

Notice that ifR is symmetric, then D(XI Y) is just the number
of neighbors common to both node X and node Y. In this
case

D(XI Y) = D(YIX)

= #(neighborhood (X) n neighborhood (Y)).
If M is a maximal subset of S such that M X M C R, then
M is a clique of the relation R. If X is a node of S, then there
is some number N(X) > 1 of cliques of R containing X, and
of these cliques there is one or more that is largest in size.
These largest cliques are called major cliques. In Fig. 7, the sets
B1 = {S1, S3, S4, S8 }, B2 = {S5,S7, Sg S10}B3 = {S2,S4,S8},
B4 = {S2, S5, S8 }, and B5 = {S1, S3, S4, S6 }are cliques of the

relation. Note that node S8 is in cliques B1, B3, and B4. B1 is
the major clique of node S8, but B3 and B4 are also major
cliques since they are the only cliques of node S2.

The density function D(YIX) can be used to find large
regions which are not quite as dense as major cliques. For
each node, X in S and integer K define the region Z(X, K) by

Z(X,K)= {YESID(YIX).> K}.

For small values of K, the region Z(X, K) around node X is
likely to be large and loose. As K becomes larger, the region
Z(X, K) becomes smaller and more tightly interconnected
and compact.

If C is a major clique of size M, then X, Y E C implies that
D(YIX) >M. Thus CCZ(X, M). Therefore, the largest sized
clique associated with each node X must be contained in
Z(X, K) for any K S, M and we have K < M S #Z(X, K).
Then any value of K which does not satisfy K S #Z(X, K)
could not be the size of a major clique for node X. Hence it is
only natural to consider

Z(X) = Z(X, N)

1 l 1,3,4,6,81
2 12,4,5,81
3 11,3,4,6,81
4 1,3,4,6,81
5 15,7,9,101
6 11,3,4,61
7 15,7,9,101
8 11,2,3,4,81
9 15,7,9,101
10 15,7,9,101

0.92
0.875
0.92
0.92
1.0
1.0
1.0
0.84
1.0
1.0

Fig. 8. The table of conditional densities for the graph of Fig. 7 and
the tentative compact neighborhoods around each node derived from
the conditional density function.

where

N = max {KI #Z(X, K) > K}

as the candidate dense region around X. Fig. 8 shows the
conditional densities for each pair of nodes and the sets Z(X)
for the relation of Fig. 7.
Because each Z(X) contains only those nodes with highest

conditional densities, there is a reasonable basis for expecting
that each Z(X) will not contain much more than the nodes of
the major cliques of node X. We only want to consider a set
Z(X) if it is large enough, and it includes only those nodes
that are related to a large percentage of the other nodes in the
set. To this end we define a measure of the association (or
relatedness) of a node to a set of nodes and a measure of com-
pactness (or interrelatedness) of a set of nodes.
For any node N in a subset B of S, we define the association

A (NIB) of node N to subset B as the ratio of the number of
nodes in B that are neighbors of N to the total number of
nodes in B.

A (NIB) =
neighborhood (N) n B

#B

If all the nodes in B are neighbors ofN, then A (NIB) =1, and
if none of the nodes in B are neighbors of N, then A (NIB) = 0.

For any subset B of 5, we define the compactness C(B) as

the average association of the nodes of B.

C(B)=# A(NIB).
#B NeB

If each of the nodes in subset B is related to itself and to every

other node in B, then C(B) = 1. If none of the nodes in B are

related to any node in B, then C(B) = 0.

We will consider only those sets Z(X) which are large
enough, which include only those nodes whose association is
high enough, and whose overall compactness is high enough.

Node

2
3
4
5
6
7
8
9
10
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Given an association threshold MINASSOCIATION, a (possibly
higher) compactness threshold MINCOMPACTNESS, and a size
threshold MINSIZE, we define a dense region of R to be a
subset B C S satisfying

1) B = {N (e Z(X)IA (NIZ(X)) > MINASSOCIATION}
for some XE S;

2) C(B) > MINCOMPACTNESS;
3) #B > MINSI ZE.

In Fig. 8, the dense regions for MINCOMPACTNESS = 0.8,
MINASSOCIATION = 0.5, and MINSIZE = 1 are {S1, S3, S4,
S6, S8}, {S2, S4, S5, S8}, {S5, 75, S9, SO }, {S1,S3, S4, S6},
and {S1I S2, S3, S4, S8}-
The clusters of R can be determined by taking the union

of those dense regions of R which overlap one another to a
high enough degree. Let MINOVERLAP be the specified degree
of overlap. We define the dense-region relation F as the set
of pairs of dense regions (D1, D2) such that the fraction of
nodes in D1 which are also in D2 is greater than MINOVERLAP
or the fraction of nodes in D2 which are also in D1 is greater
than MINOVERLAP.

F= {(Di,D2)ID1,D2 are dense regions ofR,

#D1 nfD2I#D1 > MINOVERLAP or

#D1 nlD2/#D2 > MINOVERLAP}

For example, if D1 = {S1, S2, S3, 54, S8}, D2 = {Sl, S3, S4,
S6, S8 }, and MINOVERLAP = 0.8, then (D1, D2) and (D2, D1)
belong to F.
The relation F is symmetric and reflexive. Its transitive

closure is an equivalence relation. We define a cluster to be
the union of the set of dense regions in each equivalence class.
Although the. equivalence classes whose members are dense
regions are naturally disjoint, it is possible for the union of the
dense regions in one class to be contained in the union of the
dense regions in another class. The simplest way to handle this
is to iterate by merging clusters which overlap much in the
same way that the dense regions were merged. The dense
regions at each iteration are the clusters of the previous itera-
tion. The iterations can proceed until the clusters can no
longer be merged.
For MINOVERLAP = 0.75, MINCOMPACTNESS = 0.8, MIN-

ASSOCIATION = 0.5, and MINSIZE = 3, the clusters of the rela-
tion of Fig. 7 are

{S1, S2, S3, S4, S6, S8}

{S2, S4,5S5, S8 }

{S55 S7, S9, SIO}

C Results of Graph-Theoretic Clustering on LI
A series of experiments on shape analysis has been carried

out using the clustering method just discussed in the following
manner. Values for MINOVERLAP, MINCOMPACTNESS, MIN-
ASSOCIATION, and MINSIZE were read in prior to processing
each object and a set of clusters was produced as in Section
111-B. The value of MINOVERLAP was then decreased by
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Fig. 9. The boundary points of the shape COLON2.

COLON 2

Fig. 10. The relation LI on the shape COLON2.

multiplying the current value by 0.98. The clusters were re-

labeled as dense regions and fed back into the procedure with
the new value of MINOVERLAP to produce a new set of
clusters. This process was repeated for a total of fifteen
iterations on each object with the initial value ofMINOVERLAP
at 0.9, and the values of MINCOMPACTNESS, MINASSOCIA-
TION, and MINSIZE constant at 0.8, 0.75, and 7, respectively.
After the fifteen iterations were completed, any node N which
was not included in any cluster was added by a best fit routine
to that cluster S to which it was most highly associated; that
is, S satisfied A (NIS) > A(NI T) for all clusters T. In case the
maximal association was the same for several clusters, node N
was added to the first such cluster.

In general, the first iteration on each object produced more
clusters than a human would intuitively pick. This was due to
the fact that the relatively high initial MINOVERLAP of 0.9 did
not permit enough merging of dense regions. With the clusters
relabeled as dense regions and MINOVERLAP reduced, more
merging took place and the number of clusters was reduced.

14
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Colon 4 Colon 5

Fig. I1. The decompositions of COLON2, COLON4, and COLON5.

In most cases, the number of clusters stabilized for some value
of MINOVERLAP < 0.9 and the clusters remained constant for
the rest of the iterations.
One test of the procedure used objects produced by having

several different people copy the shape of a colon from an

anatomy book (Meschan and Farrer-Meschan [12]). After
digitizing, the average number of boundary points per colon
shape was 107. To reduce costs, every other point was used to
determine the LI relation. Fig. 9 shows the boundary points
of one of the shapes, COLON2. These points were the input
to the procedure. Fig. 10 shows the relation LI on the vertices
of COLON2. Fig. 1 1 shows the clusters obtained from three
colon shapes: COLON2, CoLoN4, and COLON5. The clusters
in Fig. 11 are delimitted by closed curves drawn around groups

of boundary points which belong to the same cluster. Each
cluster is marked with a different symbol. Thus the areas

covered by small dots, the areas covered by large dots, and the
areas covered by stripes represent three different clusters.
Areas containing more than one type of symbol represent
points that are in more than one cluster. The number of
clusters produced from each of the three objects stabilized to
three-at iteration 7 for COLON2 and COLON4, and at itera-
tion 11 for COLON 5.
The clusters shown in Fig. 11 correspond well to an intuitive

decomposition of the objects. Each of COLON2, COLON4, and
COLON5 has a left part, a horizontal midsection, and a right
part. Thus a very simple matching procedure could be used to
find that COLON2, coLoN4, and COLON5 are similar.
One property of the clustering-method is that the clusters

are not necessarily disjoint. This means that if there are

several different intuitive decompositions of an object, the
procedure will not choose among them, but instead will pro-

duce clusters representing all the possible decompositions. For
example, in the decompositions of each of COLON2, COLON4,
and COLON5, the horizontal cluster overlaps both the left
cluster and the right cluster. The horizontal cluster shows that
there is a piece of the object that extends all the way across it.
The left cluster and right cluster do not have to be broken into
two parts just because the horizontal cluster crosses them.
Similarly, the horizontal cluster does not have to be cut short
just because the left cluster and right cluster cross it.

Colon 1 Colon 6

Fig. 12. The decompositions of COLON I and COLON6.

Fig. 12 shows the decompositions of two similar shapes
COLON1 and COLON6. COLON1 has five clusters: upper and
lower left parts, a horizontal midsection, and upper and lower
right parts. COLON6 has four clusters: one left part, a hori-
zontal midsection, and upper and lower right parts. A match-
ing procedure would have to decide whether COLON1 and
COLON6 are similar enough. This could be done by a heuristic
procedure with built-in thresholds for merging simple parts.
For example, two simple parts miglht be merged if they are

adjacent and the angle formed by their major axes is close to
1800.
The clustering procedure was also tested on nine hand-

printed characters-three H's, three K's, and three X's. These
shapes were digitized to produce an average of 56.22 boundary
points. Again every other boundary point was used as input
to the program. Fig. 13 shows the decomposition of these
characters for MINOVERLAP = 0.9, MINCOMPACTNESS = 0.8,
MINASSOCIATION= 0.75, and MINSIZE = 7. Fig. 14 shows the

decomposition of the same characters with MINASSOCIATION
changed to 0.7. In Fig. 13, the K's all have the same decompo-
sition, but the H's and X's would need some heuristic merging
to be judged similar. In Fig. 14, H3 has a more suitable
decomposition making it similar to H2, but not to Hi which
has a more well-defined horizontal section. X2 and X3 are

now similar, but XI needs some heuristic merging. K2 and
K3 remained the same, but the decomposition of Kl is worse
than in Fig. 13. These results suggest that merging of clusters
should be based at least partly on geometric relationships.

Colon 2
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HI

KI

H2 H3

K2 K3

Xi X2 X3

Fig. 13. The decompositions of nine handprinted characters with MIN-

OVERLAP = 0.9, MINCOMPACTNESS = 0.8, MAXDIFFERENCE = 0.25, and

MINSIZE = 7.

HI

KI

H2 H3

K2 K3

Xi X2 X3

Fig. 14. The decomposition of the nine handprinted characters of Fig. 13
with MINOVERLAP = 0.9, MINCOMPACTNESS = 0.8, MINSIZE = 7, and MAX-

DIFFERENCE changed to 0.3.

D. The Algorithm and Its Complexity
The decomposition procedure just described can be divided

into two main parts: 1) finding the relation LI and 2) per-

forming the clustering. We will discuss the complexity of
each part.

1) Algorithm for Finding the Relation LI: Given a sequence

of points {P1 = (X1, Y1), P2 = (X2, Y2), ,Pn = (Xn, Yn)J

representing the boundary of a closed planar polygonal shape,
the following algorithm determines whether the line segment
from Pi to Pi is an interior line segment.

procedure INLINE (I, J, N);
declare I, J, N integer;
comment If the line segment Ls between the points

PI and Pj is an interior line segment
return SUCCESS, else return FAILURE;

if PI is adjacent to Pj
then return (SUCCESS);
Ls = the line segment from PI to PJ;
MID = the midpoint of LS;
INTERSECTION-COUNT = 0;
do for allN line segments L around the boundary

of the curve
begin

if a vertical line passing through MID intersects
L below MID

then INTERSECTION-COUNT
= INTERSECTION-COUNT + 1;

if Ls intersects L
then return (FAILURE);

end
comment Ls is not an intersecting line segment.

if INTERSECTION-COUNT is odd, then Ls
is interior. If INTERSECTION-COUNT iS
even, then Ls is exterior;

if INTERSECTION-COUNT is odd,
then return (SUCCESS);
else return (FAILURE);
end INLINE;

For each pair of points, a maximum of n times through
the loop in INLINE determines if the line segment between
the points is interior. For n points, there are n(n - 1)/2 line
segments to be tested. Thus, in the worst (convex) case, the
complexity of the algorithm is proportional to n3. For a
large object with closely spaced boundary points, this would
be prohibitive. Shamos, in a private communication, has indi-
cated that an algorithm of order 0(n2) exists, and we plan to
implement this algorithm in the future.
2) The Graph-Theoretic Clustering Algorithm: The graph-

theoretic clustering method can be summarized as follows.

0) ITERATION-COUNT = 0
1) Find the dense regions around each node

do while ITERATION_COUNT <
NUMBER_OF_ITERATIONS;

begin
2) Form a relation of the dense regions (two dense

regions belong to the relation if they overlap
one another enough)

3) Find the clusters (equivalence classes of the rela-
tion of 2)

4) Create a new set of dense regions (the clusters
of 3)

5) ITERATION_COUNT = ITERATION_COUNT + 1

end
6) Put any leftover nodes in the best fit cluster.
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To determine the dense region around a node X, we first
compute D(YIX) for every other node Yin S. SinceD(YIX) =
#(neighborhood (X) n neighborhood (Y)), this involves n - 1
set intersections. Since LI is symmetric, D(YIX) = D(XI Y);
so, for n nodes, computing the conditional densities takes
n(n - 1)/2 set intersections. Secondly, we use the densities to
determine a dense-region candidate set for node X. To do
this, we need to find the largest positive integer K such that
#{YID(YIX) > K} > K. This can be done with a binary
search on all K between 1 and n, which involves log2 n steps,
or, for n nodes, n log2 n steps.
After a candidate dense region is determined, we calculate

what proportion of nodes in the candidate set each node in
the candidate set is related to and throw out those nodes
whose associations are too low. This takes one set intersection
per node. Then the remainder of the nodes in the candidate
dense region are checked to make sure they have a high
enough average association. This checking requires a maxi-
mum of n set intersections. Finally, if the set passes the test,
the number of nodes must be compared to MINSIZE. Thus,
for each of the n possible candidate dense regions, we perform
at most 2n set intersections plus one size comparison. Thus,
for n nodes, finding the initial dense regions is, at most, pro-
portional to n2 operations.
After the initial dense regions are computed, we enter the

loop where the main operations are 1) forming the dense-
region relation which requires, at most, n2 set intersections
and 2) producing the equivalence relation which involves, at
most, n2 comparisons. The loop is executed NUMBER_OF
ITERATIONS times, where NUMBER_OF_ITERATIONS is an
input parameter to the program and is constant for any given
run of the program. To summarize, the number of operations
outside the loop is proportional to n2, the number of opera-
tions in the loop is, at worst, proportional to n2 (and is
generally much smaller), and the number of iterations of the
loop is constant. Thus the complexity of the entire graph-
theoretic clustering algorithm is, at worst, proportional to n2.
The actual execution times for six of the colon shapes run on
an IBM 370/158 computer are given below:

Relation
Number Finding Cluster

COLON of Points Time (s) Time (s)

1 79 128.8 8.7
2 48 31.8 5.4
3 40 16.8 3.6
4 45 23.4 4.7
5 47 28.8 4.6
6 62 66.3 6.4

IV. DECOMPOSITION OF PIECEWISE LINEAR
APPROXIMATIONS BY CLUSTERING

A. The Use ofPiecewise Linear Approximations
For a large number of data points, the complexity of com-

puting the relation LI and clustering can be prohibitive. We
can greatly reduce the computation by adding a preprocessing
phase which transforms the point representation of the

S2 56 S2 S4 S5

s;4s5 S S6

Si S7

S151° sillso14/I
Si

S8 S1S2 S9

S1 58S13 S8 "S7

HA HB

Fig. 15. A piecewise linear approximation to two letter H's.
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Fig. 16. The intuitively derived relation LI on the letter H's of Fig. 15.

boundary to a piecewise linear approximation (Pavlidis and
Horowitz [16]). Thus the input data are a relatively small
list of line segments instead of a big list of points.
To construct the relation LI, we need a definition of when

two line segments are related. Intuitively, two line segments
are related if they can "see each other," and their "line of
sight" is an interior line segment. Consider the two piecewise
linear approximations to letter H's shown in Fig. 15. HA
represents a standard letter H, while HB is an imperfect ver-
sion. Fig. 16 shows some possible LI relations derived in-
tuitively on HA and HB. Running these relations through the
clustering procedure produced the following results:

HA
Cluster 1) 1 2 3 4 10 11 12
Cluster 2) 5 6 7 8 9

HB
Cluster 1) 1 2 3 11 12 13 14
Cluster2) 4 5 6 7 8 9 10

Both letter H's were decomposed into two clusters.repre-
senting the left and right parts. HB does not have a well-
defined middle section, so its decomposition seems intuitively
correct. In HA, segments S4 and Slo form a perceptual hori-
zontal midsection, but segment S4 is related to segments S3,
S4, S5, and Slo, while segment Slo is related to segments S4,
59, S1O, and Sll. Thus segments S4 and Slo are not related
enough to produce a cluster. In fact, they were not related
enough to be initially included in cluster 1 or cluster 2, and
were added later by the best fit procedure to cluster 1. (They
both fit equally well in clusters 1 and 2, so they were left in
the first cluster, cluster 1.)
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The results of decomposing HA and HB show that cluster-
ing a relation defined from line segments instead of points is
a feasible alternative. However, the results of decomposing
HA suggest that the clustering procedure may require some
modification to produce more intuitive results. For instance,
the results would be more intuitively correct if segments S4
and Slo had been either added to both cluster 1 and cluster
2, omitted entirely from any clusters, or grouped to form their
own cluster. The problem here is due to the fact that left-
out line segments are a lot bigger than left-out points and,
when added to a cluster they are only slightly related to,
can cause the resulting simple part to lose its near-convexity
property.
The next subsection discusses some possible definitions for

determining when two boundary line segments are related.

B. Defining the Relation LI on a Set ofLine Segments

We would like two line segments to be related if, intuitively,
they can "see each other" and their "line of sight" lies interior
to the object being decomposed. The "see each other" con-
cept does not suggest a unique definition for the relation LI,
but brings to mind several alternatives.
Definition 1: Segment Si is related to segment S, if and only

if both the line segment joining the startpoint of Si to the
endpoint of S and the line segment joining the endpoint ofS
to the startpoint of Si are interior line segments.

Fig. 17 illustrates this definition on HB. Definition 1 is
equivalent to saying that every point on Si must be related to
every point on S in order for Si and S to be related. This can
often be too strict a criterion. The following is a much more
lenient definition.
Definition 2: Segment Si is related to segment Si if and only

if a line segment from an endpoint of Si to an endpoint of S5
is an interior line segment.

Fig. 18 illustrates Definition 2 on HB. Definitiorn 2 only re-
quires that one point on Si be related to one point on Si, with
the restriction that the points must be endpoints. This is
clearly too lenient a criterion. We need a definition that is a
compromise between Definition 1 and Definition 2.
A compromise definition might force a subsegment S5 of Si

to be able to "see" a subsegment s5 of Si. This suggests the
following definition.
Definition 3: Segment Si is related to segment Si if and only

if there exists a subsegment S5 of Si whose length is at least Q
percent of the length of Si and a subsegment S of Sj whose
length is at least Q percent of the length of Sj and both the
line segment joining the startpoint of S5 to the endpoint of s5
and the line segment joining the endpoint of S5 to the start-
point of s5 are interior line segments.
While definition 3 is probably the best definition from an

intuitive point of view, it is much more computationally
expensive than Definitions 1 and 2, since it involves deter-
mining at what points (if any) a line segment joining two seg-
ments becomes an interior line segment and how long it
remains so. The computation can be reduced somewhat by
specifying that the midpoints of the subsegments must coin-
cide with the midpoints of the segments they are a part of.

S2 S4 S5

SI is related to S3. s\ S1O is not related to S12.

S6

Si

HB

Fig. 17. Definition 1 of LI for line-segment data.

SI is related to S3. S10 is related to S12.
S6 is reloted to S12.

Si

HB

Fig. 18. Definition 2 of LI for line-segment data.

That is, the middle Q percent of segment Si must be able to
"see" the middle Q percent of segment S. We can approx-
imate this condition by checking only the midpoints. With the
additional requirement that adjacent segments are always
related, we obtain the following workable definition.
Definition 4: Let {SI, * -,*S, } be an ordered set of line

segments comprising a piecewise linear approximation to the
boundary of an object. Then (Si, S) belongs to the relation
LI if and only if either 1) Si is adjacent to Si or 2) the line
segment joining the midpoint of Si to the midpoint of S is an
interior line segment.

C Results of Clustering Line Segments
The handprinted characters of Figs. 13 and 14 have been

reduced to linear approximations as shown in Fig. 19. The
linear approximations have an average of 12.67 line segments
per letter as opposed to 56.22 points per letter in the original
representation. The ratio between number of points and
number of line segments is, of course, data dependent. Using
the final definition of Section IV-B, the relation LI was
computed on each linear approximation and the results run
through the graph-theoretic clustering procedure. Fig. 20
gives the resulting clusters for MINOVERLAP initially 0.9,
MINSIZE = 3, MINCOMPACTNESS = 0.8, and MINASSOCIATION =

0.75. Each segment is marked with symbols indicating which
clusters it belongs in. Segments which were added after the
clustering procedure by the best fit routine have circles around
their cluster symbol.
In Fig. 20, the three letter H's all have similar decomposi-

tions into two clusters representing a left part and a right part.
In Hl and H2, the upper segment of the midsection of the H
was assigned to the left cluster and the lower segment to the
right cluster. In H3, both the upper and lower segments of the
midsection were assigned (by the best fit routine) to the right
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Hl H2

iIl

K2

Xi X2

Fig. 19. The linear approximations of the nine
of Fig. 13.
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Fig. 20. The decomposition of the linear approximations of Fig. 19.

cluster. These differences might have to be resolved by a post-
processor. The three letter K's have three similar decomposi-
tions into three clusters, representing a left part, a top right
part, and a bottom right part. K2 has a very good intuitive
decomposition. In both Kl and K3, one segment of the top

right part of the K is grouped in both the top right cluster and
the left cluster. This is because this segment was related to
four of the five segments in the left cluster. Again a postpro-
cessor might be needed to resolve the problem.

Letters X2 and X3 have two similar decompositions into the
two intuitive clusters. Letter XI, however, decomposed into
four clusters since not enough segments were related to each
other to reduce to two clusters. As with the point data, Xl
needs some heuristic merging in order to look like the other
two X's. Another possible approach that might lead to better
results is to make LI a labeled relation or weighted graph.

V. SUMMARY
In this paper we have shown how to translate a boundary-

point representation or piecewise linear approximation of a
shape into a graph whose clusters are the possibly overlapping,
simple-shape parts. We have discussed a graph-theoretic
clustering procedure and illustrated its use on some example
shapes. We have indicated that the complexity of the pro-
cedure of translating the shape to its graph and clustering
the graph is order 0(n2) (although our implementation used
an algorithm of order 0(n3) to translate the shape to its
graph). Future work will be done in applying matching pro-
cedures to shape decompositions determined by this approach.
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A Description Method of Handprinted Chinese
Characters

TAKESHI AGUI AND HIROSHI NAGAHASHI

Abstract-A description method of handprinted Chinese characters is
presented. In the method, a Chinese character is composed of some par-
tial patterns which are constructed using the concatenate relation, cross
relation, and near relation. The relations of relative location among par-
tial patterns are used for categorization of the partial pattems. A Chi-
nese character is expressed from the results of categorization.

Index Terms-Categorization of patterns, geometrical feature points,
handprinted Chinese characters, matrix for relative locations of blocks,
relative location.

I. INTRODUCTION
'IT IS DIFFICULT to recognize Chinese characters because

of the variety of the characters compared with numerals
and other letters. Several investigations concerned with com-
puter recognition of printed and handwritten Chinese charac-
ters have been made in recent years [1] - [4].

Manuscript received October 17,1977; revised April 11, 1978.
The authors are with the Imaging Science and Engineering Labora-

tory, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan.

A Chinese character is drawn by some simple strokes. Rankin
analyzed the characters from the viewpoint of linguistic as-
pects and reported a syntactic method of modeling of the
characters [5]. Moreover, some processings of descriptions
in which concatenation of strokes and their arrangements are
used also have been reported [6].
In this paper we report a descriptive method of handwritten

Chinese characters, defining relative locations among their
partial patterns that are constructed stably.

II. REPRESENTATION OF RELATION

Let a handwritten Chinese character be described by a 32 X
32 binary matrix and be thinned. Geometrical feature points
are extracted from the information of nodes and angles be-
tween strokes. The direction of a stroke started from a fea-
ture point is quantized to one of the eight directions, and
from the feature points and their directions, the character
pattern is decomposed with four kinds of lines, as shown in
Fig. 1. Then, defining a concatenate relation among them,
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