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A Knowledge-Based Boundary Delineation System
for Contrast Ventriculograms

Lei Sui, Robert M. Haralick, Fellow, IEEE, and Florence H. Sheehan

Abstract—Automated left-ventricle (LV) boundary delineation
from contrast ventriculograms has been studied for decades. Un-
fortunately, no accurate methods have ever been reported. A new
knowledge based multistage method to automatically delineate
the LV boundary at end diastole (ED) and end systole (ES) is
discussed in this paper. It has a mean absolute boundary error
or about 2 mm and an associated ejection fraction error of about
6%. The method makes extensive use of knowledge about LV
shape and movement. The processing includes a multiimage pixel
region classification, shape regression, and rejection classification.
The method was trained and cross-validated tested on a database
of 375 studies whose ED and ES boundary had been manually
traced as the ground truth. The cross-validated results presented
in this paper show that the accuracy is close to and slightly above
the interobserver variability.

Index Terms—Boundary delineation, boundary regression,
image segmentation, left ventricle.

I. INTRODUCTION

L EFT-VENTRICULAR angiography is a routine imaging
method in clinics [1]. Dye, which is opaque to X-rays, is

injected into the left ventricle (LV) via a catheter. Images are
continuously recorded through the cardiac cycle to produce a
left ventriculogram (LVG), from which the size and function of
the LV can be assessed. These measurements are routinely made
from the LV boundaries at end diastole (ED) and end systole
(ES).

Tracing the LV boundaries from an LVG is a tedious job.
Although automated boundary delineation (ABD) in LVGs has
long been sought [2]–[8], [11], [16], [10], [25], it has been dif-
ficult to achieve clinically acceptable levels of accuracy. On the
other hand, most methods were tested on only a limited number
of LVG samples. Therefore, no consistent accuracy evaluation
concerning LV volume and ejection fraction (EF) was available.

The LVG challenges lie in several aspects [25]. First, there are
several other organs visible in the LVG besides the LV. Usually
the diaphragm, spine, ribs, and lung markings can be seen in
LVG. Second, the LV has a large variation in shape, direction,
and position in the image. It is difficult to set up an LV model.
Third, due to the different imaging settings, the variation of the
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image gray scale is also large. Last, and the most importantly,
the dye is unevenly mixed with blood in the LV. The contrast
at the endocardial border is extremely low and the locations of
gray-scale gradient maxima do not necessarily correspond to the
manually traced border.

This study was performed to enhance LVG ABD accuracy
by incorporating human knowledge into the process. For ex-
ample, human experts utilize movement information in the time
domain to resolve boundary fuzziness. They are trained to have
anatomical knowledge about LV and to reject the cases with bad
image quality. Our method uses these sources of knowledge in
the ABD system.

Our method is comprised of three stages. The first stage is
a nonparametric pixel region classifier operating on the image
sequence. It segments the LV region from the background and
obtains a raw LV boundary. The second stage is a shape regres-
sion that corrects the systematic error of the region classifier
[3], [4]. The last stage is a rejection classifier that flags unreli-
able results [4]. In order to incorporate anatomical knowledge
into the system, the user enters points at ED and ES to identify
the endpoints of the aortic valve (AoV) and the LV apex. The
three points are used to normalize region prior probabilities for
the expected LV shape and size and to constrain the shape re-
gression.

In Section II, some related LV ABD methods are reviewed
in a comparative way to illustrate the difference between their
methods and ours. In Section III, our method is discussed in
detail. Some experimental results are presented in Section IV. A
conclusion and discussion are then presented in Section V.

II. RELATED METHODSREVIEW

ABD of LVG has been studied for decades [2]–[8], [11], [16],
[10], [25]. Two approaches, the edge-based [3]–[6], [8], [10] and
the region-segmentation-based [2], [7], [11], [16] have been ap-
plied to solve this problem. The edge-based approach tries to
find the boundary location using the pixel gray-scale gradient.
The region-based approach tries to segment the LV from the
background so that a boundary can be obtained by tracing the
outline of the LV region. However, the accuracy of these ap-
proaches was limited by their failure to fully utilize the infor-
mation in the images, either at the low level or the high image
analysis level.

The low-level information is the information contained in
LVG. This kind of information is carried by the pixel gray scale
that is used as the main features of the ABD systems. Due to
the complexity of the gray-scale appearance, the edge-based
methods have difficulties in linking the boundary location with
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the gradient information. Indeed, the spatial locations of gra-
dient maxima do not correspond to the manually traced endo-
cardial border. The low contrast at the boundary region tends
to show little significant gradient information. The uneven mix-
ture of the dye with blood inside the LV tends to produce many
gray-scale gradient maxima near the LV center. Moreover, most
of the previous ABD methods process the pixel gray scales in a
single frame [2], [3], [6]. This discards the temporal information
contained in the image sequence, which we know helps human
experts find the LV boundary at the low-contrast region since
human eyes are more sensitive to the change of gray scale than
the static gray scale.

Some previous methods also assumed that the class condi-
tional distributions of the pixel gray-scale values in the ventricle
and the background are Gaussian [2], [7], [11]. This simplified
the problem, but at the risk of misguiding the algorithm if the
assumption is proven to be wrong. In contrast, a method that
is nonparametric and uses the temporal information of the gray
scale is more suitable for solving the ABD problem in LVG.
That is the pathway our method follows.

The high-level information is the general knowledge about
LV anatomy. Some researchers used knowledge about the
smoothness of LV boundary as the constraint to confine the
solution. Pope [6] used dynamic programming to connect
the boundary location candidates obtained from the gradient
operation. Figueiredo [7] controlled the smoothness in terms
of the energy of the Gibbs distribution, which approximated
the boundary probability. However, smoothness alone is not
enough. The boundary needs to be shaped like a heart.

Some researchers have tried to model the LV boundary using
certain critical points either entered by the user or detected by
computer. Clayton [3] used five points: the apex, endpoints of
the AoV, and right- and left-most points on the LV boundary.
Barrett [4] initially used seven points, adding two points above
the AoV to the five points used by Clayton. Later, Barrett [5]
guided the algorithms using just four points: the two AoV end-
points, apex, and mitral valve points. Except for the AoV end
points and apex, which have an explicit anatomical meaning,
the other points were subjectively judged and, thus, might in-
troduce a large variance to the model.

Other researchers trained their algorithms with the hand-
traced LV boundaries. Fan’s deformable model [9] set up the
LV boundary region from the most interior LV boundary to the
most exterior LV boundary in the training set. Costa trained his
artificial neural network with the chord angle and length be-
tween the LV center and contour along the boundary [10]. All
the above techniques used edge-based methods. As discussed
earlier, however, the edge-based methods are not suitable for
the LVG boundary delineation problem. Consequently, we for-
mulated the high-level knowledge in terms of the LV region for
our region-based method.

Automatic border delineation for LVGs has been studied for
ten years in our laboratory [11], [16], [25]. It became apparent
that no single-stage operation can fulfill the mission. Lee [11]
formulated the ABD problem with an LV region segmentation
in the Bayesian framework. Motivated by the usefulness of the
temporal information, he used the gray scale at a pixel location
through the systolic cycle where ED is the first image frame

and ES is the last image frame as the feature vector to assign
the pixel a class. Each pixel in the image frame belongs to one
of three classes: the background, ED-not-ES, and ES. The ES
pixels are further constrained to be located within the ED re-
gion.1 Thus, the classifier produced the ED and ES boundaries
after segmenting the image into ED and ES regions. At first,
this classification was made parametrically by assuming that
the class conditional probability of the multidimensional feature
vector had a Gaussian distribution. Lee improved upon this by
obtaining the class conditional probability from the class con-
ditional Mahalanobis histograms of the feature vector. His prior
probability of each class was modeled with two AoV points.
A large uncertainty was observed at the apex region. The algo-
rithms were cross validatedly tested on a large database of 375
studies, each of which had been manually traced. He had a mean
absolute boundary error (defined in Section III) of 5.2 mm.

Suri [16] improved these results by introducing a boundary
regression following the classification. A boundary was treated
as a vector by concatenating its vertex coordinates into a vector.
Given the hand-traced boundary vectors and classifier boundary
vectors, the regression coefficients that best transformed the
classifier boundary vectors to the hand-traced boundary vectors
were estimated by the least squares criterion. In order to min-
imize the generalization error, the dimension of the regression
vector was reduced by down sampling the boundary vertices.
He reduced the mean absolute boundary error to 3.1 mm from
its original 5.2 mm. Based on Lee and Suri’s formulation, we
made a further improvement. Our system is a three-stage oper-
ation, whose mean absolute boundary error is about 2 mm. Fur-
thermore, the human interobserver variability in terms of ED
volume, ES volume, and EF are just slightly below those of our
ABD procedure.

III. M ETHOD

Our three-stage ABD method is composed of a nonparametric
Bayesian classification [11], [25], a shape calibration regression
[16], [25], and a rejection classification [17], [25]. Fig. 1 shows
the object processing diagram (OPD) of our three-stage ABD
system. Since ES involves more variation than ED, the ED result
is usually more reliable than the ES result and can help with the
ES boundary delineation. Therefore, our processing of the ES
boundary is conditioned on the detected ED boundary.

A. Pixel Region Classification

The Bayesian pixel classifier labels each pixel in the image
frame of the normalized systolic LVG with one of three classes:
background (Class 1), ED-not-ES (Class 2), and ES (Class 3),
which is based on the systole gray scale vector. This is shown in
Fig. 2. The underlying concept is that background pixels retain
their intensities throughout systole, ES pixels increase their in-
tensities throughout systole, and ED-not-ES pixels demonstrate
a characteristic pattern of gray values over time depending on
their location as the LV border passes over the pixels during LV
contraction.

1It is not always true. Since the possibility that the ES pixels stay outside the
ED region is small, that assumption was made to simplify the problem and avoid
unreliable probability estimation.
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Fig. 1. OPD of a three-stage ABD system.

Fig. 2. Gray-scale vector.

1) Online Processing:Before classification, the systole im-
ages from ED to ES go through pixel size calibration [11], noise
filtering [11], and are normalized to 12 frames to adjust for vari-
ability in frame rate and heart rate [11]. The pixel size calibra-
tion makes the pixel square in millimeter unit. This not only nor-

malizes the image size, but also benefits the performance eval-
uation in millimeter unit. Noise filtering is implemented by the
gray-scale morphological opening and closing [15]. This is sim-
ilar to median filtering, but in addition, it preserves the location
of the gray-scale boundary transition, and at the same time, fil-
ters out the noise. The heart-rate normalization is essential to the
classification in that it makes the raw feature vector dimension
a constant 12.

Only the pixels within the region of interest (ROI) are pro-
cessed. The ROI is the area outside in which no part of the LV
would occur. It was obtained by overlapping all the ground truth
(GT) class region images together. The largest LV region re-
sulting from the overlapping was morphologically dilated by a
7 7 square structuring element. The dilation ensures the mask
can be generalized to the entire LVG population. The ROI is
shown in Fig. 3.

The gray-scale values of the 12 image frames are normalized
by the cumulative distribution function (CDF) within the ROI
in the sequence. That is, each pixel’s gray-scale value is trans-
formed to a fraction between 0–1, where the fraction means the
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Fig. 3. ROI displayed as the black hole.

fraction of pixels within the ROI on all 12 image frames that
have a gray-scale value less than or equal to it. Hence,

(1)

where is the image frame index, is the pixel
location in the image frame, is the number of pixels whose
gray scale is in the ROI on the 12 image frames, is the total
number of pixels in the ROI of the 12 image frames, is
the original pixel gray scale at of the th image frame, and

is the pixel value at of the th image frame after
normalization. The normalization is done with respect to the
entire systole sequence rather than a single image frame because
this keeps the gray-scale value change pattern through systole.

The 12 CDF normalized pixel values at each pixel location
form a vector . This vector is projected
onto the eigenvectors of the second moment matrix of the
sample pixel value vectors , where is
the total number of training vectors. In our data set of 375
cases, , , . The eigenvectors are ordered so
that their eigenvalues are descending. The first four principal
components (PCs) of , , are used as the
feature vector for the classifier.

The pixel classification is based on a Bayesian rule max-
imizing the expected gain. Given the gain matrix

, where 1 denotes the background
class, 2 denotes the ED-not-ES class, 3 denotes the ES class,
and denotes the gain of assigning to classwhile the
true class is , the expected gain of classifying at to
class is

where is the posterior probability of classgiven
the feature vector at location . The Bayesian rule clas-
sifies at to class if the assignment to classyields
the expected maximal gain

(2)

where .

For the ED pixel classification

(3)

where is the prior probability of class
at , and is the class conditional probability of
given class , which is assumed to be independent of .

For the ES pixel classification, the posterior probability
depends on the previously delineated ED

boundary and is written as

(4)

where is the probability of the shortest distance
between and the automatically delineated ED boundary
given class .

After classification, the pixels of the same class are grouped
together. For the ED classification, the candidate ED regions are
composed of the pixels of classes 2 and 3. The largest candidate
region is selected as the true ED region. The ED region is further
refined by removing the class 3 pixels outside the class 2 pixels.
This position checking enforces the class category assumption
that the ES pixels are not located outside the ED region. The bi-
nary morphological opening and closing are used to smooth the
region boundary. After that, the raw ED boundary is traced from
the ED region and represented by 100 evenly spaced points. The
same postprocessing is applied to the ES classification in which
the ES region is composed of class 3 pixels.

2) Classifier Training: The classifier training includes es-
timating the class conditional probability , prior prob-
ability , and class conditional distance probability

.
Reducing the feature vector dimension from 12 to 4 makes

it possible to estimate the class conditional probabilities
nonparametrically. A four-dimensional (4-D) lookup

table (LUT) is constructed by dividing the 4-D space into
nonuniformly sized hyperrectangular bins and estimating
the probability in each hyperrectangle by simply counting.
Compared to the decision tree or the artificial neural network,
the LUT method has the advantage of being simple and fast. To
determine the class conditional probability of a feature vector,
the feature vector is quantized to make an address to access the
LUT. The probability is looked up from the addressed entry in
the table.

Given a number of samples of and the number of bins of
the LUT, the number of bins for the th dimension is allocated
according to the marginal entropy on that dimension so that

and the marginal information loss is minimal.
According to Shannon’s theory [13], the entropy reflects the
information amount. The total bits available for anbin LUT
to describe the marginal information is . The number of
bits assigned to axisis proportional to theth marginal entropy

(5)

(6)
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where is the number of digitizing level for , is the prob-
ability of at level , and . The number of bins on
axis is

(7)

where denotes the closest integer. Each marginal distribution
of is quantized into bins with equal probability quantiza-
tion, which minimizes the marginal information loss.

After each training sample has been put into one of the bins
in the LUT, the class mixture samples are smoothed by a

kernel [14]. As a result, each bin contains three class con-
ditional probabilities estimated by frequency counting of how
many samples of each class are in the bin.

The LUT size and smoothing parameterdetermine the
generalization capability of the LUT. The optimal and are
obtained by searching the flat minima of the cross-validated
bidirectional Kullback–Liebler distance between the observed
LUT and smoothed LUT

(8)

where is the observed class mixture probability at bin
and is the class mixture probability estimated by

by leaving out the samples at bin. The flat minima of
suggests a good generalization parameter

region [26].
The class prior probabilities at each pixel location constitute

the knowledge about the LV shape, size, and position. A set
of 375 GT class region images generated from the hand-traced
boundaries are aligned by a transformation to a common LV
region by a least squares fitting of their AoV angles and long
axes. The LV AoV angle and long axis are defined by the AoV
end points and apex, shown in Fig. 4. Those aligned GT class
region images are stacked one on the top of the other. The prob-
ability of each class at each pixel location is estimated by fre-
quency counting from the aligned GT class region images and
smoothing the frequency count images with a 77 square box
filter.

The prior probability image alignment needs the user to enter
three points for ED and three points for ES. The alignment based
on the ED three points defines the geometric transformation

that aligns the prior probability images for ED-not-ES and
background with image sequence for patient. The user en-
tered three points of ES defines the geometric transformation

that aligns the prior probability image for ES with the image
sequence for patient.

Let: 1) be the background GT class region image for pa-
tient study ; 2) be the ED (ED-not-ES) GT class region
image for patient study ; 3) be the ES GT class region
image for patient study; 4) be the prior probability image
for background; 5) be the probability image for ED-not-ES;
and 6) be the probability image for ES

(9)

Fig. 4. Three-user input points determines the AoV angle, AoV middle point,
and apex, which define the alignment transform.

Fig. 5. Distance between the pixel and the delineated ED boundary.

(10)

(11)

where “#” is the counting operator. The prior probabilities at
are then

(12)

(13)

(14)

Since the alignment uses an AoV angle and long axis defined
by the three points with the anatomical meanings, the alignment
has a good estimation reliability.

Given the delineated ED boundary, the shortest distance be-
tween a pixel location and the boundary can be computed. The
distance is signed, as shown in Fig. 5. The pixel inside the ED
boundary has a minus sign, outside has a plus sign, and on the
boundary is zero. The ED boundary is divided into several seg-
ments since the wall movement along the ED boundary is not
even. The class conditional distance histograms are then setup
for each segment, given the pixel class and the corresponding
segment on the ED boundary. The class conditional distance
probabilities are estimated from the histograms.
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Fig. 6. Bias errors produced by the pixel classification system. (top) Classifier
boundary inside and outside the ideal boundary. (middle) Classifier boundary
toward the anterior and inferior wall. (bottom) Classifier boundary overlaps the
diaphragm. (bottom, right) Classifier boundary outside the ideal boundary in top
two-third region and underestimated in the bottom one-third region.

B. Shape Regression

It was observed that the classifier has some systematic shape
bias errors. Fig. 6 shows some examples of the shape bias. In
order to normalize out those errors, we use a shape regression
after the classifier. Each LV boundary is taken as a two-hun-
dred-dimensional vector by concatenating its vertex coordinates
into a vector. The boundary vector is then approximated by rep-
resenting it in the first few dimensions of the LV shape space
defined by the eigenvectors of the second moment matrix of the
sample GT boundary vectors. The reason for compressing data
by PC analysis is to sufficiently reduce the number of coeffi-
cients the regression has to estimate so that the regression is
able to generalize rather than memorize the training data.

These first few PCs contain most of the shape information
instead of using the information in a deformable model, as in
[24], to reconstruct the target. We adopt a regression, which is
more time efficient. The idea of the regression is to transform the
coordinates of the raw classifier boundary vector to a place in
the LV shape space where the coordinates are more like an LV
boundary. The regression vector is composed of the projected
coordinates of the raw boundary vector on the eigenvectors of
the second moment matrix of the sample GT boundary vectors.
Furthermore, the regression vector is augmented by the user-
entered AoV endpoints and apex, which put more constraints
on the regression results with the size and shape indicated by
the three points. The regressed boundary coordinates are the
linear combinations of the coordinates in the shape space and
the quadratically augmentation terms of the user entered points.

We will now describe the online process in detail.
1) Online Regression:Given: 1) a raw boundary vector

from the classifier; 2) two AoV points
and the apex coordinates entered by the user; 3) a matrix,
whose columns are the full set of the eigenvectors of the sample
second moment matrix of the GT boundary space; and 4) a re-

gression coefficient matrix determined offline by
training, the regressed boundary is

(15)

where is the calibrated boundary, and are matrices
of the first and eigenvectors in , the prime denotes the
transpose, and contains augmentation terms coming from
the three-user input points. For the ED boundary regression,
is the full quadratic terms of the coordinates of the user-entered
three ED points. Those consist of a constant, 6 first order items
and 21 second order items. Thus,is equal to 28. For the ES
boundary regression, is the full quadratic terms of the three
user-entered ES points, andpartial quadratic terms of the three
ED points. Thus, is equal to .

2) Regression Training:The regression coefficient estima-
tion has a potential generalization problem due to the two-hun-
dred-dimensional boundary vector space. In order to reduce the
degrees of freedom, the number of PCsand involved in the
regression from the raw boundary and the GT, respectively, need
to be as small as possible, while maintaining good performance.
Their sizes are determined by an optimization procedure.

Let be a matrix of GT boundaries,
in which is the th boundary; let be
a matrix of classifier output boundaries, in which corre-
sponds to , and let and be two subsets of , which
are composed of the first and eigenvectors in , respec-
tively. The coefficient matrix is estimated offline to minimize

(16)

where , , and is the aug-
mentation matrix. The standard least squares solution for (16)
estimates a matrix

(17)

where is the number of the augmentation terms.
Motivated by the knowledge that the ED boundary contains

information about the ES boundary, some of the quadratic terms
of the three 3 ED points are used in the ES boundary regression.
To determine the partial quadratic augmentation from the ED
points for the ES regression, let ,
where is the th 1 27 row vector including the six row
and column coordinates of theth three ED points and their
21 quadratic combinations. Let be the ES
GT boundary vector matrix. corresponds to . A 27 200
coefficient matrix is estimated by minimizing

(18)

The th row of , , contains
200 coefficients of the correspondingth ED augmentation
term for the 200 ES boundary coordinates, respectively. The
term that corresponds to a large mean of the 200 coefficients

is of a big influence on the ES boundary
coordinates and selected as the augmentation term for the ES
boundary regression.
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Fig. 7. Flowchart for the systematic optimization to minimize the cost.

Fig. 8. Hamming distance between the area enclosed by two boundaries. It is
equal to the sum of the shaded areas in the graph.

Fig. 9. Example of the GT class image. (bright): ES class (class 3). (gray):
ED-not-ES class (class 2). (dark): background class (class 1).

Fig. 10. Frame rate and square pixel normalized 12-frame systolic cycle
images. The gray scales are before the CDF normalization. The upper left-hand
side is the ED frame, the bottom right-hand side is the ES frame.

Fig. 11. Frame rate and square pixel normalized 12-frame systolic cycle
images. The gray scales are CDF normalized. The upper left-hand side is the
ED frame, the bottom right-hand side is ES frame.

C. Rejection Classifier

1) Online Rejection:From the raw and regressed bound-
aries, two sets of parameters can be computed: the ED and ES
volumes, and the EF, the ED, and ES areas. In addition, the mean
absolute ED boundary difference between classifier and regres-
sion, and the mean absolute ES boundary difference between
classifier and regression can also be obtained. Those measure-
ments are defined at the conclusion of this section. The rejection
classifier takes those parameters as the rejection feature vector.
The difference between the two sets of the parameters indicates,
more or less, the unreliability of the border detection. Given
the classification weights on the rejection feature vector
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(a) (b)

(c) (d)

Fig. 12. PC histograms before the gray-scale CDF normalization. (a) Histograms of the first PCs of the three classes. (b) Histograms of the second PCs of the
three classes. (c) Histograms of the third PCs of the three classes. (d) Histograms of the fourth PCs of the three classes. Class 1 is the background class, class 2 is
the ED-but-not-ES class, class 3 is the ES class.

and a decision threshold, a study is rejected if the dif-
ference is greater than the threshold .

2) Rejection Training:Suppose training cases are avail-
able. Let be an objective vector whose elements are
one or zero. One indicates that the corresponding training case
associated with its component position has an ED volume, ES
volume or EF error greater than an acceptable threshold. Zero
indicates that its error is acceptable. The fraction of one com-
ponents in the rejection objective vector is roughly 5% of the
training cases such that the same percentage of the worst cases
of the ED volume, ES volume, and EF, respectively, are flagged.
Let be an matrix, each of whose rows is a rejection
classifier vector for its corresponding study. The classifier coef-
ficients , an 12 1 vector, can be estimated by minimizing

(19)

The standard least squares solution for (19) is

(20)

A rejection decision is made on the study whose feature vector
is when . When , the study results are not

rejected. Here, is the decision threshold, which is obtained by
minimizing a cost function. The cost function is defined as

(21)

where is the total number of the training cases, is the
number of the rejected cases,is the true error of theth ac-
cepted case, andis the predefined cost for a rejected case. The
second term of (21) encourages the rejection of studies whose
error is greater than, and punishes the rejection of studies with
smaller errors than .

D. System Optimization

The whole system is optimized after the estimation of each
tuning parameter is in a suitable range. The optimization is to
minimize the cross-validated EF error cost after the rejection.
The tuned training parameters include the LUT size, the LUT
smoothing parameter- , the prior probability smoothing
parameter, the class conditional distance histogram sectors,
which divides the delineated ED boundary, the gain matrices
(EGMs), the regression dimensions , , and the rejection
threshold . Fig. 7 shows the optimization flowchart.
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(a) (b)

(c) (d)

Fig. 13. PC histograms after the gray-scale CDF normalization. (a) Histograms of the first PCs of the three classes and the mixed class. (b) Histogramsof the
second PCs of the three classes and the mixed class. (c) Histograms of the third PCs of the three classes and the mixed class. (d) Histograms of the fourthPCs of
the three classes and the mixed class.

E. Measurements Used in the Rejection Classifier

From an LV boundary in
millimeter unit, the perimeter of the LV is

(22)

where . The area of the LV is

(23)

where . The LV volume can be estimated
by [27]

(24)

where is the maximum chamber length. The EF EF is estimated
as the ratio of the volume difference between ED and ES over
the ED volume

(25)

(a) (b)

Fig. 14. Example of the class region image after the ED classifier and the result
after the postprocessing. The dark gray is the background region, the mid gray
is the ED-not-ES region, and the bright gray is the ES region. The white in the
right-hand-side image are the rejected ES pixels after position checking.

The mean absolute ED volume deviation, ES volume deviation,
and EF deviation between the ABD results and hand-traced re-
sults are used for the ABD system performance evaluations.

Besides those volume-related measurements, the mean abso-
lute boundary error between two boundaries is used in the de-
velopment of the ABD system. Let and be the areas en-
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(a) (b)

Fig. 15. ED classifier (thin) and regression boundary (thin) compared with its
GT boundary (thick). (a) ED frame: GT and classifier. (b) ED frame: GT and
regressed.

Fig. 16. Histograms of the signed ED volume errors of the classifier outputs and
calibrated results. Cross-validation groupsK = 5. The number of studies is 375.

(a) (b)

Fig. 17. (a) ED gray-scale image overlaid with the GT boundary (gray) and
the classifier boundary (bright). (b) ED gray-scale image overlaid with the GT
boundary (gray) and the regression boundary (bright).

Fig. 18. Histograms of the signed ES volume errors of the classifiers not
conditioned and conditioned on the ED results. Cross validation groupsK = 5.

closed by two LV boundaries, the Hamming distance between
the two areas is

(26)

An example of the Hamming distance is shown in Fig. 8. Let
and be the perimeter of the two boundaries. The mean

absolute boundary error is defined by

(27)

(a) (b)

Fig. 19. ES classifier (thin) and regression boundary (thin) compared with its
GT boundary (thick). (a) ES frame: GT and classifier. (b) ES frame: GT and
regression.

Fig. 20. Histograms of the signed ES volume errors of the classifier outputs and
calibrated results. Cross-validation groupsK = 5. The number of studies is 375.

Fig. 21. Histograms of the signed EF errors of the classifier outputs and
calibrated results. Cross-validation groupsK = 5. The number of studies is 375.

TABLE I
ES VOLUME AND EF ERRORS OF THEAUGMENTED REGRESSION WITH

AND WITHOUT THE DEPENDENCE ONED

The boundary error reflects the shape deviation between the
ABD results and the hand-traced results.

IV. EXPERIMENTS AND RESULTS

A. Data Preparation

The system was trained and tested with cross validation on
375 LVGs. Of these, 210 were of 35 patients studied serially
over one year following acute myocardial infarction [28]. The
remaining LVGs were from diagnostic cardiac catheterizations.

All LVGs were recorded on 35-mm cine film and included im-
ages of a calibration figure of known dimension. The images in
the selected cardiac cycle were digitized using a frame grabber
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(a) (b)

Fig. 22. (a) ED volume scatter plot before rejection. (b) ED volume scatter plot after rejection. The line is the identity line in both figures.

(a) (b)

Fig. 23. (a) ES volume scatter plot before rejection. (b) ES volume scatter plot after rejection. The line is the identity line in both figures.

(a) (b)

Fig. 24. (a) EF scatter plot before rejection. (b) EF scatter plot after rejection. The line is the identity line in both figures.

(Imaging Technology, Woburn, MA) seated in a personal com-
puter (Intel) at a resolution of 512 480. Each study of the
375 cases had its ED and ES boundary traced by a human ex-
pert. Those hand-traced boundaries were used as the GT for the
ABD performance evaluation. From the hand-traced boundary,
the GT class region image was generated by filling in the area
enclosed by the boundaries. It gave each pixel in the image a GT
class. Fig. 9 shows an example of the GT class region image.

The 375 studies were randomly divided into five groups. The
following experiments, except stated otherwise, were trained on
four groups and tested on the remaining. They were repeated for
five times until every study was involved in the testing.

B. Online Processing and Results

A raw systolic image sequence is input into the system. It goes
through the preprocessing, the ED region classification, the ED
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TABLE II
MEAN ABSOLUTE ERRORS OF THEABD SYSTEM WITH AND WITHOUT

REJECTION

TABLE III
INTEROBSERVERVARIABILITY IN MEASURINGLV V OLUME AND EF

TABLE IV
LINE FITTING USING GROUND TRUTH AS THEINDEPENDENTVARIABLE AFTER

REJECTION FOR THE375 TRAINING CASES

shape regression, the ES region classification, and the ES shape
regression. Finally, the ED and ES classifier boundaries, the ED,
and ES regression boundaries are input to the rejection classifier.
It labels the result as accepted or rejected.

1) Preprocessing:After the pixel size calibration, noise fil-
tering, and heart rate normalization, the raw systolic LVGs are
normalized to have 12 frames. Fig. 10 shows an example of
a 12-frame systolic image sequence. The pixel gray scales are
then normalized by its CDF within the sequence. Fig. 11 shows
the result in which the CDF values were quantized to 256 gray-
scale levels between 0–255. The CDF gray-scale normalization
effect is obvious since the LV region became more uniform and
the contrast at the border region increased. As a matter of fact,
the CDF normalization expanded the gray-scale dynamic range
so that the separability of the first four PCs among different
classes increased. The results are shown in Figs. 12 and 13.
Fig. 13 also suggested that four PCs were enough for the classi-
fication since the histograms of different classes began to merge
in the fourth PC.

2) ED Region Classification:The first four PCs of a gray-
scale vector at a pixel location is input to the ED region clas-
sifier, together with the ED decision gain matrix, a 0.7-M class
conditional probability LUT ( ) and the prior prob-
ability images aligned to the user entered points. The output
of the ED region classification is a pixel class image in which
each pixel value is a class label. A typical output from the ED
classifier is shown in Fig. 14(a). The output is noisy. There
are holes in the regions. Some ES class pixels are outside the
ED-not-ES class pixels and a curl could be seen near the mi-
tral valve. Fig. 14(b) shows the results after postprocessing. The
classifier boundary is ready to be traced.

TABLE V
LINE FITTING USING A BD AS THE INDEPENDENTVARIABLE AFTER

REJECTION FOR THE375 TRAINING CASES

TABLE VI
MEAN ABSOLUTE BOUNDARY ERRORS OFLEE’S CLASSIFIER AND

OUR CLASSIFIER

TABLE VII
BOUNDARY ERRORS OF THECLASSIFIER OUTPUT AND CALIBRATED RESULT

WITH LEE’S CLASSIFIER

TABLE VIII
ENTROPIES

TABLE IX
LUT SIZES (M = 2 ) FOR THECLASSIFIER TRAINING

Fig. 25. 3-D mesh surface of theK-L distance (8) obtained with 19 974 966
training samples.

3) ED Shape Regression:Given the raw classifier ED
boundary, the user enters three ED points and the regression
coefficients, the ED shape regression makes the boundary
more heart shaped. Fig. 15 shows an example of the shape
regression. The ED volume error histogram taken over 375
studies is shown in Fig. 16.

The shape regression improved the ED volume accuracy by
correcting the bias of the classifier results. However, it did not
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(a)

(b) (c)

(d) (e)

Fig. 26. Projecting the sample curves on the 3-D surface in Fig. 25 onto the axis of smoothing kernel sizek. (a)–(e) Graphs of 0.24-, 0.49-, 0.75-, 1.2-, and 1.7-M
LUT. They were constructed from 19 974 966 samples.

improve the boundary accuracy. The ED boundary errors before
and after the regression were both 1.7 mm. That is because the
boundary error measurement is more critical than the volume
measurement. The small errors along the ED boundary can bal-
ance the volume error, but worsen the boundary error.

Though the regression improved the overall volume per-
formance, it could bring some errors to a classifier boundary,
Fig. 17 shows an example. Here, the regression smoothed out
the correct classifier boundary at the inferior wall.

4) ES Region Classification:The ES region classifier is
conditioned on the ED result. In addition to the inputs to the
ED region classifier, the automatically delineated ED boundary

and the class conditional distance histograms are input into the
ES region classifier. After a similar postprocessing to that of
the ED region classification, the raw ES classifier boundary is
obtained.

The improvement of the ES classification conditioned on the
ED result is shown in Fig. 18. The conditioned ES classifier
tremendously reduced the system bias that the one-layer classi-
fication had.

5) ES Shape Regression:The ES shape regression utilizes
the user-entered three ED points as well as three ES points. An
example of the ES regression results is shown in Fig. 19. The ES
volume and EF error histograms are shown in Figs. 20 and 21.
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TABLE X
SEGMENT SLOPE IN FIG. 26(a)–(e)

Since the conditioned ES classifier reduced the classifier re-
sult bias, the ES volume improvement was not as big as the ED
volume improvement. However, the regression had an apparent
improvement on the EF result. That is because the regression
makes the ES boundaries more heart shaped, as shown by the
reduction in the ES border error from 2.7 to 2.3 mm.

With the dependence of the ES boundary regression on the
three ED points, the calibrated ES results were improved from
the non-ED-augmented regression. The comparison is shown in
Table I.

6) Rejection: The cross-validated classifier ED and ES
boundaries and regressed ED and ES boundaries are input to
the rejection classifier. Fig. 22 shows the scatter plots of the
ED volume before and after the rejection. The ABD algorithm
consistently underestimated large LVs whose ED volumes were
bigger than 200 mL. Fig. 23 shows the scatter plots of the ES
volume before and after the rejection. LVs with a large ED or
ES volume were rejected by this classifier. Due to the errors of
the large LVs, the EF scatter plot, shown in Fig. 24(a), had some
bad performance for small EF values before the rejection. As
shown in Fig. 24(b), these were later rejected by the rejection
classifier.

Table II shows the mean absolute and signed volume and EF
deviations before and after the rejection. The rejection did not
introduce much bias to the final results as the magnitudes of
the mean signed differences were barely changed before and
after the rejection. Nevertheless, the performance, in terms of
the absolute difference, on ED volume, ES volume, and EF were
all improved, apparently as a result of the rejection classifier.

C. Performance Evaluations

1) Comparison with Human Interobserver Variability:Due
to the lack of a gold standard for measuring LV volumein vivo,
manual tracing of the LVG has been used as the accuracy stan-
dard. However, manual tracing is subject to interobserver vari-
ability. Our performance evaluation compared the difference be-
tween the ABD and hand-traced results with the magnitude of
human interobserver variability. Table III shows some published
results on human interobserver variability.

Comparing the results after rejection in Table II with the first
two rows in Table III, our mean absolute ED volume difference
is comparable to human interobserver variability. Our mean ab-
solute ES volume difference is between the published interob-
server variability and our mean absolute EF difference is slightly
higher than the published data.

The last three rows of Table II shows our signed difference
of ED volume, ES volume, and EF between the ABD results
and hand-trained results. Compared with the fourth and last row

(a) (b)

Fig. 27. (a) General prior probability image of ED-not-ES class. (b) General
prior probability image of ES class.

of Table III, our cross-validated results had a smaller signed
difference than the published data about human interobserver
variability. That might be because the published data were tested
on a small sample of LVG, about 18 to 40 studies varying from
case to case, and a small sample test tends to have a bias. Our
results were tested on a 375 case database, thus, it is unlikely to
show the bias.

Furthermore, we least square fit the scatter plots in
Figs. 22–24 with in order to assure ourselves that the
coefficient has a value near one. We define the coefficient of
determination and standard error of the estimate (SEE) by

where is the th true sample, is the th estimated with
, and is the number of samples, .

Tables IV and V show the fitted slope, the coefficient of de-
termination , and SEE between the GT and ABD results after
the rejection. Compared with Table III, our results after the re-
jection were slightly above human interobserver variability.

2) Comparison with Lee’s Result:Table VI shows the
boundary errors of Lee’s classifier and our classifier. Lee’s
classifier had a one-layer structure for both ED and ES. It
did not include the CDF gray-scale normalization. Lee used
Mahalanobis distance histograms to look up the class condi-
tional probabilities of the feature vector and generated the prior
probabilities with only two AoV points. We used the raw results
from our ED classifier2 to compare with Lee’s result on the

2Our ED classifier can produce the ES boundary by tracing the ES region
composed of only the ES pixels.
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(a)

(b) (c)

Fig. 28. Class conditional histograms of the signed distance between the pixels in the image frame and the ED boundary. (a) Background class. (b) ED-not-ES
class. (c) ES class.

same data. The comparison shows that our border performance
was better by 1.2 mm.

3) Comparison with Suri’s Result:The shape regression
was applied to Lee’s classifier [11]. The cross validation was
the leave-one-out method. The performance was measured by
the boundary error, as defined in the previous section. Some
statistics of the errors are shown in Table VII. Using the shape
regression scheme, the average mean boundary error of ED and
ES frames improved from 3.4 to 2.4 mm. This outperformed
Suri’s method [16], whose average ED and ES error was about
2.7 mm on the same data.

D. Offline Training

Some offline classification training results are briefly dis-
cussed here. They are the class conditional probability LUT size

and smoothing kernel size, the class prior probabilities, the
class conditional histograms of the distance between a pixel, and
the delineated ED boundary.

1) LUT Size and Smoothing:There are 40 056 750 sample
pairs of a 4-D feature vector and its GT class in the ROI of
375 cases. The discrete entropy of each dimension is shown in
Table VIII. Table IX lists the number of bins on each dimension
given the LUT size .

From the 40 056 750 samples, 19 974 966 points were ran-
domly picked out to construct a series of LUTs in Table IX,
smoothed with .
The experiment was repeated ten times with the shuffled sam-
ples. Fig. 25 shows the three-dimensional (3-D) surface of the
mean bidirectional - distance (8) of the mixture distribution.
As seen in this figure, there is a flat region on the- distance
surface. That is the place where the distribution is not sensitive
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to the LUT size and the smoothing kernel size so that a gener-
alization can be obtained.

Fig. 26 shows the graphs of projecting the 3-D surface in
Fig. 25 onto the smoothing kernel size axis. As seen from
those graphs, the LUT of 0.24 M has a big hump at the smalls.
The samples in the neighboring bins have a negative influence
on the cross-validated bin. The nearest neighbors do not have
similarity to the cross-validated samples. That could be due to
that too many samples are quantized into a bin. Moreover, the
minimal - distance obtained at is not much dif-
ferent from the one at . Its variance among the shuffles at
each sample point is quite big. On the other hand, as the LUT
size became larger, in the graph of 1.7-M LUT, for instance, the
minima are more like a valley than a flat region, together with
a big variance. That implies that the observed data are likely to
be sparse in the LUT. Table X shows the slopes of the segments
in each graph of Fig. 26. The flattest graphs are the ones of the
0.49- and 0.75-M LUT. Also, the shuffle variances in 0.49- and
0.75-M LUTs are relatively small, which implies a good gener-
alization. The suitable is between 200–800.

Fig. 27 shows the prior probability images of the ED-not-ES
class and ES class, in which the bright areas are the high-prob-
ability regions. They were generated by aligning all the GT
boundaries with their AoV angles and long axes, and estimated
by frequency counting. That alignment makes them less sensi-
tive to the exact coordinates location of the user-entered points.

Fig. 28 shows the class conditional histograms of the distance
between a pixel and the delineated ED boundary. They provides
the third term on the left-hand side of (4).

V. CONCLUSION

Our results indicate that the ABD process presented in this
paper is able to detect and delineate the endocardial contour of
the LV from contrast ventricoulograms with an accuracy compa-
rable to the magnitude of human interobserver variability. The
success of this process is due to the integration of knowledge
concerning human cardiac anatomy and physiology with the
imaging data.

The region classifier embodies knowledge concerning the
expected regional movement of the ventricular wall during
systole. With it we sought to emulate the human observer’s
practice of reviewing wall motion through the cardiac cycle
to help define the endocardial contour. The region classifier
also utilizes the shape and size knowledge contained by the
user-entered ED and ES points to adjust the prior probability
images so that the classifier can focus on the area where the
LV is likely to be.

The regression calibration embodies knowledge concerning
the expected shape of the LV endocardium. Just as human ob-
servers require training to recognize heart contours, we sought
to provide this to the ABD process. The shape analysis was not
only performed on each image’s candidate border, but also be-
tween ED and ES image frames. The latter captures the expec-
tation that the ES border will bear some resemblance to the ED
border.

The third component is the method for rejecting studies
whose image sequence are likely to produce suspicious or
unphysiological borders. Just as clinical ventriculograms are
rejected for manual tracing if there is poor contrast quality, we
sought a method to warn the user of these problems in the ABD
process.

Finally, the large number of training studies and the normal-
ization before pixel region classification helped, in large part,
to ensure that the methodology is able to generalize rather than
memorize the training data.

Future work includes improving the ABD performance on
the large-volume LV cases. Due the insufficient representation
of those large LVs in the database, the ABD has a systematic
underestimation of the volume for those cases. A possible re-
search direction is to set up an independent shape regression
calibration for those cases where initial ABD shows them to be
large-volume cases.
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