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A Knowledge-Based Boundary Delineation System
for Contrast Ventriculograms

Lei Sui, Robert M. HaralickFellow, IEEE and Florence H. Sheehan

Abstract—Automated left-ventricle (LV) boundary delineation image gray scale is also large. Last, and the most importantly,
from contrast ventriculograms has been studied for decades. Un- the dye is unevenly mixed with blood in the LV. The contrast
fortunately, no accurate methods have ever been reported. A new 44 the endocardial border is extremely low and the locations of

knowledge based multistage method to automatically delineate . . .
the LV boundary at end diastole (ED) and end systole (ES) is gray-scale gradient maxima do not necessarily correspond to the

discussed in this paper. It has a mean absolute boundary error Mmanually traced border.
or about 2 mm and an associated ejection fraction error of about ~ This study was performed to enhance LVG ABD accuracy

6%. The method makes extensive use of knowledge about LV by incorporating human knowledge into the process. For ex-
shape and movement. The processing includes a multiimage pixel 5y 16 human experts utilize movement information in the time
region classﬁlcatlon,. shape regression, and rejection classification. domain to resolve boundary fuzziness. They are trained to have
The method was trained and cross-validated tested on a database . s :
of 375 studies whose ED and ES boundary had been manually 2hatomical knowledge about LV and to reject the cases with bad
traced as the ground truth. The cross-validated results presented image quality. Our method uses these sources of knowledge in
in this paper show that the accuracy is close to and slightly above the ABD system.
the interobserver variability. Our method is comprised of three stages. The first stage is
Index Terms—Boundary delineation, boundary regression, a nonparametric pixel region classifier operating on the image
image segmentation, left ventricle. sequence. It segments the LV region from the background and
obtains a raw LV boundary. The second stage is a shape regres-
sion that corrects the systematic error of the region classifier
] ] o ~[3], [4]. The last stage is a rejection classifier that flags unreli-
L EFT-VENTRICULAR angiography is a routine imagingap|e results [4]. In order to incorporate anatomical knowledge
method in clinics [1]. Dye, which is opaque to X-rays, isnto the system, the user enters points at ED and ES to identify
injec_ted into the left ventricle (LV) via a_catheter. Images arge endpoints of the aortic valve (AoV) and the LV apex. The
continuously recorded through the cardiac cycle to producgfee points are used to normalize region prior probabilities for
left ventriculogram (LVG), from which the size and function oty expected LV shape and size and to constrain the shape re-
the LV can be assessed. These measurements are routinely ngaglesion.
from the LV boundaries at end diastole (ED) and end systole| section 11, some related LV ABD methods are reviewed
(ES). _ ) ) _ ~in a comparative way to illustrate the difference between their
Tracing the LV boundaries from an LVG is a tedious jolqethods and ours. In Section 11l our method is discussed in
Although automated boundary delineation (ABD) in LVGs hagetaijl. Some experimental results are presented in Section IV, A

long been sought [2]{8], [11], [16], [10], [25], it has been difxonclusion and discussion are then presented in Section V.
ficult to achieve clinically acceptable levels of accuracy. On the

other hand, most methods were tested on only a limited number
of LVG samples. Therefore, no consistent accuracy evaluation
concerning LV volume and ejection fraction (EF) was available. ABD of LVG has been studied for decades [2]-[8], [11], [16],
The LVG challenges lie in several aspects [25]. First, there gn], [25]. Two approaches, the edge-based [3]-[6], [8], [10] and
several other organs visible in the LVG besides the LV. Usualife region-segmentation-based [2], [7], [11], [16] have been ap-
the diaphragm, spine, ribs, and lung markings can be seemiled to solve this problem. The edge-based approach tries to
LVG. Second, the LV has a large variation in shape, directiofind the boundary location using the pixel gray-scale gradient.
and position in the image. It is difficult to set up an LV modelThe region-based approach tries to segment the LV from the
Third, due to the different imaging settings, the variation of thgackground so that a boundary can be obtained by tracing the
outline of the LV region. However, the accuracy of these ap-
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the gradient information. Indeed, the spatial locations of grand ES is the last image frame as the feature vector to assign
dient maxima do not correspond to the manually traced endbe pixel a class. Each pixel in the image frame belongs to one
cardial border. The low contrast at the boundary region tendsthree classes: the background, ED-not-ES, and ES. The ES
to show little significant gradient information. The uneven mixpixels are further constrained to be located within the ED re-
ture of the dye with blood inside the LV tends to produce margion! Thus, the classifier produced the ED and ES boundaries
gray-scale gradient maxima near the LV center. Moreover, madter segmenting the image into ED and ES regions. At first,
of the previous ABD methods process the pixel gray scales irttas classification was made parametrically by assuming that
single frame [2], [3], [6]. This discards the temporal informatiothe class conditional probability of the multidimensional feature
contained in the image sequence, which we know helps humattor had a Gaussian distribution. Lee improved upon this by
experts find the LV boundary at the low-contrast region sinabtaining the class conditional probability from the class con-
human eyes are more sensitive to the change of gray scale ti#ional Mahalanobis histograms of the feature vector. His prior
the static gray scale. probability of each class was modeled with two AoV points.
Some previous methods also assumed that the class coidiarge uncertainty was observed at the apex region. The algo-
tional distributions of the pixel gray-scale values in the ventrickithms were cross validatedly tested on a large database of 375
and the background are Gaussian [2], [7], [11]. This simplifiestudies, each of which had been manually traced. He had a mean
the problem, but at the risk of misguiding the algorithm if thabsolute boundary error (defined in Section IIl) of 5.2 mm.
assumption is proven to be wrong. In contrast, a method thatSuri [16] improved these results by introducing a boundary
is nonparametric and uses the temporal information of the gragression following the classification. A boundary was treated
scale is more suitable for solving the ABD problem in LVGas a vector by concatenating its vertex coordinates into a vector.
That is the pathway our method follows. Given the hand-traced boundary vectors and classifier boundary
The high-level information is the general knowledge abouwectors, the regression coefficients that best transformed the
LV anatomy. Some researchers used knowledge about thassifier boundary vectors to the hand-traced boundary vectors
smoothness of LV boundary as the constraint to confine tlere estimated by the least squares criterion. In order to min-
solution. Pope [6] used dynamic programming to connethize the generalization error, the dimension of the regression
the boundary location candidates obtained from the gradieteictor was reduced by down sampling the boundary vertices.
operation. Figueiredo [7] controlled the smoothness in terrhte reduced the mean absolute boundary error to 3.1 mm from
of the energy of the Gibbs distribution, which approximateidis original 5.2 mm. Based on Lee and Suri’s formulation, we
the boundary probability. However, smoothness alone is nogde a further improvement. Our system is a three-stage oper-
enough. The boundary needs to be shaped like a heart. ation, whose mean absolute boundary error is about 2 mm. Fur-
Some researchers have tried to model the LV boundary usithgrmore, the human interobserver variability in terms of ED
certain critical points either entered by the user or detected ¥§lume, ES volume, and EF are just slightly below those of our
computer. Clayton [3] used five points: the apex, endpoints ABD procedure.
the AoV, and right- and left-most points on the LV boundary.
Barrett [4] initially used seven points, adding two points above [ll. METHOD
the AoV to the five points used by Clayton. Later, Barrett [5]
guided the algorithms using just four points: the two AoV en
points, apex, and mitral valve points. Except for the AoV en

~ Ourthree-stage ABD method is composed of a nonparametric
ayesian classification [11], [25], a shape calibration regression

points and apex, which have an explicit anatomical meani 6], [25], and a rejection classification [17], [25]. Fig. 1 shows

the other points were subjectively judged and, thus, might in-le ObJeCt. processing diagram (OED). of our three-stage ABD
: system. Since ES involves more variation than ED, the ED result
troduce a large variance to the model.

is usually more reliable than the ES result and can help with the

Other researchers trained their algorithms with the hand- : : .
traced LV boundaries. Fan's deformable model [9] set up t%s boundary delineation. Therefore, our processing of the ES

LV boundary region from the most interior LV boundary to the%undary is conditioned on the detected ED boundary.
most exterior LV boundary in the training set. Costa trained hAs
artificial neural network with the chord angle and length be-
tween the LV center and contour along the boundary [10]. All The Bayesian pixel classifier labels each pixel in the image
the above techniques used edge-based methods. As discufiége of the normalized systolic LVG with one of three classes:
earlier, however, the edge-based methods are not suitable¥agkground (Class 1), ED-not-ES (Class 2), and ES (Class 3),
the LVG boundary delineation problem. Consequently, we fowhich is based on the systole gray scale vector. This is shown in
mulated the high-level knowledge in terms of the LV region fdrig. 2. The underlying concept is that background pixels retain
our region-based method. their intensities throughout systole, ES pixels increase their in-

Automatic border delineation for LVGs has been studied fégnsities throughout systole, and ED-not-ES pixels demonstrate
ten years in our laboratory [11], [16], [25]. It became appareftcharacteristic pattern of gray values over time depending on
that no single-stage operation can fulfill the mission. Lee [11fjeir location as the LV border passes over the pixels during LV
formulated the ABD problem with an LV region segmentatiogontraction.
in the Bayesian framework. Motivated by the usefulness of the, . _ . . .

It is not always true. Since the possibility that the ES pixels stay outside the

temporal informati(_m- he used the gray scale at a_pixel locatigR yegion is small, that assumption was made to simplify the problem and avoid
through the systolic cycle where ED is the first image framgreliable probability estimation.

Pixel Region Classification
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OPD of a three-stage ABD system.
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Fig. 2. Gray-scale vector.

malizes the image size, but also benefits the performance eval-
uation in millimeter unit. Noise filtering is implemented by the
gray-scale morphological opening and closing [15]. This is sim-
ilar to median filtering, but in addition, it preserves the location
of the gray-scale boundary transition, and at the same time, fil-
ters outthe noise. The heart-rate normalization is essential to the
classification in that it makes the raw feature vector dimension
a constant 12.

Only the pixels within the region of interest (ROI) are pro-
cessed. The ROI is the area outside in which no part of the LV
would occur. It was obtained by overlapping all the ground truth
(GT) class region images together. The largest LV region re-
sulting from the overlapping was morphologically dilated by a
7 x 7 square structuring element. The dilation ensures the mask
can be generalized to the entire LVG population. The ROl is

1) Online Processing:Before classification, the systole im-shown in Fig. 3.
ages from ED to ES go through pixel size calibration [11], noise The gray-scale values of the 12 image frames are normalized
filtering [11], and are normalized to 12 frames to adjust for varby the cumulative distribution function (CDF) within the ROI
ability in frame rate and heart rate [11]. The pixel size calibran the sequence. That is, each pixel’'s gray-scale value is trans-
tion makes the pixel square in millimeter unit. This not only noiformed to a fraction between 0-1, where the fraction means the
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For the ED pixel classification

p(dX, (u,v)) < p(X|e)p(c|(u, v)) 3

wherep(c|(u,v)) is the prior probability of class € {1,2,3}
at (u, v), andp(X|c) is the class conditional probability ot
given class;, which is assumed to be independent®fv).

For the ES pixel classification, the posterior probability
p(c|X, (v,v)) depends on the previously delineated ED
boundary and is written as

p(C|X, d, (U'v U)) X p(X|c)p(c|(u, v))p(d|c, (U'v U)) (4)

wherep(d|c, (u,v)) is the probability of the shortest distance
between(w, v) and the automatically delineated ED boundary
given class:.

After classification, the pixels of the same class are grouped
gether. For the ED classification, the candidate ED regions are
composed of the pixels of classes 2 and 3. The largest candidate

Fig. 3. ROl displayed as the black hole.

fraction of pixels within the ROI on all 12 image frames tha{O
have a gray-scale value less than or equal to it. Hence,

i (u,v) region is selected as the true ED region. The ED region is further
yi(u,v) = Z n (1) refined by removing the class 3 pixels outside the class 2 pixels.
s N This position checking enforces the class category assumption

. ) ) ) . that the ES pixels are not located outside the ED region. The bi-
wherei € 1,...,12is the image frame indexy, v) is the pixel  nary morphological opening and closing are used to smooth the
location in the image frame; is the number of pixels whose region boundary. After that, the raw ED boundary is traced from
gray scale ig in the ROl on the 12 image frame¥, is the total  the ED region and represented by 100 evenly spaced points. The
number of pixels in the ROI of the 12 image framggu, v) IS same postprocessing is applied to the ES classification in which
the original pixel gray scale &t., v) of theith image frame, and e ES region is composed of class 3 pixels.

vi(u,v) is the pixel value afu, v) of theith image frame after 2y cjassifier Training: The classifier training includes es-
normalization. The normalization is done with respect to tqﬁnaﬁng the class conditional probabilipf X |c), prior prob-
entire systole sequence rather than a single image frame becaysy p(c|(u,v)), and class conditional distance probability
this keeps the gray-scale value change pattern through systqj@dm (u,v)).

The 12 CDF normalized pixel values at each pixel location Redycing the feature vector dimension from 12 to 4 makes
form a vectorY’ = (y1,...,y12). This vector is projected it possible to estimate the class conditional probabilities
onto the eigenvectors of the second moment matrix 'of trﬁ@qc) nonparametrically. A four-dimensional (4-D) lookup
sample pixel value vectory = 11, YY), whereM is iaple (LUT) is constructed by dividing the 4-D space into
the total number of training vecFors. In our data set of 37r$onunif0rmly sized hyperrectangular bins and estimating
cases,M = 40, 056, 750. The eigenvectors are ordered Sgne probability in each hyperrectangle by simply counting.
that their eigenvalues are descending. The first four princip@bmpared to the decision tree or the artificial neural network,
components (PCs) df, X' = (zy,...,24), are used as the the LUT method has the advantage of being simple and fast. To
feature vector for the classifier. _ determine the class conditional probability of a feature vector,

The pixel classification is based on a Bayesian rule maye feature vector is quantized to make an address to access the

imizing the expected gain. Given the gain mat& = | yT. The probability is looked up from the addressed entry in
{g(e,d)|e,d € {1,2,3}}, where 1 denotes the backgrounghe taple.

class, 2 denotes the ED-not-ES class, 3 denotes the ES clasgjyen a number of samples &f and the number: of bins of

andg(c, ) denotes the gain of assigning to claswhile the e | UT, the number of bin, for theith dimension is allocated
true class is”, the expected gain of classifyin§ at (u,v) t0  according to the marginal entroy on that dimension so that

classc is m = Il b and the marginal information loss is minimal.
3 According to Shannon’s theory [13], the entropy reflects the
E(g(clX)) = > gle.d)p(d|X, (u,v)) information amount. The total bits available for anbin LUT
o/=1 to describe the marginal informationlisz, m. The number of

wherep(c|X, (u, v)) is the posterior probability of classgiven bits assigned to axisis proportional to théth marginal entropy

the feature vectoK at location(u, v). The Bayesian rule clas- L

sifies X at (u, v) to classc if the assignment to classyields hi=Y_ pjlogp; (5)
the expected maximal gain j=
h;
E(g(c]X)) = max E(g(d]X)) 2 Ai == logy m (6)

whered € {1,2,3}. j=1
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Aortic Valve

wherel; is the number of digitizing level fat;, p; is the prob-
ability of z; atlevelj, and: = 1, ...,4. The number of bins on
axisi is

b = [2V] (7)

where[-] denotes the closest integer. Each marginal distribution
of x; is quantized intd; bins with equal probability quantiza-
tion, which minimizes the marginal information loss.

After each training sample has been put into one of the bins
in the LUT, the class mixture samples are smoothed by-a
NN kernel [14]. As a result, each bin contains three class con-
ditional probabilities estimated by frequency counting of how
many samples of each class are in the bin. Fig. 4. Three-user input points determines the AoV angle, AoV middle point,

The LUT sizem and smoothing parametérdetermine the 2nd apex, which define the alignment transform.
generalization capability of the LUT. The optimal and% are
obtained by searching the flat minima of the cross-validated q(u,v)
bidirectional Kullback—Liebler distance between the observed
LUT and smoothed LUT

| Apex
|

L(p(X). (X)) ko = Y (pi(X) = i(X)) log §E§§

i=1
®)

wherep;(X) is the observed class mixture probability at bin
¢ andp;(X) is the class mixture probability estimated by
NN by leaving out the samples at bin The flat minima of
L(p(X), p(X))|x,m Suggests a good generalization parameter
region [26]. . e . . .. Fig. 5. Distance between the pixel and the delineated ED boundary.
The class prior probabilities at each pixel location constitute
the knowledge about the LV shape, size, and position. A set
of 375 GT class region images generated from the hand-traced N.D(r, ¢) #{n|Dn(iaj) =1,(¢,5) = falr, C)} (10)
boundaries are aligned by a transformation to a common LV o o
region by a least squares fitting of their AoV angles and long NS(r,c) :#{”w"("’]) =1,(4,7) = gn(r, C)} 11
axes. The LV AoV angle and long axis are defined by the AoV s ¢ . _ -
end points and apex, shown in Fig. 4. Those aligned GT Clég[gere #" is the counting operator. The prior probabilities at
region images are stacked one on the top of the other. The prEb<) are then
ability of each class at each pixel location is estimated by fre-

. . e NB(r,c)
guency counting from the aligned GT class region images and PB(r,c) = NB(r,c) + ND(r,¢) + NS(r,c) (12)
smoothing the frequency count images with & 7 square box ’ ND( K ) ’
flter. PD(r,c) = ne (13)
The prior probability image alignment needs the user to enter NB(r,c) + ND(r,c) + N5(r, ¢)
three points for ED and three points for ES. The alignment based PS(r,c) = NS(r,c) . (14)
on the ED three points defines the geometric transformation ’ NB(r,c) + ND(r,c) + NS(r,c)

f» that aligns the prior probability images for ED-not-ES and . . i
background with image sequence for patientThe user en- Since the alignment uses an AoV angle and long axis defined

tered three points of ES defines the geometric transformatig}ﬁthethree points with the anatomical meanings, the alignment

. that aligns the prior probability image for ES with the ima as a good estimation reliability.
gequencégfor patignlnt P ity imag W 'mag Given the delineated ED boundary, the shortest distance be-

Let: 1) B,, be the background GT class region image for Jween a pixel location and the boundary can be computed. The
) grou gion Imag P istance is signed, as shown in Fig. 5. The pixel inside the ED

. 2
tient studyn; 2) D,, be the ED (ED-not-ES) GT class regio ' . . .
yn; 2) ( ) 9 nboundary has a minus sign, outside has a plus sign, and on the

image for patient study,; 3) S, be the ES GT class region . o .
image for patient study: 4) PB be the prior probability image boundar.y is zero. The ED boundary is divided into severa! seg-
ments since the wall movement along the ED boundary is not

for background; 5 D be the probability image for ED-not-ES; . : :
grou P P Hy imag even. The class conditional distance histograms are then setup

d 6)PS be th bability i for ES
and 6) © the probability image for for each segment, given the pixel class and the corresponding
o o segment on the ED boundary. The class conditional distance
NB(r,c) = #{H|Bn(%,]) =1,(4,5) = falr, C)} (9)  probabilities are estimated from the histograms.
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gression coefficient matriCp, 1) p, determined offline by
training, the regressed boundary is

B = ([YAp]: T;)CA/, (15)

whereB is the calibrated boundar 5, andA p, are matrices

of the first P, and P; eigenvectors irA, the prime denotes the
transpose, and; containst augmentation terms coming from
the three-user input points. For the ED boundary regresgion,

is the full quadratic terms of the coordinates of the user-entered
three ED points. Those consist of a constant, 6 first order items
and 21 second order items. Thuids equal to 28. For the ES
boundary regressiof; is the full quadratic terms of the three
user-entered ES points, atighartial quadratic terms of the three
ED points. Thust is equal to{28 + t').

2) Regression Training:The regression coefficient estima-
tion has a potential generalization problem due to the two-hun-
dred-dimensional boundary vector space. In order to reduce the
Fig. 6. Bias errors produced by the pixel classification system. (top) Classifigegrees of freedom, the number of FGsandP; involved in the
poundery e and cuiide e e b, () Cissier boun8Hression from the raw boundary and the GT, respectivel. need
diaphragm. (bottom, right) Classifier boundary outside the ideal boundary in tip b€ as small as possible, while maintaining good performance.
two-third region and underestimated in the bottom one-third region. Their sizes are determined by an Optimization procedure_

LetZ = (Z1,%>,...,Z,) be a matrix of» GT boundaries,
in which Z; is the:th boundary; lefY = (Y1,Y>,...,Y,,) be
a matrix ofn classifier output boundaries, in whid) corre-

It was observed that the classifier has some systematic sh§p8nds 1%, and letA p, andA p, be two subsets oA, which
bias errors. Fig. 6 shows some examples of the shape bias®is COmposed of the firgt, and P; eigenvectors i, respec-
order to normalize out those errors, we use a shape regres&ily- The coefficient matrixC is estimated offline to minimize
after the classifier. Each LV boundary is taken as a two-hun-
dred-dimensional vector by concatenating its vertex coordinates W —VC (16)
into a vector. The boundary vector is then approximated by rep-
resenting it in the first few dimensions of the LV shape spadéhereV = ([YAp]: T), W = ZAp,, andT is the aug-
defined by the eigenvectors of the second moment matrix of tRgentation matrix. The standard least squares solution for (16)
sample GT boundary vectors. The reason for compressing d@géimates & +t) x Pz matrix C
by PC analysis is to sufficiently reduce the number of coeffi-
cients the regression has to estimate so that the regression is C=(VV)"'V'w (17)
able to generalize rather than memorize the training data.

These first few PCs contain most of the shape informatioheret is the number of the augmentation terms. _
instead of using the information in a deformable model, as in Motivated by the knowledge that the ED boundary contains
[24], to reconstruct the target. We adopt a regression, whichiormation about the ES boundary, some of the quadratic terms
more time efficient. The idea of the regression is to transform tRéthe three 3 ED points are used in the ES boundary regression.
coordinates of the raw classifier boundary vector to a place T® determine the partial quadratic augmentation from the ED
the LV shape space where the coordinates are more like an ®ints for the ES regression, [B = (Ri,...,R;,..., R,)',
boundary. The regression vector is composed of the projectdiere i; is theith 1 x 27 row vector including the six row
coordinates of the raw boundary vector on the eigenvectorsastd column coordinates of th¢h three ED points and their
the second moment matrix of the sample GT boundary vecto?d. quadratic combinations. L& = (Z,,...,Z,)" be the ES
Furthermore, the regression vector is augmented by the udef- boundary vector matrixz; corresponds t&;. A 27 x 200
entered AoV endpoints and apex, which put more constraimefficient matrixQ is estimated by minimizing
on the regression results with the size and shape indicated by
the three points. The regressed boundary coordinates are the |Z — RQ)||. (18)
linear combinations of the coordinates in the shape space and
the quadratically augmentation terms of the user entered poifftee ith row of Q, (g1,...,g200),¢ = 1,...,27, contains

We will now describe the online process in detail. 200 coefficients of the correspondingh ED augmentation

1) Online RegressionGiven: 1) araw boundary vectdr = term for the 200 ES boundary coordinates, respectively. The
(r1,¢1,.-.,7100, c100) from the classifier; 2) two AoV points term that corresponds to a large mean of the 200 coefficients
and the apex coordinates entered by the user; 3) a mAtfrix (1/200) zggol ¢:; is of a big influence on the ES boundary
whose columns are the full set of the eigenvectors of the samptmrdinates and selected as the augmentation term for the ES
second moment matrix of the GT boundary space; and 4) a bmundary regression.

B. Shape Regression
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Fig. 7. Flowchart for the systematic optimization to minimize the cost.

AREA COMPUTATIONS

Fig. 8. Hamming distance between the area enclosed by two boundaries. It

equal to the sum of the shaded areas in the graph.

Fig. 9. Example of the GT class image. (bright): ES class (class 3). (gra

ED-not-ES class (class 2). (dark): background class (class 1).
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Fig. 10. Frame rate and square pixel normalized 12-frame systolic cycle
images. The gray scales are before the CDF normalization. The upper left-hand
side is the ED frame, the bottom right-hand side is the ES frame.
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Fig. 11. Frame rate and square pixel normalized 12-frame systolic cycle
images. The gray scales are CDF normalized. The upper left-hand side is the
ED frame, the bottom right-hand side is ES frame.

C. Rejection Classifier

1) Online Rejection:From the raw and regressed bound-
aries, two sets of parameters can be computed: the ED and ES
volumes, and the EF, the ED, and ES areas. In addition, the mean
absolute ED boundary difference between classifier and regres-
sion, and the mean absolute ES boundary difference between
classifier and regression can also be obtained. Those measure-
ments are defined at the conclusion of this section. The rejection
classifier takes those parameters as the rejection feature vector.
The difference between the two sets of the parameters indicates,

ore or less, the unreliability of the border detection. Given
ﬂe classification weight¥72y; on the rejection feature vector
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Fig. 12. PC histograms before the gray-scale CDF normalization. (a) Histograms of the first PCs of the three classes. (b) Histograms of the seitend PCs o
three classes. (c) Histograms of the third PCs of the three classes. (d) Histograms of the fourth PCs of the three classes. Class 1 is the bagkgjemsriglislas
the ED-but-not-ES class, class 3 is the ES class.

Ui «12 and a decision threshotd, a study is rejected if the dif- rejected. Here; is the decision threshold, which is obtained by

ference is greater than the thresholdl”™ > ¢,. minimizing a cost function. The cost function is defined as
2) Rejection Training: Supposen training cases are avail- — o

able. LetE' be ann x 1 objective vector whose elements are cost = Z ;i + Z w (21)

one or zero. One indicates that the corresponding training case - —

associated with its component position has an ED volume, I\?V%eren is the total number of the training cases, is the

volume or EF error greater than an acceptable threshold. Z%ruomber of the rejected cases,is the true error of théth ac-

indicates that its error is acceptable. The fraction of one com- : . .
. o N . cepted case, andis the predefined cost for a rejected case. The
ponents in the rejection objective vector is roughly 5% of thé L )
- second term of (21) encourages the rejection of studies whose
training cases such that the same percentage of the worst cases . ) L . .
. error is greater thaw, and punishes the rejection of studies with
of the ED volume, ES volume, and EF, respectively, are flaggeSrhaller errors tham
Let V be ann x 12 matrix, each of whose rows is a rejection '

classifier vector for its corresponding study. The classifier cqu— System Optimization

ficientsY, an 12x 1 vector, can be estimated by minimizing ) o o
The whole system is optimized after the estimation of each

|E - VY. (19) tuning parameter is in a suitable range. The optimization is to
minimize the cross-validated EF error cost after the rejection.
The standard least squares solution for (19) is The tuned training parameters include the LUT size, the LUT
smoothing parametgt-N N, the prior probability smoothing
Y =(VV) 'VE. (20) parameter, the class conditional distance histogram sectors,

which divides the delineated ED boundary, the gain matrices
A rejection decision is made on the study whose feature vec{&GMs), the regression dimensiof®, P3, and the rejection
isV whenVY > t,. WhenVY < #,, the study results are notthresholdt,. Fig. 7 shows the optimization flowchart.
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Fig. 13. PC histograms after the gray-scale CDF normalization. (a) Histograms of the first PCs of the three classes and the mixed class. (b)dfitstegrams
second PCs of the three classes and the mixed class. (c) Histograms of the third PCs of the three classes and the mixed class. (d) HistogramBG&tbE fourth

the three classes and the mixed class.

E. Measurements Used in the Rejection Classifier

Froman LV bOUndarj(Tl, Cl), (7’2, CQ), caey (7’100, ClOO)} in
millimeter unit, the perimeter of the LV is
100

p= Z \/ —rir1)? + (6 — ¢ip1)? (22)

where(r1o1, c101) = (7‘1, ¢1). The area of the LV is

100 (a) (b)
Z |cz+l7z — GT z+1| (23)
Fig.14. Example ofthe classregion image after the ED classifier and the result
Where(rlm, 6101) _ (7,1’ 61) The LV volume can be esumatedafter the postprocessing. The dark gray is the background region, the mid gray
by [27 s the ED-not-ES region, and the bright gray is the ES region. The white in the
y [ ] rlght hand-side image are the rejected ES pixels after position checking.
8A?
The mean absolute ED volume deviation, ES volume deviation,

wherel is the maximum chamber Iength The EF EFis estimateghq EF deviation between the ABD results and hand-traced re-

as the ratio of the volume difference between ED and ES ougjits are used for the ABD system performance evaluations.

the ED volume Besides those volume-related measurements, the mean abso-
Vip — Vis lute boundary error between two boundaries is used in the de-

EF = Vep (25) velopment of the ABD system. Let; and A, be the areas en-
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() (b) (@) (b)

Fig. 15. ED classifier (thin) and regression boundary (thin) compared with ig. 19. ES classifier (thin) and regression boundary (thin) compared with its
GT boundary (thick). (a) ED frame: GT and classifier. (b) ED frame: GT an@T boundary (thick). (a) ES frame: GT and classifier. (b) ES frame: GT and
regressed. regression.

o.3s ¥ T
T Classifiar Boundan
—&- Calibrated Bounda

o.zf-

0.08 |~

“ac —80 —ad —2 ;
20 0 8o a0

0 3 2 h
ED Voluma Error (mrt) —100 —80 —60 —a0 —=20
ESV Error (mi)

Fig.16. Histograms ofthe signed ED volume errors of the classifier outputs aagh 0. Histograms of the signed ES volume errors of the classifier outputs and
calibrated results. Cross-validation grodps= 5. The number of studiesis 375. ¢jiprated results. Cross-validation grougs= 5. The number of studies is 375.

EF Error

Fig. 17. (a) ED gray-scale image overlaid with the GT boundary (gray) anu

Lhe cldassifier boundgx Qr/] (brigho). (b) EbD grzy—scat:e_ irr?age overlaid with the GI—Iig. 21. Histograms of the signed EF errors of the classifier outputs and
oundary (gray) and the regression boundary (bright). calibrated results. Cross-validation groups= 5. The number of studies is 375.

oS =
Fe-Ganan TABLE |
ES VOLUME AND EF ERRORS OF THEAUGMENTED REGRESSION WITH
7 AND WITHOUT THE DEPENDENCE ONED

§r Error Type Without ED Augmentation | With ED Augmentation
orer 7 Mean of the Abs.
o 4 ES Volume Error 12.4ml 10.4ml
Variance of the
o Abs. ES Volume Error 150 97

—100 —80 —60 —40 —20 o 20 EY: 60 80
ESV Error (ml)

Fig. 18. Histograms of the signed ES volume errors of the classifiers nb€ boundary error reflects the shape deviation between the
conditioned and conditioned on the ED results. Cross validation giiiupss.  ABD results and the hand-traced results.

closed by two LV boundaries, the Hamming distance between IV. EXPERIMENTS AND RESULTS

the two areas is A. Data Preparation

h(A1, 42) = |A1 n A2| - |A1 n A2| (26) The system was trained and tested with cross validation on
An example of the Hamming distance is shown in Fig. 8. L&75 LVGs. Of these, 210 were of 35 patients studied serially
p1 and p, be the perimeter of the two boundaries. The meaver one year following acute myocardial infarction [28]. The

absolute boundary error is defined by remaining LVGs were from diagnostic cardiac catheterizations.
h(Ay, As) All LVGs were recorded on 35-mm cine film and included im-
€= "o 2 (27) ages of a calibration figure of known dimension. The images in

2 the selected cardiac cycle were digitized using a frame grabber
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Fig. 24. (a) EF scatter plot before rejection. (b) EF scatter plot after rejection. The line is the identity line in both figures.

(Imaging Technology, Woburn, MA) seated in a personal com- The 375 studies were randomly divided into five groups. The
puter (Intel) at a resolution of 512 480. Each study of the following experiments, except stated otherwise, were trained on
375 cases had its ED and ES boundary traced by a human fexw groups and tested on the remaining. They were repeated for
pert. Those hand-traced boundaries were used as the GT forfilietimes until every study was involved in the testing.

ABD performance evaluation. From the hand-traced boundary, ) )

the GT class region image was generated by filling in the arBa Online Processing and Results

enclosed by the boundaries. It gave each pixel in the image a GTA raw systolic image sequence is input into the system. It goes
class. Fig. 9 shows an example of the GT class region imagehrough the preprocessing, the ED region classification, the ED
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TABLE I TABLE V
MEAN ABSOLUTE ERRORS OF THEABD SYSTEM WITH AND WITHOUT LINE FITTING USING A BD AS THE INDEPENDENT VARIABLE AFTER
REJECTION REJECTION FOR THE375 TRAINING CASES
Error Type Without Rejection | With Rejection Measurement | a v SEE
Mean Absolute ED Volume Error 11.6ml 10.5mi ED Volume |0.99 [0.77 [ 12.5 ml
Mean Absolute ES Volume Error 10.4ml 8.2ml ES Volume [0.99]0.72]10.2 ml
Mean Absolute EF Error 6.9% 6.0% EF 0991053 7.5%
ED Border Error 1.7mm 1.6mm
ES Border Error 2.3mm 2.2mm TABLE VI
Mean Absolute ED Volume Error -0.1ml 0.7ml MEAN ABSOLUTE BOUNDARY ERRORS OFLEE'S CLASSIFIER AND
Mean Absolute ES Volume Error -0.2ml -0.3ml OUR CLASSIFIER
Mean Absolute EF Error 0.1% 0.3%
Error Type Lee’s Classifier | Our Classifier
TABLE Il Average ED and ES mean Boundary Error 3.4mm | 2.2mm
INTEROBSERVERVARIABILITY IN MEASURING LV V OLUME AND EF
TABLE ViII
Reference EDV ESV EF Notes BOUNDARY ERRORS OF THECLASSIFIER OUTPUT AND CALIBRATED RESULT
18 20ml 10ml 5% mean absolute difference WITH LEE'S CLASSIFIER
19 10.8 4 1.9ml 5.7+ 0.8ml 3.9% £ 0.5% | mean absolute difference:SE
20 L0m! 6l 4% __SEE ED and ES Error Statistics
21 3.0+11.8ml 2.6+£49ml 1.9%:£4.1% | mean signed difference=SD i3 Classif R .
27 3.3ml 7 3ml Iml SEE rame assier cgression
55 = 5l o ERE SEE Mean of the ED Error | 3.1 (mm )| 2.1 (mm)
23 51% +4.8% mean signed difference Mean of the ES Error | 3.7 (mm )| 2.6 (mm )
Variance of the ED Error 3.0 1.2
Variance of the ES Error 34 1.3
TABLE IV
LINE FITTING USING GROUND TRUTH AS THE INDEPENDENTVARIABLE AFTER TABLE VIII
REJECTION FOR THE375 TRAINING CASES ENTROPIES
Measurement | a v SEE - -
ED Volume | 1 ] 0.76 | 12.6 ml Dimension | 1 2 3 4
ES Volume 0.97 | 0.67 | 10.1 ml Entropy 18.496 16445 15.036 | 14.090
EF 099047 | 7.5%
TABLE IX

. . g . LUT Sizes (M = 22°) FOR THE CLASSIFIER TRAINING
shape regression, the ES region classification, and the ES shape ( )

regression. Finally, the ED and ES classifier boundaries, the E Bins
and ES regression boundaries are input to the rejection classifi ng&m Dime;;ion L Dime;:ion 2 Dimelngion 3 Dime;lsion 4
It labels the resul_t as accepted_or re!ected._ _ o 0290 i 55 55 15

1) Preprocessing:After the pixel size calibration, noise fil- ~575M 50 33 74 20
tering, and heart rate normalization, the raw systolic LVGs ar 12% 52 ig gg gi
normalized to have 12 frames. Fig. 10 shows an example =7 6
a 12-frame systolic image sequence. The pixel gray scales ar= KoL Distance Surface
then normalized by its CDF within the sequence. Fig. 11 shov R j

the result in which the CDF values were quantized to 256 gra.

scale levels between 0—255. The CDF gray-scale normalizati s

effect is obvious since the LV region became more uniform ar g

the contrast at the border region increased. As a matter of faZ,_,

the CDF normalization expanded the gray-scale dynamic ranj o+

so that the separability of the first four PCs among differer” °*

classes increased. The results are shown in Figs. 12 and oz

Fig. 13 also suggested that four PCs were enough for the clas

fication since the histograms of different classes began to mer

in the fourth PC. LUT Size (M) l o o
2) ED Region Classification:The first four PCs of a gray-

scale vector at a pixel location is input to the ED region clasig. 25. 3-D mesh surface of tife-L distance (8) obtained with 19974 966

sifier, together with the ED decision gain matrix, a 0.7-M clag&ining samples.

conditional probability LUT {4 = 2%°) and the prior prob-

ability images aligned to the user entered points. The output3) ED Shape RegressiorGiven the raw classifier ED

of the ED region classification is a pixel class image in whichoundary, the user enters three ED points and the regression

each pixel value is a class label. A typical output from the EPoefficients, the ED shape regression makes the boundary

classifier is shown in Fig. 14(a). The output is noisy. Thenmore heart shaped. Fig. 15 shows an example of the shape

are holes in the regions. Some ES class pixels are outside rtbgression. The ED volume error histogram taken over 375

ED-not-ES class pixels and a curl could be seen near the miiudies is shown in Fig. 16.

tral valve. Fig. 14(b) shows the results after postprocessing. Thelhe shape regression improved the ED volume accuracy by

classifier boundary is ready to be traced. correcting the bias of the classifier results. However, it did not

1000

Smoothing k
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Fig. 26. Projecting the sample curves on the 3-D surface in Fig. 25 onto the axis of smoothing kerhelegizée) Graphs of 0.24-, 0.49-, 0.75-, 1.2-, and 1.7-M
LUT. They were constructed from 19 974 966 samples.

improve the boundary accuracy. The ED boundary errors bef@ned the class conditional distance histograms are input into the
and after the regression were both 1.7 mm. That is because B&region classifier. After a similar postprocessing to that of
boundary error measurement is more critical than the volurttee ED region classification, the raw ES classifier boundary is
measurement. The small errors along the ED boundary can kaitained.
ance the volume error, but worsen the boundary error. The improvement of the ES classification conditioned on the
Though the regression improved the overall volume peED result is shown in Fig. 18. The conditioned ES classifier
formance, it could bring some errors to a classifier boundatyemendously reduced the system bias that the one-layer classi-
Fig. 17 shows an example. Here, the regression smoothed fizdtion had.
the correct classifier boundary at the inferior wall. 5) ES Shape Regressioilhe ES shape regression utilizes
4) ES Region ClassificationThe ES region classifier is the user-entered three ED points as well as three ES points. An
conditioned on the ED result. In addition to the inputs to thexample of the ES regression results is shown in Fig. 19. The ES
ED region classifier, the automatically delineated ED boundavplume and EF error histograms are shown in Figs. 20 and 21.
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TABLE X
SEGMENT SLOPE IN FIG. 26(a)—(e)

Slope of the Segment between

LUT Size 1-60 60-100 [ 100-200 | 200-300 [ 300-400 | 400-600 | 600-800 | 800-1000
0.24M 0.0003 0.0003 0.0000 -0.0002 -0.0002 -0.0001 -0.0000 0.0000
0.49M 0.0004 | -0.0000 { -0.0003 -0.0002 -0.0000 -0.0000 0.0000 0.0000
0.75M 0.0001 -0.0005 | -0.0003 -0.0001 -0.0000 -0.0000 0.0000 0.0000
1.2M -0.0005 | -0.0006 | -0.0002 0.0000 -0.0000 0.0001 0.0000 0.0000
1.7M -0.0010 [ -0.0005 | -0.0002 0.0000 0.0001 0.0001 0.0000 0.0000

Since the conditioned ES classifier reduced the classifier 1
sult bias, the ES volume improvement was not as big as the
volume improvement. However, the regression had an appar '
improvement on the EF result. That is because the regress f
makes the ES boundaries more heart shaped, as shown by
reduction in the ES border error from 2.7 to 2.3 mm. _—

With the dependence of the ES boundary regression on 1
three ED points, the calibrated ES results were improved fro
the non-ED-augmented regression. The comparison is shown in (a) (b)

Table I. L. . . Fig. 27. (a) General prior probability image of ED-not-ES class. (b) General

6) Rejection: The cross-validated classifier ED and ESrior probability image of ES class.
boundaries and regressed ED and ES boundaries are input to
the rejection classifier. Fig. 22 shows the scatter plots of tia¢ Table IIl, our cross-validated results had a smaller signed
ED volume before and after the rejection. The ABD algorithrifference than the published data about human interobserver
consistently underestimated large LVs whose ED volumes wejgriability. That might be because the published data were tested
bigger than 200 mL. Fig. 23 shows the scatter plots of the kgh a small sample of LVG, about 18 to 40 studies varying from
volume before and after the rejection. LVs with a large ED @jase to case, and a small sample test tends to have a bias. Our
ES volume were rejected by this classifier. Due to the errors @fsults were tested on a 375 case database, thus, it is unlikely to
the large LVs, the EF scatter plot, shown in Fig. 24(a), had sorskgow the bias.
bad performance for small EF values before the rejection. AsFurthermore, we least square fit the scatter plots in
shown in Fig. 24(b), these were later rejected by the rejectigiys. 22—24 withy = ax in order to assure ourselves that the

classifier. coefficienta has a value near one. We define the coefficient of
Table Il shows the mean absolute and signed volume and Eé&terminationy and standard error of the estimate (SEE) by

deviations before and after the rejection. The rejection did not n

introduce much bias to the final results as the magnitudes of Z (i — 0i)?

the mean signed differences were barely changed before and _q_ =t

after the rejection. Nevertheless, the performance, in terms of = "

the absolute difference, on ED volume, ES volume, and EF were Z (vi —7)?

all improved, apparently as a result of the rejection classifier.

C. Performance Evaluations

1) Comparison with Human Interobserver Variabilitfpue
to the lack of a gold standard for measuring LV voluimeivo, Wherey; is the:th truey sampleg; is the:th estimated, with
manual tracing of the LVG has been used as the accuracy star= @, andn is the number of sampleg,(1/n) X7, v;.
dard. However, manual tracing is subject to interobserver vari-Tables IV and V show the fitted slope the coefficient of de-
ability. Our performance evaluation compared the difference J&rminatiorry, and SEE between the GT and ABD results after
tween the ABD and hand-traced results with the magnitude e rejection. Compared with Table Ill, our results after the re-
human interobserver variability. Table Il shows some publishé@ction were slightly above human interobserver variability.
results on human interobserver variability. 2) Comparison with Lee’s Resulffable VI shows the

Comparing the results after rejection in Table Il with the firdoundary errors of Lee’s classifier and our classifier. Lee’s
two rows in Table I1I, our mean absolute ED volume differenc@assifier had a one-layer structure for both ED and ES. It
is comparable to human interobserver variability. Our mean a#§d not include the CDF gray-scale normalization. Lee used
solute ES volume difference is between the published interdd@halanobis distance histograms to look up the class condi-
server variability and our mean absolute EF difference is slightiphal probabilities of the feature vector and generated the prior
higher than the published data. probabilities with only two AoV points. We used the raw results

The last three rows of Table Il shows our signed differende®m our ED classifiet to compare with Lee’s result on the

of ED VOIUm?’ ES volume, and EF be_tween the ABD resultszOur ED classifier can produce the ES boundary by tracing the ES region
and hand-trained results. Compared with the fourth and last reswposed of only the ES pixels.
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Fig. 28. Class conditional histograms of the signed distance between the pixels in the image frame and the ED boundary. (a) Background clas€£ &) ED-no
class. (c) ES class.

same data. The comparison shows that our border performancand smoothing kernel siZe the class prior probabilities, the
was better by 1.2 mm. class conditional histograms of the distance between a pixel, and
3) Comparison with Suri's ResultThe shape regressionthe delineated ED boundary.
was applied to Lee’s classifier [11]. The cross validation was 1) LUT Size and SmoothingThere are 40056 750 sample
the leave-one-out method. The performance was measuredobirs of a 4-D feature vector and its GT class in the ROI of
the boundary error, as defined in the previous section. SoRig5 cases. The discrete entropy of each dimension is shown in
statistics of the errors are shown in Table VII. Using the shafable VIII. Table 1X lists the number of bins on each dimension
regression scheme, the average mean boundary error of ED gnen the LUT sizen.
ES frames improved from 3.4 to 2.4 mm. This outperformed From the 40056 750 samples, 19974966 points were ran-
Suri’s method [16], whose average ED and ES error was abalaimly picked out to construct a series of LUTs in Table IX,
2.7 mm on the same data. smoothed withk: € {1, 60, 100, 200, 300, 400, 600, 800, 1000}.
The experiment was repeated ten times with the shuffled sam-
ples. Fig. 25 shows the three-dimensional (3-D) surface of the
mean bidirectionak’- L distance (8) of the mixture distribution.
Some offline classification training results are briefly disAs seen in this figure, there is a flat region on #iiel distance
cussed here. They are the class conditional probability LUT sigerface. That is the place where the distribution is not sensitive

D. Offline Training
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to the LUT size and the smoothing kernel size so that a generThe third component is the method for rejecting studies
alization can be obtained. whose image sequence are likely to produce suspicious or
Fig. 26 shows the graphs of projecting the 3-D surface imphysiological borders. Just as clinical ventriculograms are
Fig. 25 onto the smoothing kernel size axisAs seen from rejected for manual tracing if there is poor contrast quality, we
those graphs, the LUT of 0.24 M has a big hump at the shsall sought a method to warn the user of these problems in the ABD
The samples in the neighboring bins have a negative influenm®cess.
on the cross-validated bin. The nearest neighbors do not hav&inally, the large number of training studies and the normal-
similarity to the cross-validated samples. That could be dueimation before pixel region classification helped, in large part,
that too many samples are quantized into a bin. Moreover, tteeensure that the methodology is able to generalize rather than
minimal K-L distance obtained & = 700 is not much dif- memorize the training data.
ferent from the one dt = 1. Its variance among the shuffles at Future work includes improving the ABD performance on
each sample point is quite big. On the other hand, as the LUfie large-volume LV cases. Due the insufficient representation
size became larger, in the graph of 1.7-M LUT, for instance, tloé those large LVs in the database, the ABD has a systematic
minima are more like a valley than a flat region, together witinderestimation of the volume for those cases. A possible re-
a big variance. That implies that the observed data are likelygearch direction is to set up an independent shape regression
be sparse in the LUT. Table X shows the slopes of the segmecadibration for those cases where initial ABD shows them to be
in each graph of Fig. 26. The flattest graphs are the ones of thgge-volume cases.
0.49- and 0.75-M LUT. Also, the shuffle variances in 0.49- and
0.75-M LUTs are relatively small, which implies a good gener-
alization. The suitablé is between 200-800. )
Fig. 27 shows the prior probability images of the ED-not-ES The authors want to thank the staff at the Cardiovascular

class and ES class, in which the bright areas are the high-priigSearch and Training Center, School of Medicine, University
ability regions. They were generated by aligning all the G§ Washington, Seattle, for organizing the LVG data and the
boundaries with their AoV angles and long axes, and estima@@nd—traced boundgnes. The authors are thankful for the pa-
by frequency counting. That alignment makes them less serfgnce and generosity of the Goodman Ltd. Company, Nagoya,

ACKNOWLEDGMENT

tive to the exact coordinates location of the user-entered pointéPan-:

Fig. 28 shows the class conditional histograms of the distance
between a pixel and the delineated ED boundary. They provides
the third term on the left-hand side of (4). [

V. CONCLUSION [2]

Our results indicate that the ABD process presented in thisjz)
paper is able to detect and delineate the endocardial contour of
the LV from contrast ventricoulograms with an accuracy compa- 4]
rable to the magnitude of human interobserver variability. The
success of this process is due to the integration of knowledge
concerning human cardiac anatomy and physiology with thel®!
imaging data.

The region classifier embodies knowledge concerning the
expected regional movement of the ventricular wall during [€]
systole. With it we sought to emulate the human observer’s
practice of reviewing wall motion through the cardiac cycle [7]
to help define the endocardial contour. The region classifier
also utilizes the shape and size knowledge contained by th
user-entered ED and ES points to adjust the prior probability
images so that the classifier can focus on the area where the
LV is likely to be. o]

The regression calibration embodies knowledge concerning
the expected shape of the LV endocardium. Just as human old0]
servers require training to recognize heart contours, we sought
to provide this to the ABD process. The shape analysis was nefy)
only performed on each image’s candidate border, but also be-
tween ED and ES image frames. The latter captures the expec-
tation that the ES border will bear some resemblance to the EBZI
border.
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