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A Spatial Clustering Procedure for 
Multi-Image Data 

ROBERT M. HARALICK, MEMBER, IEEE, AND ITS’HAK DINSTEIN, MEMBER, IEEE 

Abstract-A spatial clustering procedure applicable to multi-spectral 
image data is discussed. The procedure takes into account the spatial 
distribution of the measurements as well as their distribution in measure- 
ment space. The procedure calls for the generation and then thresholding 
of the gradient image, cleaning the thresholded image, labeling the 
connected regions in the cleaned image, and clustering the labeled 
regions. An experiment was carried out on ERTS data in order to study 
the effect of the selection of the gradient image, the threshold, and the 
cleaning process. Three gradients, three gradient thresholds, and two 
cleaning parameters yielded 18 gradient-thresholds combinations. The 
combination that yielded connected homogeneous regions with the 
smallest variance was Robert’s gradient with distance 2, thresholded by 
its running mean, and a cleaning process that considered a resolution cell 
to be homogene&s if and only if at least 7 of its nearest neighbors were 
homogeneous. 

I. INTRODUCTION 

C LUSTER analysis has become in the last 30 years 
a multi-disciplinary technique of data analysis. 

Different methods of cluster analysis have been developed 
and applied in different areas of research. We will mention 
here only a few examples of the application of clustering in 
various disciplines (the order is of no significance). A 
clustering algorithm was used (Gose, [6]) as part of a 
procedure to identify breast cancer using radiographs and 
xerograms. A program that simulates the taxonomic process 
for plant classification (Rogei-s and Tanimoto, [19]) was 
applied to 300 herbarium specimens of manihot esculenta. 
Clustering techniques were applied to a collection of 1400 
aeronautical documents in an information retrieval ex- 
periment (Sparck, [25]). Sneath proposed an analysis 
intended to produce taxonomic groups of bacteria. 
ISODATA clustering procedure (Wolf, [29]) has been 
used in a system for determining cloud motions. Cluster 
formation was used to diagnose 199 subjects in a psychiatric 
institute (Kaskey, [ 121). A hierarchical grouping technique 
was applied (Ward, [27]) to 25 test projiles based on art 
preference. Behavioral problems of deaf children (Haralick, 
[9]) were analyzed using clustering of variables. Different 
clustering techniques have been used to produce dendro- 
grams for biological data (Sokal and Sneath, [24]). 
Dendrographs have also been used to represent mutual 
relationship among geologic variables (McCammon, [ 131). 
Clustering was used in image processing of remote sensing 
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data (Haralick, [8], Smedes et al., [22]). This list does not 
intend to cover all the areas in which cluster analysis has 
been applied. It only illustrates the broad possibilities and 
the multidisciplinary nature of clustering. 

Clustering of any set of data is a subjective process that 
can be done in a number of different ways depending on 
the purpose of the classifier (Gilmour, [S]). For example, 
a zoologist might place a whale and a monkey in the same 
class whereas a fisherman will prefer the whale and tuna 
in the same class (Watanabe, [20]). There are some different 
objectives of cluster analysis. One objective is “. . . to gain 
more information about the structure of the data set” 
(Nagy, [14]). When dealing with large masses of data, 
cluster analysis might compress the data so that it can be 
analyzed more easily (Bonner, 1121). Such generalization 
might result in some loss of information but it may em- 
phasize some other interesting parts qf the information 
as well as increase the efficiency with which large masses of 
data can be processed (Ward, [27]). Cluster analysis may 
“inform the researcher where the ‘action’ in his data set 
lies” (Haralick, [S]). It is a way of analyzing the details of 
the data’s structure (Ball, Cl]). 

Many clustering algorithms deal with measurements in 
ways that do not consider the order by which the measure- 
ments were taken. Indeed, for many problems, the order 
by which the measurements were taken or the spatial 
distribution of the units under consideration are irrelevant 
to the clustering process. In some cases, the relation between 
the order by which the data was collected and the clusters 
of the measurements depends very much upon the way 
the data was gathered. Such a case is in the clustering of 
image data. The resolution of the image data, when properly 
selected, should yield many measurements for each object 
of interest. Therefore, resolution cells of the same neighbor- 
hood are likely to belong to the same object, except at 
boundaries. We will refer to clustering procedures that take 
into account spatial relations between elements as spatial 
clustering procedures. 

Although image data is a good candidate for spatial 
clustering procedures, much of the clustering which has 
been done with multi-image data has not been spatial. This 
certainly is true for the measurement space iterative cluster- 
ing techniques used on image data and described by Haralick 
[7], Darling and Juris (1970), Haralick and Dinstein [S], 
as well as the ISODATA or K-means clustering techniques 
used by Wacker and Landgrebe [26] and Smedes et al. 
[22] and many others in the remote sensing area. 

The artificial intelligence community has been an active 
user of spatial information from scene data. Much work 



HARALICK AND DINSTEIN: SPATIAL CLUSTERING PROCEDURE 441 

has gone into the definition of homogeneous regions and 
edge detection. Brice and Fennema [3] describe a procedure 
for partitioning an image into a large set of primitive regions 
each of which is typically a connected component having 
the same grey tone. Then a merging algorithm is applied 
to group together those regions of similar tone. Gradient 
and derivative computation algorithms have been used to 
find edges (Roberts, [17] ; Prewitt, [16] ; Hueckel, [IO]; 
Rosenfeld and Thurston, [21]). In this paper, we discuss 
extensions of these kinds of techniques to multi-image data 
sets. Such data sets occur naturally with multispectral 
scanners where the same scene is viewed in many wave- 
lengths from the infrared through the ultraviolet as well 
as with aerial photography taken over the same area at 
different times. 

II. ON SOME SPATIAL CLUSTERING PROCEDURES FOR 
MULTI-IMAGE DATA 

Let 2, = {1,2;. . ,N,} be a row index set and let Z, = 
{1,2; *. ,N,} be a column index set. We call the set of 
ordered pairs Z, x Z, the set .of resolution cells, or a 
spatial domain. Let Gi = { 1,2,. * . ,Ni} be a set of Ni grey 
levels, and let G = G, x Gz x * * . x G, be the Cartesian 
product of the sets of grey levels G,,G,; 1 *,G,. A digital 
multi-image is a function I: Z, x Z, --f G. The function, 
I assigns a K-tuple of grey levels to every resolution cell in 
Z, x Z,. Multispectral scanner data and multi-data aerial 
image data take such a form. Using this notation, we now 
review three clustering procedures that take into account 
the spatial distribution of the grey level K-tuples. 

Haralick [7] introduced the following spatial clustering 
algorithm. Let S = (S,)? = 1 be a set of spatially con- 
nected subsequences. of I. On each subsequence Si, define 
the empirically observed probability Pi(g) as the portion 
of resolution cells in Si which have K-tuple g. Define a 
function W: G + (0,l) by W, = maxi P,(g), i = I,. . * ,Q. 
W(g) is the highest relative frequency which the K-tuple g 
has in the subsequences Si, i = 1,2, * . * ,Q. The range of the 
function W consists of N, numbers, one for each K-tuple 
of G. Define the sequence B = (gi 1 gi E G) to be con- 
structed such that W(gi) r W(gj) for i I j. The elements 
of the sequence B are ordered according to the respective 
descending order of their images through the function W. 
The first element in the sequence B is that K-tuple which 
has a maximum observed probability Pi(gi) over all i = 
1,2;. . ,Q and all gi E G. The resolution cells containing 
that K-tuple (the first element in B) are considered to be 
the most important center set. The set of resolution cells in I 
containing the K-tuple which is the second element in B 
is considered to be the second most important center set, 
and so on. Once the collection of center sets is found, clusters 
are “grown” around those centers. Two parameters govern 
the clustering process. One is the maximum number of 
expected clusters and the second is a probability cutoff 
parameter. 

A spatial approach to imagery clustering was described 
by Nagy [IS]. Nagy’s clustering procedure is based on a 
simple “chain algorithm” proposed by Bonner [2]. In 

the first step, points are assembled into row strips. This is 
based upon the assumption that “spatially adjacent vectors 
tend to belong to the same type of ground cover except at 
field boundaries.” Examining the resolution cells along the 
scan lines, similar resolution cells were assigned to strips. 
Each strip was terminated only when the addition of the 
next resolution cell would have increased the internal scatter 
of the strip above a given threshold. At that point, the 
formed strip was assigned to a cluster (or designated to 
start a new cluster), and the formation of a new strip began. 
The assignment of a strip to a cluster was done by comparing 
the strip to the cluster centers. The search for a cluster was 
done in a decreasing order of cluster populations, to save 
computation time and to eliminate a small group of ab- 
normal components. 

The following is a formalization of this clustering pro- 
cedure. Let 1, Z, x Z,, and G be defined as before. Define 
a function SS: Z, x Z, -+ S which partitions the spatial 
domain Z, x Z, into a set S of spatially connected subsets, 
s = {S,,S,; * * So}: The subsets Si, 1 I i I Q are the 
“strips” that were mentioned previously. The spatial con- 
nectivity of those strips is explained in the definition of the 
function SS, which is given here in a sequential manner. 

1) SS(l,l) = s,. 
2) SS(m,n) = Si if and only if SS(m, n - 1) = Si for 

n & 1 or, SS(m - I, N,> = Si for n = 1, and 

c [Z(k,Z) - I(Si U {m,n})]2 I Ti 
(WE.% u t(m,n)l 

where N, is the last column in Z, x Z,, I(A) is the mean 
of the grey levels of the resolution cells belonging to A, and 
T1 is a specified threshold. 

Let C = {C1,C2; 1 * ,C,} be a set of cluster codes. Define 
a function CC: S + C that assigns strips to clusters in the 
following manner : 

a) CC(S,) = C, ; 

b) CC(S,) = ;I’ if d[W2M&)I I T2 
2, otherwise; and 

ci, if d [I(Sr),Z(Ci)] I T2 and Ci is the 

C) CC(Sj) = 
largest cluster for which it holds 

c 
k, if the above condition does not 

hold and C, is empty. 

This clustering procedure was applied to multispectral 
data collected during the Imperial Valley study conducted 
by NASA in 1969. Flight lines of 5000 feet and 10 000 
feet by the University of Michigan aircraft were selected. 
This simple and economical clustering procedure was 
demonstrated to be a feasible alternative to the conventional 
terrain classification methods. 

Jayroe [I l] introduced a three-step spatial clustering 
procedure for multi-images. In the first step, a boundary 
map is prepared by thresholding of gradient images. The 
two gradient images used are obtained by computing the 
Euclidian distance between nearest neighbors in the hori- 
zontal and vertical directions. In the second step, clusters 
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are formed by scanning the boundary map with a fixed- 
size square of resolution cells. When the square hits a 
region in which there are no boundary cells, that region 
is assigned to cluster 1. The square is then moved farther, 
and if no boundary cells are encountered, the area within 
the square is assigned to cluster 1. The scanning continues 
until all possible cells are assigned to that cluster. Next, 
the square is moved until it hits a new region with no 
boundary cells, and the process repeats itself. In the third 
step, clusters are .merged according to their spectra 
measurements. 

Robertson et al. [ 181 describe a procedure for successively 
partitioning a multi-image into rectangular blocks. How- 
ever, the final clustered images produced by the algorithm 
yield images which suffer from excessive blockiness. 

III. A SPATIAL CLUSTERING PROCEDURE BASED ON 
GRADIENT IMAGES 

The spatial clustering procedure discussed here is based 
on Dinstein [4] and takes into account the distribution 
of the measurements in the measurement space as well 
as their distribution in the spatial domain of the. image. 
The procedure consists of 1) computation of a gradient 
image, 2) thresholding the gradient image, 3) cleaning the 
thresholded image, 4) labeling connected regions in the 
cleaned image, and 5) clustering the labeled connected 
regions. We now define functions and operators for those 
operations, using the notation as defined in the previous 
section. 

Define a function GZ: Z, x Z, + R to be the gradient 
image of I. GZ assigns a real number to each resolution cell 
in Z, x Z,. This real number is relative to the changes in 
grey levels of resolution cells in a neighborhood of that 
resolution cell. Therefore, we assume that when a resolution 
cell of the GI image contains a high number, it indicates 
that the resolution cell is close to a category boundary. 
It indicates that there is a significant change in the grey 
tones in its neighborhood. On the other hand, a low value 
assigned to a resolution cell in the GI image indicates that 
the resolution cell’s neighborhood is homogeneous. It 
indicates that all the measurement vectors assigned to the 
resolution cells in its neighborhood are close to its measure- 
ment vector. The objective of the proposed spatial clustering 
is to detect such homogeneous neighborhoods. The next 
step for achieving this objective is to threshold the GZ 
image in order to distinguish between homogeneous and 
nonhomogeneous areas. 

Define a function H : Z, x Z, + {LO} as follows: 

iff Gl(i,j) I 13 
otherwise 

where 0 is a specified threshold. In our experiments, we have 
used a dynamic threshold defined as follows. Let 

Si = {(k,l) E Z, x Z, 1 i - L < k I i + L} 

Now we define an operator which labels the connected 
homogeneous regions in the cleaned image. A region is 
said to be connected if and only if between any two of its 
resolution cells, there exists a sequence of resolution cells 
belonging to the region, such that each two consecutive cells 
in the sequence are nearest neighbors. This operator is 
similar to a labeling operator proposed by Rosenfeld [20]. 

where L is a specified integer. The threshold 8i for the ith Define the function C in a sequential manner, assigning 
line of the gradient image is the mean of the gradient values the resolution cells line by line. 

of resolution cells in Si, as seen by 

BiE1 c GIW). #(si) W) ESi 
Before we define the cleaning operator, we define three 
types of neighborhoods as follows. Let 

N(i,j) = {(m,n) E Z, x Z, [ m = i - 1 and In - j( I 1 

or m = iandn =j - I>. 

N(i,j) consists of the three nearest neighbors above (i,j) 
and the one to the left of (i,j). 

The Neighborhood N(ij). 

Let 

N*(i,j) = {(m,n) E Z, x Z, I Im - il I 1 

and In - jl I l}. 

i-T-l-l 
t-y-q-y The Neighborhood N*(i,j). 

I 
N*(i,j) consists of the eight nearest neighbors of (i,j). 

Let 

A(i,j) = {(m,n) E Z, x Z, 1 m < i or m = i and n < j}. 

A(i,j) consists of all the resolution cells above and to the 
left of (i,j) 

pi TheNeighborhood A(i, j) . 

Define a cleaning operator (CL) by 

CL(i,j) = if #{(k,Z) E N*(i,j) 1 H(k,l) = l} L f12 
otherwise 

where e2 is a specified threshold, and # denotes the number 
of elements in the set. 

The purpose of the cleaning operator is to eliminate fuzzy 
boundaries. We want the cleaned regions to be most repre- 
sentative of their clusters. Therefore, a resolution cell is con- 
sidered as homogeneous if and only if at least 8 resolution 
cells in its nearest neighborhood are homogeneous. 
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1) If CL (1,l) = 0, set C(l,l) = 0. If CL (1,l) = 1, set 
C(1,l) = 1. 

2) Suppose all the resolution cells in A(i,j) have been 
assigned, then 

a) if CL (i,j) = 0, set C(i,j) = 0, and 
b) if CL (i,j) = 1, then 

a. if {(m,n) E N(i,j) I C(m,n) # 0} # 4, set C(i,j) = 
min(m,n)..(z.j) {C(m,n) I Ch4 Z 0, and 

p. if {(m,n) E N(i,j) I C(m,n) # 0} - 4, set C(i,j) = 
1 + maX(,d E A(i, j) Wv). 

The function C assigns labels to connected regions. These 
connected regions, however, are not maximal. Once con- 
nected homogeneous regions are detected and assigned 
integer labels, we want to detect regions which are maximal 
with respect to connectivity and homogeneity. This is done 
by merging all the homogeneous and connected areas which 
are connected to one another. 

We define a merging operator CM as follows. Let C, and 
C, be connected regions whose resolution cells were 
assigned by C. If there exists (i,j) E C, and (k,Z) E C, such 
that (i,j) and (k,Z) are nearest neighbors, CM merges those 
two regions by assigning min {(N,M)} to all the resolution 
cells of C, v C,. Apply the merging. 

The last operator to be defined is the clustering operator. 
The elements to be clustered are the labeled connected 
homogeneous regions. 

Let 

Li = ((k,Z) 1 CM(k,I) = i>. 

Lr is the set of resolution cells belonging to the region 
labeled i. Let L = {L,,L2;- *,LK} be the set of all the 
regions labeled by the merging operator, and let CODE = 
{1,2; * * ,K} of a set of cluster codes. Define a clustering 
function CC: L + CODE. The function CC assigns a 
cluster code to each one of the labeled connected and homo- 
geneous regions. We define CC in a sequential manner, as 
follows. 

1) N = 1. CC(LJ = N if and only if # Li = 
maXlsjd C#Ljl. 

2) CC&) = N if and only if d[l(L,),Z(N)] I e3 where 
I(&) is the mean of the grey level vectors of the resolution 
Cells in Lk, and I(N) is the mean of the grey level vector of 
resolution cells of regions that have been assigned to cluster 
N. d is a distance function defined on the set of grey level 
vectors, and 8, is a specified threshold. 

3) Repeat Step 2 until no more assignments are possible. If 
all Lj, 1 I j I ,K were assigned, then stop. If not, then go 
to Step 4. 

4) N= N+ 1. 
5) CC(L,) = N if and only if’ 

#L, = max #L i* 
alli such that L, 

has not been assigned 

6) Go to Step 2. 

The threshold 8, is specified by the. user as follows: 
Once the largest of the assigned regions is found, the dis- 
tances between its mean and the means of the unassigned 
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2nd Band 

3rd Bond 4th Band 

Fig. 1. Four bands of the compressed ERTS image (Monterey Bay, 
July 25, 1972). 

regions are computed, quantized, and displayed in a his- 
togram. The user specifies the thresholds according to these 
histograms. 

IV. A PARAMETRIC STUDY 

The basic steps in the detection of connected homo- 
geneous regions on an image are generation and then 
thresholding of the gradient image, cleaning of the thresh- 
olding image, and labeling the connected regions in the 
cleaned image. There are many ways of generating gradient 
images choosing the thresholding constant and cleaning 
the thresholded image. Because those are user selected 
factors, we have carried out an experiment in order to study 
the effect of some of these factors on the detection of con- 
nected homogeneous regions and the clustering of those 
regions. 

Three types of gradients, three thresholds for the gradient 
images, and two cleaning thresholds yielded 18 combina- 
tions of gradient-thresholds. A compressed strip (each 
resolution cell is the average of an 8 x 8 subimage on the 
original) of an ERTS image (Monterey Bay, ERTS Image 
identification 1002-18134, see Fig, 1) was processed using 
those 18 combinations. The average variance over the con- 
nected regions was computed (for each combination of 
gradient-thresholds) in order to compare the homogeneity 
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Original Image 

Fmction of mean for gradient threshold 1 

IO I1 I2 I3 I4 I5 I6 17 I8 

Fig 2. The 18 processing possibilities using 3 kinds of gradients, 3 threshold values, and 2 cleaning 
parameters. 

(4 (b) (4 
Fig. 3. Gradient images. (a) Robert’s distance 1. (b) Robert’s distance 

2. (c) Maximum gradient. (Bright grey levels represent high gradient 
values.) 

of homogeneous regions of different combinations. The 
quick Robert’s gradient at distance 2, a dynamic threshold- 
ing constant of the running mean, and a cleaning parameter 
requiring at least seven homogeneous nearest neighbors, 
yielded the smallest average variance of the connected 
regions. 

The gradients selected for the study are defined as fol- 
lows. Let Z(i,j) = (Z(i,j,l),Z(i,j,2); * * ,Z(i,j,N)) be a vector 
of integer components representing the N tuple of grey 
levels of the resolution cell (i,j). 

a) Robert’s (distance 1) gradient is defined by 

R(i,j) = 2 (IZ(i,j,n) - Z(i + 1, j + 1, n)l 
n=l 

+ IZ(i + l,j, n) - Z(i, j + 1, $1). 

b) An extended Robert’s gradient (Robert’s distance 2) 

is defined by 

ER(i,j) = 2 (IZ(i - l,j, n) - Z(i + l,j, n)l 
II=1 

+ IZ(i,j - 1, n) - Z(i,j + 1, n)]). 

c) A maximum gradient is defined by 

M(i,j) = max . 
kl 

IZ(kL4 - GW4l] . 
k=iandl=j+lor 

k=i+landj-l<l<j+l 

For each one of those three gradients, a running mean was 
computed (as defined in Section III), and the fractions of 
that mean to be used as thresholds were 0.75, 1.00, and 
1.25. The application of three thresholds to three gradient 
images yielded nine thresholded images. Two cleaning 
thresholds were applied in the cleaning process of those 
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(b) 

(4 

i,!Ju 

(4 

Fig. 4. Thresholded images. (a) Robert’s gradient distance 1 (white regions are homogeneou$. (b) Robert’s gradient 
distance 2 (white regions are homogeneous). (c) Maximum gradient (white regions are homogeneous). 

nine thresholded images to yield eighteen cleaned homo- 
geneous images. In the cleaning process, a resolution cell 
was considered to be homogeneous if and only if more than 
K of its nearest neighbors were homogeneous. K, the clean- 
ing threshold, was set to 5 or 7. The 18 combinations of 
those steps are summarized in Fig. 2. The three gradient 
images of the processed strip of Monterey Bay ERTS image 
are shown in Fig. 3. The dark areas at the bottom of the 
images indicate that the gradient within this region (Mon- 
terey Bay - water) is low. One can tell by looking at the 
three gradients, that Robert’s distance 2 detected the borders 
of the bay better than the other two gradients. The bright 
strip (high gradient values) around the bay is more distinct 
and continuous in the Robert’s 2 gradient than in the other 
two gradients. 

The thresholded images of Robert’s distance 1, Robert’s 
distance 2, and maximum gradient are given in Fig. 4(a), 
(b), and (c), respectively. The white regions represent resolu- 
tion cells with gradient value less than the corresponding 
threshold. Obviously, the higher the threshold, the larger 
are the white regions. Note that nice closed boundaries like 
those in the artificial block world or those in face recognition 
are not present in our satellite imagery. 

The cleaned thresholded images are shown in Fig. 5(a), 
(b), and (c). The cleaned images obtained with gradient 
threshold 0.75 of the running means and cleaning threshold 
of 7 (the upper left image in Fig. 5(a), (b), (c) show that 
beside the region of Monterey Bay, only scattered cells 
were. considered as homogeneous. Images obtained with 
gradient threshold of 1.25 of the running means and clean- 
ing threshold of 5 show that most of the resolution cells 
were considered as homogeneous and, besides some scat- 
tered resolution cells, there are only two connected homo- 
geneous regions in those images. The conclusion is, of 
course, that both these extreme threshold combinations are 
not “good” for the clustering. 

As to the other combinations of gradient-thresholds, the 
decision as to “what combination is the best one” is not that 
obvious. We want the detected homogeneous regions to 
represent homogeneous regions in the original data; but 
how does one measure that representability? This is a 
complicated problem that might involve considerations of 
shapes of regions, contrast within regions, human perception 
and other factors. Such a study is beyond the scope of our 
study. Since our spatial clustering procedure is based on the 
detection of homogeneous regions, we want a quantitative 
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I FRACTION OF TH 
. _^ 

I ‘RACTIOi: OF TH 
^ __ 

4EAN FOR TiiE GRADIL 

(b) 

Tt!RESHCLD 
1 ?; 

KAN FCH TWE GRADlENT TtiXSHOLD 

(4 

SEAN FOR ?iiE GRADIE 

i.ti3 1,‘s 

Fig. 5. Cleaned thresholded images. (a) Robert’s gradient distance 1 (white regions are homogeneous). (b) Robert’s gradient 
distance 2 (white regions are homogeneous). (c) Cleaned threshold images. 
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/ 1 \, cl is the Cleaning Threshold 

Roberts 1 
--cl * 5 

Number of Homogeneous Regions 

Fig. 6. Average variance versus number of homogeneous regions. 

criterion that will enable us to compare the different 
gradients and thresholds and to decide which one yielded 
regions which are more homogeneous. 

We assume that the more homogeneous a region is, the 
less is the variance of the measurements within the region. 
Let R = {R,,R,;.. ,R,} be K connected homogeneous 
regions of an image, and let Z(i,j) = (Z(i,j,l), * * . ,Z(i,j,N)) 
be the measurement vector of resolution cell (i,j). 

The kth component of the mean vector of the measure- 
ments within R, is defined by 

I,,,, = -!- C X(i,j,k) 
#R, (isi) e R, 

where #R, is the number of resolution cells in the region 
R,. The trace of the covariance matrix of the measurement 
vectors within R, is given by 

The value that we have chosen to indicate the homogeneity 
of an image with labeled connected homogeneous regions is 
the average of the traces of t’he covariance matrices of the 
connected homogeneous regions, it is defined by 

‘R; V,. 

m=l 

We refer to VH as the average variance of the connected 
homogeneous regions. VH is a function of the number of 

-homogeneous regions and of the number of homogeneous 
resolution cells. Consider the extreme case in which each 
connected homogeneous region consists of a single resolu- 
tion cell. VH for such an image is zero. Indeed, such regions 
are as homogeneous as can be but this is not the kind of 

cl is the Cleaning Threshold 
Roberts 1 

- cl = 7 
Max Gradient 

-__ c, i 5 
-__- c, = 7 

o~oo,o 20 30 40 50 
Number of Homcqenebus Regions 

Fig. 7. Average variance per point versus number of homogeneous 
regions. 

Roberts 1 Roberts 2 Max Gradient 

c- 

\ 
\ 
\ 

4 

\ 

\ 
\ 
\ 

A 

1 i 
75 1.0 1.2: i0 

3- 
0.75 1.0 1.2 

- Cleaning Threshold = 7 
--- CleaningThreshold - 5 

i 0. -21.25 
Gradient Threshold 

Fig. 8. Number of clusters for combination of gradient-thresholds. 

homogeneity we are interested in. For this reason, we ig- 
nored connected homogeneous regions containing less than’ 
20 resolution cells, and we have plotted (for each image) the 
values of VH and the values of VH per homogeneous 
resolution cell versus the number of connected homo- 
geneous regions. These graphs are shown in Figs. 6 and 7, 
respectively. As can be seen from those graphs, the Robert’s 
distance 2 gradient, with cleaning threshold 7, yielded 
smaller average variances than the other gradients for given 
numbers bf connected homogeneous regions. The graphs 
show that there is a tendency of convergence when the 
number of connected homogeneous regions is less than 20 
or more than 40. But the clustering results show that the 
clustering is fin& when the number of connected homo- 
geneous regions is between 20 and 40. The number of 
clusters veisus the number of connected homogeneous’ 
regions is plotted in Fig. 8. Based on Figs. 6, 7, and 8, we 
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Fig. 9. Clustered images. (a 
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Robert’s gradient di ists mce 1. (b) Robert’s gradient distance 2. (c) Maximum gradient. 
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Wood Land 

Agricultural Land 

Grass Land 

C0Hal Forest 

Water 

Fig. 10. The categories to which the clusters correspond for Robert’s 
gradient distance 2, cleaning parameter 7, and gradient-threshold of 1. 

can conclude that the combination of Robert’s distance 2 
gradient, gradient threshold equal to a running mean of the 
gradient image, and a cleaning threshold of 7 yielded a 
combination of a small average variance in the connected 
homogeneous regions and a large number of clusters. 

Fig. 9(a), (b), and (c) shows the clustered image for 
various parameter combinations. 

The final value of a clustering procedure is the extent to 
which the clusters are interpretable. in this regard by 
examining Fig. 10, we find that cluster 1 corresponds to 
water, cluster 2 to grassland, cluster 3 to coasted forest, 
cluster 4 to woodland, and cluster 5 to agricultural land. 

There is yet much more refinement and experimentation 
which needs to be done with spatial clustering procedures. 
What happens to the clustering when an equal probability 
quantizing is done on the individual images in the multi- 
image set? How much spatial averaging should be done on 
the multi-image before clustering is begun? What can be 
done about the potential problem of distinct spatial clusters 
merging because of a low gradient bridge between them? 
What can be done about clustering the less homogeneous 
areas? We hope to be able to answer some of these questions 
in a future paper. 

V. CONCLUDING REMARKS 

A cluster analysis procedure which considers the spatial 
distribution of the measurements in image data, as well as 
their distribution in measurement space, has been intro- 
duced. This spatial clustering procedure is based on the- 
detection and labeling of connected and homogeneous 
regions in an image, and the assignments of those regions 
to clusters. This is based on the assumption that resolution 
cells within a connected and homogeneous region do belong 
to the same object or field. The detection of connected 
homogeneous regions in an image is accomplished by 
computing a gradient image, thresholding the gradient 
image, and cleaning the thresholded image. A parametric 
study was carried out to evaluate the effect of the choice of 
the gradient, the gradient threshold, and the cleaning 
parameter on the homogeneity of the detected homogeneous 
regions. The combination of Robert’s gradient of distance 
2, a running mean as a threshold for the gradient image, and 

a cleaning procedure that considered a resolution cell to 
be homogeneous if at least 7 of its nearest neighbors were 
homogeneous yielded regions with the least average variance 
among the combinations that were studied. 
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Separation of Man-Made and Natural Patterns 
in ,High-Altitude Imagery of Agricultural Areas 

/ ALFRED S. SAMULON 

Abstract-A nonstationary linear digital filter is designed and im- 
plemented which extracts the natural features from high-altitude imagery 
of agricultural areas. Essentially, from an original image a new image is 
created which displays information related to soil properties, drainage 
patterns, crop disease, and other natural phenomena, and contains no 
information about crop type or row spacing. 

A model is developed to express the recorded brightness in a narrow- 
band image in terms of man-made and natural contributions and which 
describes statistically the spatial properties of each. The form of the 
minimum mean-square error linear filter for estimation of the natural 
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component of the scene is derived and a suboptimal filter is implemented. 
Nonstationarity of the two-dimensional random processes contained in 
the model requires a unique technique for deriving the optimum filter. 

Finally, the filter depends on knowledge of field boundaries. An 
algorithm for boundary location is proposed, discussed, and implemented. 

I. INTRODUCTION 

T WO PROJECTS designed to explore the possibilities 
of application of extremely high-altitude imagery to 

the study of earth resources have born fruit in the last two 
years. The Earth Resource Technology Satellite (ERTS) 
and Skylab programs have provided thousands of images 
taken at altitudes of several hundred miles. 

Image processing of various types can be a valuable tool 
in preparing images for viewing, substantially increasing 
their utility. Several categories of image processing exist. 


