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rithm-structured architecture, which allows for efficient processing
(when program and data are mapped properly into the architecture).
To the extent that this is true, it may be possible to make MIMD
networks and mixed SIMD-MIMD systems similarly efficient.

At least two other architectures should be examined, and more
detailed, deeper comparisons devised to compare these radically
different serial, parallel and parallel-serial systems. The two archi-
tectures are pipelines (e.g., the Cytocomputer [12] and systolic arrays
[71).

A pipeline tends to use processors specialized for a particular type
of problem (e.g., a window operation for image processing, float-
ing-point arithmetic for numerical matrices). Hence, the processor
can be relatively simple, with a relatively high percent of active gates.
Memory traditionally is even smaller than in the arrays, since inter-
mediate results are immediately pumped into the next processor in
the pipe. But each processor must have its own controller, albeit a
relatively simple one.

Systolic arrays are, basically, two-dimensional pipelines that have
very simple special-purpose processors, configured into a system that
will execute a particular algorithm. Therefore, the *processor” can
be quite small, e.g., 25, 10, or even 5 gates, and the memory tailored
to the absolute minimum needed for that algorithm. The program
instruction and controller functions are taken over by hard-wiring.

Both pipelines and systolic arrays are more specialized, or even
special-purpose. They handle a much smaller set of programs, but
they may be more efficient for those they can handle. A set of spe-
cial-purpose systolic arrays reminds one of a CPU’s armory of spe-
cial-purpose processors on a common bus. But now data might be
pumped through sequences of these processors, appropriately con-
figured so that many, rather than one, will be busy at each cycle.

Here we $ee specific examples of the general phenomenon of the
price that must be paid for generality.

Systolic arrays are built exactly to achieve isomorphic mappings
of hardware to algorithm.

Serial computers pay a heavy price in random memory access for
a single processor, which allows isomorphic mapping via software.
Serial computers have a very low percent of active resources because
of the serial “Von Neumann bottleneck” [1].

Arrays and networks can be given a more or less general topology,
and sometimes good algorithms map well, or even perfectly, but
sometimes not.

Networks of traditional processors have all the inefficiencies of
serial computers, plus many more of their own, because of the often
excessively high overheads from message-passing and poor syn-
chronization.

Networks might be made more efficient by specializing both pro-
cessors and topology to (sets of) problems, in the spirit of systolic
arrays.

Limited reconfiguring might help effect this (at the nonnegligible
cost, which must be taken into account, of reconfiguring switches).

SUMMARY AND CONCLUSIONS

Several radically different types of multicomputer array and net-
work systems can now be built. Each has its advantages and its dis-
advantages.

The very large SIMD arrays of simple 1-bit processors, each with
a small local memory, appear to use the highest percent of active re-
sources and therefore, potentially, to be able to give the greatest, and
fastest, throughput.

But arrays tend to be specialized, at least today. Judicious com-
binations of arrays (as in pyramids or other stacks of arrays) and of
arrays with networks, and also limited reconfiguring, might serve well
to increase generality while maintaining high utilization.
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Design and Architectural Implications of a Spatial Information
System

PRASHANT D. VAIDYA, LINDA G. SHAPIRO,
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Abstract—Image analysis, at the higher levels, works with extracted regions
and line segments and their properties, not with the original raster data. Thus,
a spatial information system must be able to store points, lines, and areas as
well as their properties and interrelationships. In a previous paper (Shapiro and
Haralick [17]), we proposed for this purpose an entity-oriented relational da-
tabase system. In this paper, we describe our first experimental spatial infor-
mation system which employs these concepts to store and retrieve watershed
data for a portion of the state of Virginia. We describe the logical and physical
design of the system and discuss the architectural implications.

Index Terms—Geographic information system, relational database system,
spatial information system.

I. INTRODUCTION

A digital image is a raster data structure. It consists of one or more
bands of spectral and/or symbolic information, each band consisting
of a rectangular matrix of elements called pixels. For example, a color
image of an outdoor scene might be represented by three spectral
bands: red, green, and blue. A land-use map of a nation might be
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represented by a single symbolic band where the value of each pixel
defines the land use in that part of the map. The raster representation
allows a choice of resolution, from fine to coarse, and retains the
spatial relationships among the pixels of the image or map. Certain
operations such as smoothing or sharpening and the so-called
“neighborhood operations” can be performed very efficiently on the
raster structure. However, these operations are generally of use only
in the early low-level phases of image or scene analysis. The mid- and
higher level intelligent processes require more concise and meaningful
structures than pixels. At this level, the primitives are points, regions,
and lines. These are the same primitives that are required in geo-
graphic or spatial information systems.

Once an image has been transformed from pixel level to edge-
region level, the information must be organized for efficient access.
A spatial information system provides the hardware and software
support necessary for storage and retrieval of spatial data. In a pre-
vious paper (Shapiro and Haralick [17]), we suggested a re-
lational approach to designing a spatial information system. Our
approach has the advantage of allowing either vector or raster data
or both in a unified framework suitable for high-level query. In this
paper, we describe the implementation of this approach in our first
experimental database system for storage and retrieval of watershed
data. In Section II, we review the definition of the general spatial data
structure that is the building block of the system, and we give the
logical design of the experimental database. In Section III, we de-
scribe the physical design of the system. In Section IV, we describe
the query language interpreter that is used to communicate interac-
tively with the system, and we define the low-level and high-level
operations required to answer queries. In Section V, we discuss the
architectural implications of the system. In the remainder of this
section, we give a brief review of related work on representations used
by spatial information systems in both geographic and computer vi-
sion applications.

A. Geographic Systems

Of the geographic spatial information systems, the Canadian
Geographic Information System (CGIS) [18], [19] is one of the
earlier and successful ones. Two types of files are used: the image data
set which contains line segments defining the polygons that represent
regions, and the descriptive data set which contains the user-assigned
identifiers, centroid, and area for each polygon. In the image data set,
a line segment points to its left and right polygons and to the next two
line segments that continue bounding the polygons on the left and on
the right.

In the late 1960’s, the U.S. Bureau of the Census developed the
Dual Independent Map Encoding (DIME) [20] concept to digitize
and edit city street maps. In this system, the basic element is a line
segment. Each line segment is defined by two end nodes plus pointers
to the polygons on the right and left sides of the segment. The POL-
YVRT system [12] is similar to the DIME system described above
except that the polygon is established as a separate entity linked to
the chains which compose it. This allows easy maintenance and ma-
nipulation of the chains. -

GEOGRAF is a system proposed by Peucher and Chrisman [16]
to handle both planar data and surface data. To handle the surface
data, the system has a two-part database including both a triangle
data structure and a set of points that lie along lines of high infor-
mation content.

The advantages and drawbacks of the grid-formatted data struc-
ture are almost perfectly complementary to those of the topological
or polygonal data structure. With this in mind, Weber [22] has pro-
posed a combination of locational data structure and grid-formatted
data structure. The operations on this data structure are defined in
a hierarchical manner, so that the transition from grid-formatted to
linear (polygonal) representation is to be considered merely as the
last step in a process of successive refinements defined by a nesting
of squares of different sizes. Weber claims that his locational data
structure is well suited for the purpose of automated cartography’

IBM’s Geo-Data Analysis and Display System (GADS) [2] is the
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first documented geographic database system which used the ap-
proach of the relational database (Codd [6]). This system has data-
base management facilities and supports database integrity and
different user views of a pictorial database. GADS extracts data from
large databases to form a small set of polygonal features in a relational
data structure.

The GEO-QUEL system developed at the University of California,
Berkeley, is another system which uses the relational database ap-
proach to manipulate geographic data [7]. The basic entity in
GEO-QUEL is a map, which is a collection of points, lines, line groups
(polygons), and zones (collections of polygons). A map is stored as
a 9-ary relation. A query language QUEL is used to intérrogate the
system. Modeleski [15] proposed adding relational attributes to
GEO-QUEL to permit topological manipulation of geographic files.
Hagan [8] developed and analyzed a logical data model for carto-
graphic features built from nodes, segments, and polygons using the
owner-member concepts of the CODASYL specification.

B. Computer Vision Systems

Chang et al. [5] designed and implemented a pictorial database
system for storage and retrieval of tabular, graphical, and image data.
Logical pictures are extracted from images and stored in relational
form, while physical images are retained in a separate image store.
A generalized zooming technique [4] was implemented to allow for
flexible hierarchic information retrieval. Chang and Fu [3] designed
a relational pictorial database system where access is through a
high-level relational query language called “Query-by-Pictorial-
Example.”

Hanson and Riseman [9] have designed and partially implemented
an integrated computer vision system (called VISIONS) for inter-
preting natural scenes. Although this system includes a variety of
elements such as three-dimensional models, hierarchic process control,
and low-level image processing that are not present in the geographic
systems, it shares with them the intermediate level representation
consisting of lines, regions, and points. At this level, they use a par-
titioned-directed graph structure to represent the relationships among
regions, their line segments, and their endpoints. Levine and Shaheen
[13] use relational databases to store raw data, current interpreta-
tions, and detailed scene models in a modular computer vision
system.

Of course, there are too many computer vision systems being de-
veloped to mention them all. However, they all have in common a need
for storage and retrieval of the mid- and high-level information ex-
tracted from the image. (See Marr [14] and Barrow and Tenenbaum
[1] for important discussions of midlevel information.) The structure
that we have proposed represents a unified approach to storing such
information in a universal structure.

II. LOGICAL DESIGN

A. The Spatial Data Structure

In this section, we define a general spatial data structure that can
be used to represent any spatial information or relational data in
raster, vector, or tabular format.

An atom is a unit of data that will not be further broken down.
Integers and character strings are common examples of atoms. An
attribute-value table A/V is a set of pairs 4/V = {(a, v)|a is an at-
tribute and v is the value associated with attribute a}. Both a and v
may be atoms or more complex structures. For example, in an at-
tribute-value table associated with a structure representing a person,
the attribute AGE would have a numeric value and the attribute
MOTHER might have as its value a structure representing another
person.

A spatial data structure D is a set D = {R1,- - -, RK]} of relations.
Each relation Rk has a dimension Nk and a sequence of domain sets
S@,k),---,S(Vk, k). Thatis, foreachk =1,---, K, Rk = S(1,
k)X --- X S(Nk, k). The elements of the domain sets may be atoms
or spatial data structures. Since the spatial data structure is defined
in terms of relations whose elements may theémselves be spatial data
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structures, we call it a recursive structure. This indicates that: 1) the
spatial data structure is defined with a recursive definition, 2) it will
often be possible to describe operations on the structure by simple
recursive algorithms, and 3) it can naturally represent both relational
and hierarchical dependencies.

A spatial data structure represents a spatial entity. The entity might
be as simple as a point or as complex as a whole map. An entity has
global properties, component parts, and related spatial entities. Each
spatial data structure has one distinguished binary relation containing
the global properties of the entity that the structure represents. The
distinguished relation is an attribute-value table and will generally
be referred to as the 4/V relation. When a spatial entity is made up
of parts, we may need to know how the parts are organized. Or we
may wish to store a list of other spatial entities that are in a particular
relation to the one we are describing. Such a list is just a unary rela-
tion, and the interrelationships among the parts are n-ary rela-
tions. ‘

The above approach to database design is called an entity-oriented
approach. Most commercially available relational database systems
are relation-oriented rather than entity-oriented. In order to inves-
tigate the entity-oriented approach, we implemented our own data-
base system.

B. The Logical Database Structure

Our first use of the system is with geographic data. The data! used
in this system are of two types: stream data and road data. The stream
data consist of watershed areas, water streams, and labels, while the
road data consist of a road network.

A digitized map? of the stream data, along with a description of
symbols used in the map to represent various entities, is shown in Fig.
1. The stream data come from the region labeled V3 in Fig. 1. Region
N3 is a watershed area. The road data used are a subset of the road
data for the entire Appalachia quadrangle which includes region N3.
The road network is similar to the stream network. There are two
types of roads: primary and secondary. The roads may intersect with
roads of the same type or of a different type, but unlike streams, the
roads may cross the boundaries of regions. )

From the description of the data, it can be observed that the basic
geographic entities used in the system are regions, water streams,
roads, and labels. A region can be represented by a polygon which has
a closed boundary. A stream or a road can be represented by a chain
which is comprised of an ordered list of points. A label can be repre-
sented by a point which has coordinates. Thus, we have the following
high-level spatial data structure types: 1) REGION, 2) WATER
STREAMS, 3) STREAM, 4) ROAD NETWORK, 5) ROAD, and 6)
LABEL. The low-level spatial data structure types are: 1) POLYGON
and 2) CHAIN. A POINT is implemented as an atom.

Fig. 2 illustrates the prototypes REGION, WATER STREAMS,
STREAM, LABEL, POLYGON, and CHAIN. Each spatial data
structure of type REGION consists of four relations: 1) the 4/V rela-
tion, A/V REGION; 2) SUBREGION ADJACENCY; 3) STREAM
NETWORK; and 4) LABELS. The A4/V relation has four attributes:
NAME, whose value is a character string representing the name of
the region; AREA, whose value is a number representing the area of
the region; BOUNDARY, whose value is a spatial data structure of type
POLYGON (to be described later), representing the boundary of the
region; and PARENT, whose value is a spatial data structure which
itself is of type REGION, representing.the next immediate region
which encloses the region under consideration.

A region may have to be divided into subregions, in which case the
subregions are stored in a SUBREGION ADJACENCY relation. This
is a binary relation associating each subregion with every other sub-
region that neighbors it. Both of the components of each pair in the

! These data were obtained from the Department of Fisheries and Wildlife
Science, Virginia Tech, Blacksburg, VA, courtesy of Dr. Robert Giles.

2 This map is a subset of the Watershed Area Map for the Appalachia
Quadrangle, located in Wise County, VA. For more information, refer to the
U.S.G.S. map number N3652.5-W8245/7.5.
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relation are spatial data structures of type REGION. The relations of
type STREAM NETWORK are unary relations whose components are
spatial data structures of type WATER STREAMS. The relations of
type LABELS are unary relations whose components are spatial data
structures of type LABEL. There are two types of streams: ephemerals
and perrinials. WATER STREAMS therefore consists of two relations:
EPHEMERALS and PERRINIALS. Both EPHEMERALS and PERRI-
NIALS are unary relations whose component are spatial data
structures of type STREAM.

Each spatial data structure of type STREAM consists of two rela-
tions: an A/V relation called A/V STREAM and a binary relation
INTERSECTING STREAMS. The 4/V STREAM relation has seven
attributes: NAME, TYPE, and ORDER, whose values are simple
character strings representing the name of the stream, its type, and
its order, respectively; LENGTH, # INTERSECTING EPHEMERALS,
and # INTERSECTING PERRINIALS, whose values are numbers
representing the length of the stream, the number of ephemerals in-
tersecting, and the number of perrinials intersecting, respectively;
and COURSE, whose value is a spatial data structure of type CHAIN
representing the course of the stream. The relations of type INTER-
SECTING STREAMS are binary relations whose components represent
the point of intersection, which is an atomic POINT, and the stream
intersecting at that point, which is a spatial data structure of type
STREAM.

Each spatial data structure of type LABEL consists of only one
relation, an A/V relation called 4/V LABEL. The A/V relation in this
case has two attributes: NAME, whose value is a character string
representing the name of the label, and LOCATION, whose value is
an atomic POINT representing the location of the label. The labels
in our experimental system would be replaced by other point data such
as cities in a real system.

The low-level spatial data structure types include the POLYGON
and CHAIN and also the atom POINT. We represent the boundary of
any region by a spatial data structure of type POLYGON. A polygon
is comprised of chains. Each spatial data structure of type POLYGON
has a unary relation called CHAINS, whose components are spatial
data structures of type CHAIN.

We represent the course of any water stream or road by a spatial
data structure which is of type CHAIN. Each spatial data structure
of type CHAIN is comprised of two relations: an 4/V relation called
A/V CHAIN and a relation POINTS. A chain has a region to its left
and a region to its right. The A/V relation therefore has two attributes:
LEFT and RIGHT. The values of both of these attributes are spatial
data structures of type REGION.

The relation POINTS is an ordered list (a binary relation) of points
that define the chain. A POINT is an atom, a data element at the in-
nermost level which cannot be further broken down. A POINT consists
of an ordered pair (X, Y) where X represents the latitude or the X
coordinate and Y represents the longitude or the Y coordinate.

III. PHYSICAL DESIGN

The physical design consists of three parts: the data structures used
in internal memory, the file structures used in external storage, and
the memory management system that interfaces between the two.
We will briefly describe the internal and external structures. The
memory management system uses the concept of segmentation and
is described in [21]. :

A. Internal Memory Data Structures

In internal memory, spatial data structures and relations are linked
structures implemented in Pascal. Each spatial data structure (SDS)
and each relation has a unique name. An SDS can be accessed by
name through the SDS Dictionary, and a relation through the REL
Dictionary. The dictionaries (temporarily implemented as ordered
lists in Version 1) will be implemented as height-balanced search trees
[10] in our next version. Looking up an SDS or relation name in the
appropriate dictionary returns a pointer to the header of the struc-
ture. )

There are two types of relations: TREE relations and LIST relations.
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Fig. 1. Digitized map of the stream data used in our system.

For a TREE structure, the tree is N levels deep, corresponding to the
dimension of the relation. The first component of the V. -tuple is stored
on the first or the highest level. The second component is on the second
level, and so on. The tree is structured so that all the N. -tuples with
the same first component share the same TREE__CELL on the first
level. All the N-tuples with the same first two components share the
same TREE__CELL’s on the first two levels, and so forth. Thus, the
tree is space saving for relations whose tuples have many identical
components. To facilitate searching the tree, and hence the relation,
the N-tuples are stored in lexigraphical order. :

The order of the N-tuples stored in a LIST relation is user-defined,
and N-tuples may be added at the beginning of the list, at the end of
the list, or at a user-specified position in the list. Entities such as
polygons whose points must remain in a fixed predefined order are
stored in this form.

Fig. 3 illustrates the physical structure of the spatial data structure
for a region and its A/V relation in our experimental system. The 4/V
relation is tree-structured.

B. External Storage Structures

The physical structures defined in the preceding section are suitable
for internal manipulations. However, it is not feasible to set up these
physical structures in memory every time the database is loaded. A
real spatial information system would be much too large to load the
entire database into memory at one time. Our experimental system,
therefore, resides in secondary storage, and parts of it are retrieved
as necessary.

The main objective of Version 1 was to bring up a system that used
the spatial data structure as a building block, and stored real geo-
graphic data obtained by low-level processing of multispectral re-
motely sensed imagery or by digitizing maps. Therefore, the physical
structure of the database in secondary storage was kept as simple as
possible; the issues of optimal record and file organization have been
ignored. Instead, the VAX/VMS file system was used as much as
possible.

Each spatial data structure and each relation in the database is
stored in a separate file on the disk. The unique character string names
of the structures are used as file names. This makes it very easy to
fetch an entire SDS or relation into internal memory. The data are
stored sequentially within a file, and no indexing is used. Thus, there
is no efficient way to access a part of an SDS or relation in external
storage. This is reasonable since Version 1 only accesses external
storage in order to read an entire structure into internal memory or
write one back to secondary storage. The advantages of using the
sequential file organization are: 1) simplicity, and 2) the ability to
store the data in that order which best facilitates the formation of the
internal physical structures.

IV. HIGH-LEVEL OPERATIONS

In order to understand the architectural needs of the system, we
need to look at the high-level operations that must be performed to
answer a query. Consider the following list of sample queries, which
can all be answered using the information in the current experimental
system.
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REGION A/V REGION
A/V REGION ! NAME R1
SUBREGION AREA 12345
ADJACENCY BOUNDARY ( POLYGON )
STREAM NETWORK PARENT ( REGION )
LABELS
[( REGION ) ] ( REGION ) ‘l-'
'( WATER STREAMS ) F
I( LABEL ) I‘L
WATER STREAMS
EPHEMERALS j—_) TR
PERRINIALS
STREAM A/V STREAM
A/V STREAM NAME s1
INTERSECTING TYPE EPHEMERAL
STREAMS ORDER £
LENGTH 567
# INTERSECTING | -,
[- POINT * ( STREAM ) J EPHEMERALS
# INTERSECTING |
PERRINIALS
COURSE ( CHAIN )
LABEL A/V LABEL
IA/V LABEL | —'____; NAME L1
LOCATION * POINT *
POLYGON
’cx-mms l :f———-)[( CHAIN )
CHAIN A/V CHAIN
A/V CHAIN LEFT ( REGION )
POINTS RIGHT ( REGION )
atom POINT
[ *pomvr o | X } Y

Fig. 2. Prototypes for spatial data structures REGION, WATER

STREAMS, LABEL, POLYGON, and CHAIN.

Q1) How many rivers (perrinial streams) are there in region

X?

Q2) How many streams of any kind are in region X?

Q3) What are the names of the three longest rivers (perrinial
streams) in region X?

Q4) What is the length of river Y?

Q5) What cities (labels) are in region X?

Q6) What cities (labels) are within distance D of stream Y in re-

gion X?

Q7) What cities (labels) are within distance D of every stream in

region X?

Q8) Whatre

gions does stream X flow through?

Q9) What regions does road X pass through?
Q10) What regions are adjacent to region X?
Q11) What points do stream X and stream Y have in common?
Some of these queries involve quick lookup operations, and others
involve more complex searching. We can group the operations re-
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NAME TYPE DIMENS ION LENGTH | USE_CNT STRUCT

REGION X 1 0 y - |
] S j | [ I
i i) (I ]
A/V REGION_X SUBREGION STREAM LABELS X
ADJACENCY_X NETWORK_X

NAME TYPE DIMENSION | LENGTH | USE_CNT STRUCT

A/V REGION X 2 2 ] 1

AREA ——Pi BOUNDARYI H l NAME PARENT —Vl

[ = | I W
!

POLYGON_X

REGION_Y

Fig. 3. Spatial data structure for a REGION and its attribute-value

relation.

quired to process these sample queries into three kinds: 1) low-level
access and manipulation functions, 2) high-level relational operators,
and 3) geometric or distance operations. Low-level functions are
discussed in [21]. The higher level relational operations involved in
answering these sample queries include

1) extracting information from SDS’s referenced by each tuple
of a given relation,

2) selecting tuples of a relation that satisfy a dynamically changing
constraint,

3) joining pairs of tuples from two relations if the pair satisfies a
constraint,

4) projecting a relation onto certain columns, and

5) selecting tuples of a relation that satisfy a constraint with re-
spect to every tuple of a second relation.

These operations suggest that a generalized form of the now
standard relational database operators will be useful in a spatial in-
formation system. In the remainder of this section, we define what
these generalized forms are. Let R be an N-ary relation and let S be
an M-ary relation. Let P be an N-ary predicate and let Q be an (N
+ M)-ary predicate. Let I be the set of positive integers and let f be
a binary relation over I.

A. Projection
PROJ(R; f) ={(c1," ", k)| for some (ay, -+, an) € R,
(i, j) € fimplies a; = ¢;}.
B. Selection
SEL(R; P) ={(ay," -, an) € R|P(ay, -, ay) = true}.
C. Join :
JOIN(R, S5 Q) ={(ay," ", an, by, -+, bar)]
(aj,"--,an) € R, (b1, -, by) €S,
and Q(ay, -+, an, by, -, bay) =-truej.
D. Division
DIV(R, S; Q) ={(a;,"--,an) € R| forevery (b1, -, bu)
€ S,Q(a1, ", an, by, -+, bp) = true}.
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Finally, the geometric or distance functions required for the sample
queries are

1) intersection of chain with chain,

2) intersection of chain with polygon, and

3) distance from a point to a chain.

V. ARCHITECTURAL IMPLICATIONS

A. General Implications

The architectural implications of the general spatial data structure
and the operations we want the architecture to perform on such
structures are influenced by two facts:

1) the use of an arbitrary predicate in the select, join, and division
operations, and

2) the assumption that many tasks are going to require sequencing
through all the tuples of a relation to obtain an answer.

To some extent, fact 1) implies fact 2) since the use of an arbitrary
predicate means that the usual database mass storage organizations
with dictionaries, hash tables, or inverted files may not be adequate.
Because the general operation takes the form: find all tuples satisfying
a given condition where the condition may be an unchanging one or
where the condition may depend on the tuples currently being ex-
amined in a related relation, there can be a natural parallelism. Divide
the tuples of the relation into mutually exclusive subsets, and have
one CPU responsible for processing the tuples in the subset assigned
to it. Process all subsets in parallel. Then collect the results together
and output them when appropriate.

Another consequence of the use of an arbitrary predicate is that,
on the average, the time taken to process a tuple can easily be greater
than the time taken by a smart controller with memory to retrieve it
from the mass storage device. Thus, the general flow of control is to
access the mass storage device in an anticipatory manner, and store
these read-ahead tuples in the memory of the input CPU. This input
CPU with its memory acts like a queue, always making sure that it
has the tuples which are going to be requested. Its smart algorithm
for doing the input in the anticipatory manner based on current disk
head and disk pack positions just reduces the average time to retrieve
a block of data.

Ordinarily, we think of the tuple as the logical entity to be read and
manipulated. Thus, blocks on the mass storage device are sets of
tuples. However, this is not an efficient way to retrieve data when not
all components of the tuple are required for processing. We suggest
a data organization in which each block of data contains one com-
ponent from a set of tuples. In this manner, with a random file orga-
nization, only the components of tuples required for an operation need
be accessed. This method has been used in [11].

Connected to the input CPU is an input selection CPU whose job
it is to divide the relation into mutually exclusive subsets, each of
which is processed in parallel by the number-crunching CPU’s which
are connected to the input CPU. The number-crunching CPU’s in
turn are connected to an output selection CPU which is connected
‘to an output CPU. The output selection CPU is only active in division,
and it determines whether or not to pass a tuple to the output CPU
based on whether all the number-crunching CPU’s select the tuple.
The output CPU acts like an output queue to the mass storage devise.
Fig. 4 illustrates a block diagram of the architecture in which the mass
storage device can be an entire disk. For faster processing, this ar-
chitecture can be replicated, one replication per disk head. In the
remainder of this section, we briefly sketch the multiprocessor algo-
rithms for executing the projection, selection, join, and division op-
erations on the architecture of Fig. 4.

B. Projection

Projection is conceptually simple. Sequentially go through all
tuples, accessing only those components desired. Then throw away
all duplicate tuples which might have been generated.

The difficulty in the multiprocessor version of the algorithm is with
the duplicates. To keep the number-crunching CPU’s from com-
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Fig. 4. Block diagram of the multiprocessor spatial information system.
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municating with each other, the algorithm has to guarantee that two
projected tuples which are identical get processed by the same
number-crunching CPU. One way of handling this is for the input
CPU to hand off a partially projected tuple to a selection CPU whose
job is to do a simple lexicographic or hash calculation to decide which
number-crunching CPU will handle the task. Each number-crunching
CPU checks to see if the tuple it gets has already been seen. If so, it
ignores the tuple. If not, it adds the tuple to its table of tuples seen,
and hands the tuple to the output selection CPU which hands it to the
output CPU to be stored on the mass storage device.

Problems arise if not all projected tuples can be stored in the
memories of the number-crunching CPU’s. In this case, the selection
CPU must not select all tuples to be given to the number-crunching
CPU’s. Those not selected are selected in subsequent rereads of the
relation.

C. Selection

Selection works in a similar way to projection. Tuples are read by
the input CPU. Each tuple is handed to the selection CPU which
decides which number-crunching CPU will process it. Upon receiving
a tuple, the number-crunching CPU evaluates the predicate. If true,
the tuple is sent to the output selection CPU, which simply hands it
to the output CPU for storage to an output file, and the next tuple is
requested.

D. Join

To accomplish the join, every tuple of one relation has to be paired
or concatenated with every tuple of the second relation. The conca-
tenated tuple then has to be evaluated by the joining predicate. If the
predicate is true, the concatenated tuple is written out. To handle the
fact that the memory is not large enough to hold both relations, only
small segments from each relation are stored in memory at once, and
the relation files have to be read a multiple number of times.

To increase the efficiency of this task, the join predicate can be
analyzed ahead of time to determine what simple predicate on the
tuples from the first relation must be true whenever the join predicate
is true on the concatenated tuple, and what simple predicate on the
tuples from the second relation must be true whenever the join
predicate is true on the concatenated tuple. These simple predicates
can be used by the input selection CPU to ignore tuples having no
chance of being joined.

To minimize the number of times the relation files have to be read,
each number-crunching CPU has to store in memory as many tuples
passing the selection test from the smaller sized relation as it can. Of
course, different number-crunching CPU’s store mutually exclusive
groups of tuples. Then the larger sized relation is read. Tuples which
pass their selection test are handed off to any available number-
crunching CPU.
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If not all the tuples passing the selection test from the smaller
relation can be collectively held in the memory of the number-
crunching CPU’s, repeated passes over -the relations must be
made.

E. Division

Division works like join, except, of course, that for a tuple to be
output, its concatenation with every tuple from the second relation
must evaluate to true. To execute division, the number-crunching
CPU’s load in as many tuples from the second relation as possible.
Then the first relation must be read tuple by tuple. Each tuple which
passes the selection test is handed off to all number-crunching CPU’s
simultaneously. These CPU’s evaluate the division predicate of the
tuple concatenated with all tuples it has from the second relation. If
the predicate evaluates true, the tuple is handed off to the output
selection CPU whose job is to determine if all number-crunching
CPU’s indicate that the tuple has passed all predicate evaluations.
If not, the output selection CPU ‘ignores the tuple. If all number-
crunching CPU’s indicate that the tuple has passed, then it sends the
tuple to the output CPU to be added to the output file on the mass
storage device.

VI. CONCLUSIONS AND FUTURE WORK

We have described an experimental spatial information system
whose building block is the general spatial data structure. This system
demonstrates the feasibility of using such structures to store spatial
information. The system designed here allows queries involving ar-
bitrary, possibly dynamically changing predicates. The architectural
implications of this use of arbitrary predicates suggest that traditional
ordering schemes or secondary indexes will not be useful in the kind
of system we envision. We have suggested storing relations by column
instead of by tuple and the use of parallel processors to help speed up
the processing of these generalized queries. Future work includes the
implementation of the high-level operations on our present system,
implementation of a second version using only secondary storage for
SDS’s and relations, designing a specific architecture for spatial in-
formation systems, and designing an intelligent front-end pro-
Cessor.
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