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Spectral-Temporal Classification Using
Vegetation Phenology

ROBERT M. HARALICK, SENIOR MEMBER, IEEE, CHRISTINE A. HLAVKA,
RYUZO YOKOYAMA, MEMBER, IEEE, AND S. M. CARLYLE

Abstract-In this paper we describe a multitemporal classification pro-
cedure for crops in Landsat scenes. The method involves the crea-
tion of crop signatures which characterize multispectral observations as
functions of phenological growth states. The phenological signature
models spectral reflectance explicitly as a function of crop maturity
rather than a function of date. This means that instead of stacking
spectral vectors of one observation on another, as is usually done for
multitemporal data, for each possible crop category a correspondence of
time to growth state is established which minimizes the smallest differ-
ence between the given multispectral multitemporal vector and the
category mean vector indexed by growth state. The results of applying
it to winter wheat show that the method is capable of discrimination
with about the same degree of accuracy as more traditional multitem-
poral classifiers. It shows some potential to label degree of maturity of
the crop without crop condition information in the training set.

I. INTRODUCTION
T HE USUAL MODEL for classification of remotely sensed

data relies on simple Gaussian statistical structure. For
example, to discriminate a subclass of corn from a subclass of
wheat we assume that data vectors (received energy as a func-
tion of band measured for a set of observation times) coming
from each corn subclass are distributed according to one
peaked (unimodal) probability distribution and data vectors
coming from each wheat subclass are distributed according to
another peaked probability distribution. This implicitly
assumes that 1) the phenological growth stage for each vegeta-
tion subclass is the same for all observations made at a single
time and 2) a multitemporal observation will have no missing
data. For example, see Fu, Landgrebe, and Phillips [3] or
papers in the Purdue Symposia on Machine Processing of
Remotely Sensed Data. In regard to 1), however, it is well
known that even in a geomorphologically homogeneous area,
the phenological growth states are not the same, due to differ-
ences in planting time, soil types, and weather conditions.
This results in probability distributions of crop reflectances
which have large variances and which are sometimes not uni-
modal. Evidence for this is empirical: in an experiment with
Landsat imagery taken on 5 dates in 1974 over the LACIE
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intensive test site in Morton County, KA, we determined that
the standard deviation of wheat on a single band and date was
2.88 and on a single band conditioned by growth state and
then averaged overall growth states was 1.42. This data adds
support to the assumption that the variation of phenological
growth states increases the variance of the usual probability
distribution (which is not conditioned by growth state) by
many times. These larger variances can cause low-classification
accuracy. In regard to 2), clouds are notorious creators of
missing data.
A solution to the problems of missing data and low-classifi-

cation accuracy can be achieved by relating spectral signature
to crop phenology. Wheeler, Misra, and Holmes [6] and
Misra and Wheeler [5] discuss some empirical relationships
between vegetation phenology and multispectral reflectance.
Kauth and Thomas [4] discuss one graphic approach to
relating spectral signatures to crop phenology.
In this paper we begin from a Bayesian point of view. We

assume that in most cases the probability of having a crop
category given the observed multitemporal multispectral
reflectances is zero except for one category. Therefore, Bayes-
ian classification is done by eliminating inconsistent category
choices. We work from the spectral reflectance for each cate-
gory to the possible phenological growth states the category
can have which are consistent with the observed spectral re-
flectance and crop calendar practices of the region. In this
manner we determine a quickly implementable table lookup
decision rule which uses crop phenology. This method explic-
itly assumes that it is meaningful for a category in a particular
growth state to have a signature. It assumes no change in
category over the period of observation.
To illustrate the meaning of this, consider a 2-band simple

first-order example. Suppose a 2-band spectral observation
(a1(tl), a2(t0)) is taken at time tl, using wavelength (X1, X2)-
This can be classified by determining for each category all
those phenological growth states of vegetation of category c
which can yield spectral return a1l(t1) at wavelength X1 and
spectral return 02 (t2) at wavelength X2. If there is not a
phenological growth stage of category c which yields spectral
returns acl(tl) and a2 (t2) at wavelengths X1 and X2, then
category c is not consistent with the observed spectral reflec-
tance and c is not a possible choice. If at a later observation
time t2, there is not a phenological growth stage of category
c, which is a more mature growth stage than the earlier deter-
mined one at time tl, and which yields spectral returns a1 (t2)
and a2(t2) at wavelengths X1 and X2, respectively, then cate-
gory c is not a possible choice. Note that spectral observations
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taken at a later calendar time are naturally constrained to be
associated with more mature phenological growth stages than
the phenological growth stages associated with earlier observa-
tion time.

II. BAYESIAN PERSPECTIVE

In our Bayesian framework for multitemporal and multi-
spectral classification of vegetation, we will assume that
spectral reflectance is a function of vegetation category, vege-
tation growth state, and calendar time. Effects of atmospheric
haze and geomorphologic soil and moisture variations and
other kinds of catastrophies are neglected.
Let G be the set of possible growth states. The growth

states will depend on maturity, biomass, percent cover, and
height of vegetation. We will assume that the growth stages of
G are ordered according to the natural maturing cycle which
the vegetation undergoes. Let {t1, * * *, tN} be the set of
observation times. The times in the set T are naturally ordered
by the relation earlier than or later than. Let R be the set of
possible reflectance values and B = f 1, 2, * * , M} be the set of
M wavelengths bands of spectral reflectance that can be ob-
served by the sensor.
Each spectral return vector x is a member of the set RM.

The mth component of x is the spectral return using the mth
wavelength band of B. Suppose x is a spectral reflectance
vector of vegetation category c in phenological growth stage
g at calendar time t. We denote the probability of observing
(x, c, g) at a given time t by P(x, c, g t).
For multitemporal, multispectral data, the probability func-

tion of spectral reflectance vectors xl, * * *, XN coming from a
small area ground patch of categories cl, * * *, CN in phenolog-
ical growth stages gl, - * *, gN at calendar times tl, * , tN,
respectively, is denoted by

P(X1, ..* XN3,C13, - ** CN,gl, ..* gNltl~ ..* tN)-

To determine a Bayes rule, the probability P(x1, *.* , XN,
C1, * * *, CN I tl, - * *, tN) must be computed. Now,

P(cl,** ,CN) XI, **',XN tl-*,'''tN)

=E ...l* *X*, XN,Cl,***CN,
g1 gN

* 91, * *,9N1(t1, XtN)

=: ...* E P(XI, * XNICI, * CNq
g1 gN

*

l1, *-,9N,tl, ,tN)

* Nei, *'* * CN, 91, ..

* *, N tl s* tN)-

We assume that the reflectance x depends only on crop type
c and growth stage g so that

P(X1, *. ,XN C1, *** CN, g1, * * N, t1,** tN)

N

= H P(xnIcn,gn).
n=1

Likewise, we assume that vegetative growth is a Markov
process depending on time and vegetation category alone so

that

P(gl, - -gNIC1)* , CN tl,'* , tN)

N

=fn P(9n ICn, Cn-i s tn, tn-0)
n=1

and

P(Cl, P(C1,C 9 1 ,C Nt5,* , tN)

p(gi, 9gN lC1, ..

* * CN, t15 *.*.* tN)

*P(Ci -- CN Itl, ,tN)

N
ngn Cnc Cn-i 5 gn-i tn-i tn)

n=1

* P(Cl,- *5CNItI,**',tN)-
Hence, the probability for observed categories and multi-
spectral reflectances is

P(cl, * CN5X15 -'*,XNIt15 * *, tN)

- Z P(x1 IC,,g0)P(g1 IC1, tl)

* Z P(x2IC2,g2)P(g2IC1,C2,g1,tl,t2)
g2

* ...*P(XN ICN,gN)
gN

P(gN I CN-1, CN, N-1, tN-1, tN)

*P(C15 ..* CNIt15 ..* tN)-

In theory, the formula just derived could be used to deter-
mine a Bayes rule in the usual way. In practice, there are too
many distributions to estimate and too many calculations to
do to calculate the required probabilities. However, because
the required probability has the form of a product, if any
probability in the product is zero, then the product must be
zero. And a Bayes rule would never make an assignment to a
category with a zero probability. This fact can be utilized to
make an efficient table lookup rule which uses vegetation
phenology just by storing in the table(s) those regions in
measurement space having nonzero probability.
The astute reader will undoubtedly wonder why such a deci-

sion scheme has any chance of working at all. Why can't any
spectral observation vector be possible for many growth
stages for most categories? The reason that this is not possible
is empirical. On all cases tested the probability distributions
which were conditioned by crop growth state had resulting
conditioned probability distributions with much smaller
variance than the usual unconditioned ones. The conditioned
ones are, therefore, much more peaked.

III. CLASSIFICATION USING PHENOLOGICAL
VEGETATION SIGNATURES AND PRIOR CONSTRAINTS

Given observation times t1, * - *, tN during which a small
area ground patch is observed, in the previous section we
derived a formula for the probability of a small area ground
patch having corresponding vegetation types cl, * * * , CN with
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respective spectral reflectance vectors xi, - * *, XN. In this
section we will show how this kind of representation for the
probability can be used to define vegetation signatures and a
classification method which can then be used to recognize
vegetation type and vegetation growth state in a structural
pattern recognition manner which is implementable as a
table lookup rule.
For simplicity of discussion we will assume that for the

observation times tl, - * *, tN, the small area ground patch
being observed does not change vegetation type and that
the vegetation itself matures in a normal manner. We will
also allow for the possible use of prior information which
would indicate that at given observation times only certain
growth states for the vegetation category are reasonable ones.
Such prior constraints can come from historical crop calendar
information, perhaps combined with a vegetation growth
model that uses local weather temperature and moisture
information.

If the vegetation category does not change over the period
of observation so that ci = c for i = 1, 2, - * *, N, then the
probability derived in the last section is

(*)P(X , * * *, XN, C itl, * ,tN)
N -

Il1 E P(xn Ic, gn)
n=1 -gn

*Pgn IC, gn-i, tn-1 X tn)] P(C)-

A necessary condition for a Bayes rule to assign the multi-
temporal, multispectral vectors xl, * * *, XN to category c is
for P(x1, - - *, XN, CItl, * - *, tN) to be nonzero. Since this
joint probability is a product, if the joint probability is non-
zero, then every term of the product must be greater than
zero. This means that for each n:

E P(xn Ic, gn) P(gn IC, gn-i g tn-1 g tn) > °-

gn

The product in each term of the above sum if nonzero iff
P(Xn Ic, gn) and P(gn Ic, gn-1, tn, tn_1) are both nonzero. The
term P(Xn Ic, gn) is nonzero iff the spectral reflectance vector
xn is possible for vegetation category c in growth state gn.
The term P(gn Ic, gn-1, tn-,, tn) is nonzero iff the crop calen-
dar practices of the region being observed allow vegetation of
category c to be in growth state gn at time tn and the rate of
growth of vegetation type c is such that growth state gn can
be reached from state gn-, in the time period from tn-l to tn.
The set S is called a signature for a category if it contains

those data vectors whose components are spectral reflectances
having nonzero probability for a growth state of a category. We
can formalize a definition of Kth-order signature in a way that
allows us to consider K-dimensional data vectors. LetM be the
number of wavelengths used. Let x = (°Xl, - * *, cam) E RM,
the set of possible observed reflectances, and denote by
(b,, ... , bK) E BK a selection of K out of theM bands. Let
B' C BK. The Kth-order signature is defined with respect to
only those K tuples of bands in B'. The Kth-order signatures
of a category c, S C G X (R X B)K, consists of all (2K + 1)

tuples ofgrowth stage, band, reflectance, band, * * *, reflectance,
and band whose conditional probability is greater than zero.

S ={(g, (rl, bl), - - ,(rK, bK)) GE G X (R X B)K

for some (b *, bK). B',
pbl) b(r, ,1K g, C) > 0}

where the pair (ri, bi) denotes reflectance value corresponding
band wavelength bi so that ri= Cabi
In an analogous way we can define a Kth-order observation

relation O C T X (R X B)K to consist of all those (2K + 1)
tuples of observation time, reflectance, band, , reflectance,
and band which have been measured.

8 = {(t, (rl, bl), ,(rK, bK) E TX (R X B)KI

for some (b1, * , bK) E B' and for some n,

t = tn, the observed reflectance were r1

on bands bi, for i = 1, 2,~* *, K}.

At each observation time at most one reflectance value is
measured for each band. (There may be none if there is
missing data). Note that the only K tuples of reflectance
bands used for observations are those K tuples in B'.
The set C of prior constraints relating growth states to

observation times and growth states at earlier times is

C = {(tl, gl, to, go) E (TX G)2 IP(g Itl, to,go) >0}.

To determine if an observation 8 requires us to reject a
vegetation category (that is, determine if (**) is nonzero)
we will determine if for every n 1) there exists a growth
state gn such that P(xn Ic, gn) is nonzero, and 2) if the gn
is such that P(gn Ic, gn-1, tn-i, tn) is nonzero.
Let H be a subset of T X G so that H associates observa-

tion times with growth states. We defme the relation compo-
sition (Haralick and Kartus, [14]) of 8 with H, written
8 *Hby

0 - H= {(g, (ri, bi), * ,(rK, bK) in G X (R X B)K
for some t E T, (t, (r1, bI), * (rK, bK E

and (t,g) EH}.

If E - H is not a subset of S, then 1) is not satisfied. If8 * H
is a subset of S and K = M and H is defimed everywhere on T,
then 1) is satisfied. If H X H is a subset of C and H is defined
everywhere on T, then 2) is satisfied.
Given 8 and S, let us find H so that 83 - H is a subset of

S and H X H is a subset of C in the case where

C = {(t1,gI,to go) E (T X G)2 I t1 > to implies g1 > go

and (tl, gl) and (to,go) in C'},

where C' {(g, t) IP(glt)> O}.

This is the case where growth states are constrained to be
chronologically ordered in time and consistent with observa-
tion times.
The table lookup implementation for fmdingH is as follows.

For each K tuple (b1, * - *, bK) of bands in B' there is a table
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T(bl, * * * , bK), which gives lists of possible growth states for
values of reflectances in bands bl, - - *, bK. These tables
together comprise the Kth-order signature S. There is a table
C' listing possible growth states for a given observation times.
The implementation works as follows.
Given e C T X (R X B)K, the existence of a function satis-

fying 1) and 2) is an easy matter to ascertain. Define F(bl,
* ,bK) by

F(b** ,bK)= {(t,g) E C'I
for some (rl, * * ,rK) in R<,

(t, (r1, b1), * * ,,(rK, bK)) C S}.
Then with the properties of e already mentioned, the proposi-
tion at the end of this section states that anyH C C' satisfying
E - H C S must be contained in

n F(bl,--,b)
(bI,- -, bK)EEB'

and furthermore, the composition

- fn F(b1,*,bK)
(bl,--* ,bK)E-B'

must be contained in S.
This implies that we can determine the existence of a func-

tion satisfying 1) and 2) by construction. First construct the
relation Win C' defined by

W= n F(bl, ** ,bK)-
(b,- * *, bK)EB'

Then construct a monotonic part H of V in W. If thisH asso-
ciates a growth state for each observation time then H is a
function satisfying 1) and 2).
For example, suppose t, is the first observation time. Using

the table C' we retrieve a set of possible growth states G1 and
we check growth states in G1 against observed reflectances until
we find the earliest growth state consistent with the observed
reflectances. We check a growth state in G1 as follows. For
each K tuple of bands in B' we enter the corresponding
observed reflectances at t, into the table T(bI, - - *, bK) and
get back a set of growth states. If each such set contains the
growth state we are considering, the growth state is consistent
with the observed reflectances. At time t2, we retrieve a set of
possible growth states and intersect it with the set of possible
growth states later than the earliest consistent growth state for
t, to get G2. Then find the earliest growth state in G2 which is
consistent with the observed reflectances at time t2,
and so on for each observation time.

Proposition
Let 0 C T X (R X B)K, S C G X (R X B)K,HC CC TX G,

and B' C BK. Defme F(bI,'* * , bK) as follows:

F(b 1, ,bK) = {(t, g) ECI

for some (rl, * ,rK)ERK,

(t, rl,b, -* ,rK, bK) E 0

and (g,rl,b 1,@ ,K,bK)-S}.

Suppose we have one set of measurements per observation for
one small area of ground, so that for each tC Tand (b1, - --,
bK) CB', there exists exactly one (si,*I* , SK) CRK such that
(t, bj, s1, * * * bK, SK) C 0. Then

H C n F(bi, * ,bK)
(bj,1 ,bK)GB'

if and only if 0 *H CS.
Proof: Suppose

HC n F(bl, - ,bK).
(bi, ,bK) EB'

Let (g, r1, 1,* , rK, f6K) C 0 * H. Then there exists a t E T
such that (t, rl,41, -- *, rK, 3K) C 0 and (t, g) E H. Now
(t, r1,(1, * * ,,rK, OK) E 0 implies (11, * O,LK) E B'. Then
(t,g) CH implies

(t,g)E n F(b5, * *,bK)
(bj,--,bK)EB'

thus (t, g) C F(01, ---*, K)
Since (t, g) C F(131, O, ,BK), there exists some (sl, **,

SK) e RA such that (t, sl, j31, sK, SK, (K) E 0 and (g,sa,
013 * -*, SK, OK) C S. But (t, Sl,41, * * *, SK, OK) E and
(t, rl, ,B1, * * *, rK, flK) EC 0 implies si = ri, i = 1, - - *, K. So we
must have (g, r, ,31,- - -, rK, .K) E S and 0 HC S.
Suppose0 HCS. Let (t,g)EHC. Let(3l,-.,13K) EB'.

Since there is one set of measurements for t, there exists
(S1, * **, SK) E RK so that (t, Si, i3o, - * *,SK, OK) E 0 Then
(t,)s,1, *, SK, OK) E0 and (t, g)E H implies (g, si, 1,*,
sK,OK)C0 *H5CS. Now (t,g) E=C, (t, Sl 5 0, 5SK K) E=-
and (g, Sl, --- SK,(K) E S imply (t, g)E F(31, *- , )-
Then

HC n F(j31, * * -
(pl,- - -,fK)EB'

IV. TABLE LOOKUP RULE IMPLEMENTATION
(FIRST-ORDER AND No PRIOR CONSTRAINTS)

In this section we specialize the implementation discussed in
Section III for the first-order signature case with no prior con-
straints. A sufficient condition for 2gn P((X. Ic. , g,)pt, (g. Ic.)
to be zero is for p(xn Ic, gn) = 0 for all values of g. Let x
be a K-dimensional spectral reflectance observation. A suffi-
cient condition for p(x Ic, g) = 0 for all growth values of g is
for there to be no phenological growth stage g which gives a
positive marginal conditional probability for each component
a of the observed reflectance x. Let P1 .- -K (a1, --- aK IC, g)
be the probability of observing the K spectral band reflectance
(ar1, * *. , aK) from a vegetation of type c in growth state g.
Let Pk (ak Ic, g) be the marginal probability of observing spec-
tral reflectance ak from band k given vegetation type c and
growth stage g. Then a sufficient condition for P1 - - . K (a1, --- ,
atK Ic, g,) = 0 is for Pk(a!k Ic, g) = 0 for some spectral band k.
If there is no phenological growth state which gives a positive
marginal conditional probability for each component of the
observed spectral reflectance (al, *- *, aK), then

K

n {glPk(OkIcl, )>O} = k.
k=l
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This leads to the following criteria for eliminating category
assignments which a Bayes rule would also eliminate.
For a given e>,O, define the table by R (k,oa c) = {glPk (aoIc,

g) > e}. Suppose multitemporal, multispectral returns of
(Ca11, . , a0K), (0a21, . , i2K), , (OaNI, , cNK) are

observed for calendar times tl, , tN. Then if
K

n R(k,afnk,c)1=Ab forsome n
k=1

a Bayes rule could not make the assignment to category c. If

K

n R(k, Otnk,C)I , forall n
k=1

then category c has not been eliminated and could be the cate-
gory assigned by the Bayes rule. If

K

n R(k, lnk,C*) #, for all n
k=1

and for every
K

cI=c*, n R(k, afnk,C)=, for some n
k=1

then a Bayes rule must make the assignment to the unique
category c*.

20 V

10

20

BAND
CATEGORY

20 _ BAND 2
CATEGORY

10!-

lO _

oL0
20

20

20O 1 0 20

BAND
CATEGORY 2

10 20

BAND 2
CATEGORY 2

R x2)
10 Kl,(t,20

0 10 20 0 10 20

Fig. 1. Graphic illustration of the tables R (b, ca, c). A square blacked
in for coordinates (g, aB) means that for the corresponding of, the
phenological growth stage geR (b, ca, c) if and only if Pb (a Ig, c) >
e > 0 for some specified value of G.

This means that spectral observation (3, 6) is possible for
category 1 only during phenological growth stages 13 and 14.
By the tables

V. EXAMPLES
An example easily illustrates the first-order table lookup idea

graphically. Fig. 1 shows graphs for the tables R (k, a, c). A
square blacked in for coordinate (g, ca) means that for the
corresponding spectral value a, the phenological growth stage g
belongs to the table R. Suppose that there are two spectral
wavelengths band 1 and band 2, two categories, and two times
at which observations are taken. Let the spectral observation
for time 1 be (9, 10) and the spectral observation for time 2
be (3, 6). Examining the tables for category 1, we have

R(1,9,1)= {3,5,6,7}

R(2, 10, 1) = {0, 1, 2, 3, 17, 18, 19}

R(1, 9, 1) nfR(2, 10,1) = {3}.

This means that the only time the observation (9, 10) could
occur from category 1 is during phenological growth stage 3.
Examining the tables for category 2, we have

R(I, 9, 2) = {5, 6,7, 13, 14}

R(2,10,2) = {0, 1,7,8, 18,19}

R(1, 9,2) f)R(2, 10,7) = {7}.
This means that the only time the observation (9, 10) could
occur from category 2 is during phenological growth stage 7.
So after the first spectral observation both categories are still
possible.
Now consider the second observation (3, 6). By the tables

R(1, 3, 1) = {13, 14}

R(2, 6, 1) = {6, 7, 8, 9, 13, 14}

R(1, 3, 1) nfR(2, 6, 1) = {13, 14}.

R(1, 3, 2)= {0, 1}

R(2,6,2)= {11, 12}

R(1 , 3, 2) nR(2, 6, 2) = /.

This means that there is no phenological growth stage for cate-
gory 2 which yields the spectral observation (3, 6). The con-
clusion, therefore, is that the small area ground patch having
early spectral return of (9, 10) and later spectral return of
(3, 6) must be an area of vegetation category 1 observed
during its 3 and 13 or 14 phenological growth stages.

If instead of the intersection R (1, 3, 2) nR (2, 6, 2) = k, we
had R(1, 3, 2) n R(2, 6, 2) = {4, 6}, category 2 would be
eliminated because the spectral reflectance it has at a late
calendar time matches a possible spectral reflectance for
category 2 only at early phenological growth states 4 or 6,
states before growth state 7. Later calendar times must
correspond to later phenological growth states.

VI. EMPIRICAL DETERMINATION OF
CATEGORY SIGNATURES

In this section we suggest an estimation procedure to deter-
mine a category signature from a training data set. The pro-
cedure is iterative consisting of a step of dynamic program-
ming minimization followed by averaging very much in the
spirit of the ISODATA clustering technique [1].
Let x(i, j, k) be the observed spectral reflectance from the

ith spectral band, jth small area ground patch (or unit), taken
at the kth observation time. The set {x (i, j, k) Ii = 1, * ,I;
j= 1, - - *, J; k = 1, - ,K} is the training set for the category.
Let u be current mean spectral signature for the category of
interest. u (n; i) is the mean ith spectral band reflectance of
a unit in the nth growth state for the category. The iterative
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procedure uses the training set and current mean and com-

putes a new mean signature which is more representative of
the data in the training set. The initial mean signature can be
just one of the training vectors whose time components have
been simply interpolated to growth states.
Before describing the procedure in detail, consider the mean-

ing of 6 = Ix(i, j, k) - u(n; i)I. If the kth observation time of
the jth unit corresponded to growth state n, then 6 is the abso-
lute value of the difference between the observed spectral
reflectance of the ith band and its mean. Define

a(k, n;j) = max Ix(i,j, k) - u(n; i)I.
i

The number a(k, n; j) is the maximum difference taken over

all bands for the jth unit when the kth observation time corre-

sponds to the nth growth state. In order to relate observation
times to growth states in the best possible way, we must deter-
mine a strictly monotonic mapping m which minimizes

K

£ a(k,m j, k);j).
k=1

Note that the sum of differences is taken over all observation
times. We want the mapping m to be monotonic so that later
observation times are forced to be associated with later or

more mature growth states. For each unit j, the mapping
m(j, k) can be determined by a dynamic programming opti-
mization procedure [2].
Once the best mapping has been determined for each unit a

new mean signature can be determined by averaging. Define
the set An as the set of all unit-observation time pairs which
are mapped by m to growth state n:

An = {(j, k)Im(j, k) = n}.

Define the updated mean spectral signature u' by

E r(i,j,k)
t(j,k)GAn

u'(n, i) = #A

When the new updated spectral signature is different from the
old spectral signature by an insignificant amount, the iterative
procedure terminates. The final u can be considered as the
first-order signature skeleton of the category. This signature
skeleton can be broadened to construct the signature. (g, ai)
is included in the signature if ai - u (g1 i) < w, where w is the
chosen signature width.
Once the first- order signature skeleton of a category has

been defined, Kth-order signature skeleton can be defmed in
the following natural way. Let B' C BK be a set ofK tuples of
bands over which the Kth-order signature is to be defined.
Let A be the set of small area ground patches over which
observations for the training data are made and let each
observation consist of a reflectance value r(t, a, b) which is a

function of time t, small area ground patch a, and wavelength
band b. The dynamic programming method begins with an

observation r = r(t, a, b) and first-order signature skeleton
u = u (g, b) and produces the best mapping m = m(a, t) which
associates each time t and small area ground patch a with the

growth state m(a, t). The Kth-order signature skeleton S is
just the set of reflectance values produced by the translation
m makes of time to growth states for the observations in the
training data.

S= {(g, rl, bl, ,rk, bk)GGX(RXB

for some observation time t,

small area ground patch a, and K tuple of bands

(b ,.*., bK) E B', there exists an observation

r = r(t, a, b) in the training data with associated

mapping m = m (a, t) satisfying

1) g=m(a, t), 2) rk = r(t, a, bk),k= 1, * K}.

VII. IDENTIFICATION OF WHEAT IN MORTON
COUNTY USING PHENOLOGICAL
DISCRIMINATION METHODS

An extensive investigation of the use of phenological discrim-
ination was carried out using Morton County Kansas LANDSAT
from 5 observation dates in 1973-1974: October 23, 1973,
May 9, 1974, May 27, 1974, June 14, 1974, and July 2, 1974.
The image was 200 rows by 200 columns. The phenological
discrimination procedure involves a number of choices for the
user. The procedure involves two steps: 1) creation of the
signature mean and 2) identification using the mean signature
created in step 1). In this section we discuss the effects of the
choices on the quality of classification as well as the validity of
our use of the dynamic programming method for creation of
mean signature.

A. A Discussion ofResults
Consider the two steps in the discrimination procedure. In

the first step the user chooses an input sample to train the
signature and the number of growth states to be characterized
in the signature. In the identification step the user chooses the
"signature width" and which MSS band/observation date
combinations to use. The choice of "signature width" is
critical, especially when one is identifying only one crop class.
The larger the "signature width" the larger the number of
pixels that will be identified as in the crop class. The percent
correct identification will increase with "width but at the cost
of increased false identification. In the identiflcation step the
user also has the option of specifying a range of allowed
growth states for each observation time. A good choice of
these growth state restrictions effectively cuts down on the
number of false classifications, without much reduction in the
rate of correct classification.
Sample adequacy was investigated by comparing the discrim-

ination results with no growth state restrictions using a ran-
dom sample of 35 wheat field averages and several random
samples of individual pixels. It seems that a random training
sample of around 100 pixels (about 2.5 percent of the ground
truth wheat) is of adequate size as discrimination was not
significantly better with a sample of twice that size or with the
field average samples. Our test set always consisted of the
remaining 97.5 percent of our ground truths.
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We have performed 4 classifications of wheat with signatures
having 5, 10, 20, and 36 growth states, respectively. This is a
range of 1 to 7 growth states per observation time, since we
have 5 observations of the Morton County test site. The
general shape of the mean signatures with differing numbers of
growth states is the same. Our best discrimination was with a
36 growth state signature with a width of 3.25. Using this
signature and all observation dates, the results were 83-percent
correct identification of ground truth wheat and 4-percent
false identification. With a 5 growth state signature and a
width of 6.0, the corresponding figures were 79 percent and
13 percent. The improved discrimination shows the usefulness
of modeling several growth states per observation time.
The number of MSS bands needed for accurate identification

was investigated. Most of our testing of the discrimination
procedure has been done using MSS bands 4, 5, and 6. How-
ever, it has been found that MSS bands 4 and 5 are sufficient
for good wheat identification. Adding MSS band 7 reduced
correct classifications significantly. Before testing it was
thought that perhaps MSS bands 5 and 7 would be very useful
for phenological discrimination of wheat, because they have
often been most useful in other agricultural classification tech-
niques. However, the identification of wheat with MSS bands
5 and 7 turned out not to be as good as with MSS bands 4
and 5.
The possibility of accurate wheat identification with a single

channel of information per observation time was investigated.
Since, the phenological method of discrimination is a growth
state identification process. It seemed likely that a single
measure, indicating greenness of the pixel at the observation
times, would be sufficient for identification of the crop. The
four MSS band values for each observation data were trans-
formed into Kauth greenness (Kauth and Thomas, [4]), a
linear combination of the band values scaled to fit in the 0-31
integer value range.
KG = 0.514(-0.290 MSS4 - 0.562 MSS5

+ 0.600 MSS6 + 0.491 MSS7) + 13.6.
Wheat identification with this measure was not as good as
identification with two or three MSS bands.
1) Prior Growth State Restrictions: Good wheat identifica-

tion depends on the proper choice of growth state restric-
tions, especially if a subset of observation times are used. A
description of a run using only two observation times will
illustrate this. In this run growth states were restricted to
states 1-5 for observation time 1 and states 10-12 for observa-
tion time 2. The narrow choice of growth states allowed for
the second observation time, May 9, is important because
winter wheat is distinguished from other crop types principally
because it is green on the May 9 date. Growth states 10-12
in the signature had low gray tone values in MSS band 5,
which suggests by the Kauth greenness measure that they
correspond to green states. Given the preceding growth state
restrictions, 81 percent of the ground truth wheat was cor-
rectly identified and 5 percent of the nonwheat pixels were
falsely labeled wheat.
The best choice of observation times was October 23 and

May 9 for first-order discrimination of wheat. The best single

observation time turned out to be May 9, as expected. The
October 23 observation turned out to be the best addition
to the May 9 observation. A third observation improved
results significantly only when wheat was broken into two
categories-quickly maturing wheat and slowly maturing
wheat. The same 36 growth state signature was used to
identify both subcategories of wheat, but with two sets of
growth state restrictions. This discrimination resulted in a
total of 83 percent of the wheat being identified, with only
4-percent false classification.

B. Testing the Validity ofDynamic Programming in
Mean Signature Generation

Recall that different observation times may map into the
same growth state in the construction of the mean signature.
In order to test whether it is good to allow observations from
different times to be used in the construction of growth state,
an alternate procedure was tested. Let us say we have Go as
the number of growth states per observation time. In each
iteration we define a mapping m: (j, t) -* G which minimizes

T
E max Ix(i,j, t) - u(m(j, t);i)I
t-l i

for each sample j with the additional restriction that the
pair (j, t) must map into one of the growth states in the set
{(t - I) Go + 1, (t - 1)Go + 2, * , Go t}. Because these sets
are not overlapping, the method for finding the mapping turns
out to be a simple minimization.
A few phenological discrimination runs using five observa-

tion dates were made using mean signatures generated by
simple minimization. Discrimination was not quite as good as
with similar runs using dynamic programming. The average
standard deviation by band and growth state for the samples
mapped into 20 growth states was higher with this simple
minimization. This demonstrates the validity of combining
observations with different dates in characterizing a signature
growth state.

C. Comparison ofPhenological Discrimination with Other
Procedures
We identified wheat using Bayes table lookup and unsuper-

vised clustering procedures developed at the University of
Kansas Remote Sensing Laboratory and linear discrimination
as implemented in the BMD package (Dixon, 1975). In our
best phenological discrimination runs, using these procedures
we achieved about 80-percent correct identification of wheat
with about 5-percent false identification. The phenological
method identified the wheat fields much better than un-
supervised clustering, which had trouble separating wheat
fields from summer fallow, probably because abandoned
wheat fields were called summer fallow.

VIII. CONCLUSION
The growth state identification made in the discrimination

process were the earliest growth states consistent with 1) the
multispectral observations, 2) allowed growth states for
observation date, and 3) the requirement that growth states be
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chronologically ordered. In order to use the growth state
identification for information on crop maturity, it might be
better to identify "best" consistent rather than earliest con-
sistent growth states. Our identification may also be improved
if our signature width varies with band and growth state. This
idea led to limited testing of the use of "second-order" growth
state signatures. These signatures account for covariance of
spectral bands, as well as allowing signature width to vary with
band and growth state. It is too early to tell if the second-
order signatures will lead to improved classification or give
better information about crop maturity.
The phenological growth state procedure seems to be able to

discriminate wheat about as well as some more standard pro-
cedures and label degree of maturity as well. Discrimination
is comparable to discriminant analysis on Kansas wheat. The
phenological method also identified corn well on a small site
in Iowa.
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