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Abstract

We use the facet model to accomplish step edge detection,. The essence of the facet model
is that any analysis made on the basis of the pixel values in some neighborhood has its
final authoritative interpretation relative to the underlying grey tone intensity surface of
which the neighborhood pixel values are observed noisy samples.

Pixels which are part of regiomns have simple grey tone intensity surfaces over their
areas. Pixels which have an edge in them Thave complex grey tone intensity surfaces over
their areas. Specifically, an edge moves through 2 pixel if and omnly if there is some point
in the pixel’s ares having a zero crossing of the second directional derivative taken in the
direction of a nom—zero gradient at the pixel’s center.

To determine whether or not a pixel should be marked as a step edge pixel, its underlying
grey tomne intensity surface must be estimated on the basis of the pixels im its
neighborhood. For this, we use a functional form consisting of a linear combination of the
tensor products of discrete orthogonal polynomials of up to degree three. The appropriate
directional derivatives are easily computed from this kind of a fumnction.

Upon comparing the performance of this zero crossing of second directional derivative
operator with Prewitt gradient operator and the Marr-Hildreth zero crossing of Laplacian
operator, we find that it is the best performer and is followed by the Prewitt gradient
operator. The Marr—Hildreth zero—-crossing of Laplacian operator performs the worst.

I. Introduction

In this paper, we assume that in each neighborhood of the image the underlying grey tone
intensity function f takes the parametric form of a polynomial in the row and column
coordinates and that the sampling producing the digital picture functionm is a regulsar equal
interval grid sampling of the square plane which is the domain of f. We place edges not at
locations of high gradient, but at locations of spatial gradient maxima. More precisely, a
pixel is marked as an edge pixel if in the pixel’s immediate area there is a zero crossing
of the second directional derivative taken in the direction of the gradient. Thus this kind
of edge detector will respond to weak but spatially peaked gradients.

The underlying functions from which the directional derviatives are computed are easy to

represent as linear combinations of the polynomials in any polynomial basis set. That
polynomial basis set which opermits the independent estimation of each coefficient would be
the easiest to use. Such a2 polynomial basis set is the discrete orthogonal polynomial

basis set which is discussed in Haralick (1981).

In section IXI, we discuss how the discretely sampled data values are used to estimate the

coefficients of the linear combinations of the tensor product polynomials: coefficient
estimates for exactly fitting or estimates for least square fitting are calculated as linear
combinations of the sampled data values. The masks used are shown in figures 1 and 2.

Figure 3 illustrates that the order of the fit does make a difference im the mask used to
estimate a low order coefficient.

Having used the pixel values in a neighborhood to estimate the underlying polynomial
function we can mnow determine the value of the partial derivatives at any location im the
neighborhood and use those values in edge finding. Having to deal with partials in both the
row and column directions makes using these derivatives a little more complicated than using

the simple derivatives of omne dimensional functions. Section III discusses the directional
derivative, how it is related to the row and column partial derivatives, and how the
coefficients of the fitted polynomial get used in the edge detector. In section IV we show

results indicating the superiority of the directional derivative zero crossing edge operator
over the Prewitt gradient operator and the related Marr—-Hildreth =zero—crossing of the
Laplacian operator.
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Figure 1 illustrates the 9 masks for the Figure 2 illustrates the masks used to

3x3 window. obtain the coefficients o

up to the quadratic ones for a 4x4 window.
L. Fitting data with discrete orthogonal polynomials
Let an index set R with the symmetry property reR implies —-regR be given. Let the
number of elements in R be N. Using the construction technique, we may construct the set
[Pofr),...,PN_l(r)] of discrete orthogonal polynomials over R.
For each reR, let a data value d(r) be observed. The exact fitting problem is to
determine coefficients 8gsev.ay 4 such that
N-1
d(z) = ) a_P (1) (1)
n o
n=0

The orthogonality property makes the determination of the coefficients

To find the value of some coefficient, say a .,
and then the sum over all reR.
N-1
2 P, (mdalz) = ) a Y e,
reR n=0 rel
Hence,
- 2
1 = 2 Pulzidte) 7 3 P2(r)

reR reR
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f all polynomials

particularly easy.

multiply both sides of the equation by Pm(r)



The approximate fitting problem is to determine coefficients Qg resap, E ¢ N-1 such that

K
ez = 2 [d(r) - E a P (r)]2
n n
reR n=0
is minimized. To find the value of ome coefficient, say a_, take the partial derivative of
both sides of the equation for e” with «respect to a . Set it to zero and use the
orthogonality property to find that again
a_ = ) P (x)d(z)/ y P(r) (3)
m m m

reR reR

The exact fitting coefficients and the least squares coefficients are identical
ferm = 0,...,K.

Fitting the data values {d(r)lreR} to the polymnomial

Q(r) = 2 anPn(r)
n=0

now permits us to interpret Q{(r) as a well behaved real-valued function defined on the real
line. To determine

aQ
= )
0
dr
we need only to evaluate
N ap_
2 a ;——(ro)
n=0 x
In this manner, any derivative at any point may be obtained. Similarly for any definite
integrals. Beaudet (1978)  wuses this technique for estimating derivatives employed in

rotationally invariant image operators.

It should be noted that the kernel wused to estimate a derivative depends on the
neighborhooed size, the order of the fit, and the basis functions used for the fit. Figure 3

illustrates one example of the difference the assumed model makes, This difference means
that the model used must be justified, the justification being that it is a good fit to the
data. In particular, a not sufficiently good justification for using first order models is

that first order partial derivatives are being estimated.

ITI. The directional derivative edge finder

We denote the directional derivative of f at the point (r,c) in the direction a by
fa'(r,C). It is defined as

£ (r,c) = lim m=m——=—===mmmmmm e (4)
a

The direction angle ¢ is the clockwise angle from the column axis., It follows directly
from this definition that

'
f (r,c) =3f(r,e) sina + 3f(r,c) cosa (5)
a
dr dec

We denote the second directional derivative of f at the point (r,c) in the direction a
by fa (r,c) and it quickly follows that
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Figure 3 illustrates that the assumed model does make a difference
in the kernel mask wused to estimate a quantity such as row
derivative.

,, 8%t 8%t 8%t

f = —--- sin“a + 2 -—— sinae cose + -—- cos“a (6)
a 2
or drc dc

Taking £ to be a cubic polynomial im r and ¢ which can be estimated by the discrete
orthogonal polynomial fitting procedure, we can compute the gradient of f and the gradient
direction angle at the <center of the neighborhood wused to estimate f. Letting f ©be
estimated as a two dimensiomal cubiec,

f{(r,c) = kl + k,r + k3c (7)
+ k4r2 + ksrc A k6cz
3 2 2 3
* k7r + kBr c + kgrc + kloc
we obtain a by
sina = kz/(kz2 & k32)’5
cosa = k,./(k Z 3 k 2)'5 ‘o)
3 2 3

At any point (r,c), the second directional derivative in the direction o is given by

'

T
fa (r,c) = (Gk7 sinzﬂ + 4k8 sinacosa + 2k9 coszu)r (9)

+ (6k cosza + 4k9 sinag cosa + 2k sinza)c

10 8

+ (21:4 sinza + 2k5 sinag cosa + 2k6 00520)

We wish to only consider points (r,c) on the line in direction a. Hence, r=psina
and c=pcosa. Then

£f (p) = 6[k7sin3a + kgsinza cosa (10)

+ kgsina cosza * klocassu]p

< 2
sina cosa + k, cos al

5 2 ;i
+ 2[k4 sin“a + Ls 6

Ap + B
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1f for some P 1pl ¢ Py £ - 0 and fu(p) # 0 we have giscovered 2
jng of the second directional derivative taken 1B the direction of the gradient

Lero—-cross
of the neighborhood as an edge pixel.

and WwWe mark the centerT pixel
Iv. Ernerieeerrl resuplts

mance of the second directional derivative zero—crOSSing digital

structured simulated data set and on 2

we use a 100x100 pizel image of a

jntensity 15

To understand the perfoT
step edge operatorl we examine its pehavior OB a well
real aerial image - For the simulated data set.

cheeketboard, the checks being 20x20 pizels. The dartk checks have gray tone

and the 1ight checks have gray tone intensity 1755 To this perfect checkerbonrd we add
independent Gaussial noise having meal zero and gtandard deviaticon 50. Defining the signal
; i nal divided by RMS of the noise,

10 times the 1ogar1thm of the range of sig
signal to noise ratio. The perfect and noisy checkerboards

the simulated image Da%S a 3 db
are showp jn figure 4.
the classic 3x3 edge operators with and

iv.1 jl1lustrates the performance of
without preaveraging compared against the generalized Prewitt operator. Section 1V.2
illustrates the performance of the Marr*Hildreth zero—crossing of Laplacian operator, the
11x11 Prewitt operatof. and the 11x1l zero—crossing of second directional derivative
operatoT- The zero—crossing of sec i derivative surpasses the performance of

ond directronal

the other two on the twofold pasis of probability of correct assignment and erroT distance
which 1s defined as the averape distance to closest true edge pizel of pixels which are
assigned non—edge bu

t which 2aré€ true edge pizels.

gection

v.1 The classic edge operators
jn figure 5, Note that the

t operatoTs$ all perform badly 25 shown
that it

The classic 3x3 gradien
been modified ijn the patural way s0

usual definition of the Roberts operatorl has
uses @& 353 mask.

priru

<

P Ll b e, s

Figure 4 jliustrates the noisy checkerboard Figure 5 jllustrates the 3x3
used in the experiments. Low intensity is prewitt, and Eirsch edge operators wi
jng of 1x1, 3%3. 525, and Tx7T.

75 high intensity ijs 175. gtandard devia- filterx preaverst

tion of poise is 50.

application of the gradient operatorl is considered to Dbe the cure

Averaging pefore the
on noisy images {Rosenfeld and Kak. 1976) - Figure 5 also shows the

for such bad performance
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same operators applied after a box filtering with a 3x3, 5x5, and 7zx7 neighborhood sizes.

An alternative to the preaveraging is to define the gradient operator with a larger

window. This is easily done with the Prewitt

surface in every window and uses the sqguare

coefficients of the linear terms to estimate

fit which would yield a different result.)

operator (Prewitt,1970) which fits a quadratic
root of the sum of the squares of the
the gradient. (A linear fit actually yields
the same result for the polynomial basic function.

A cubic fit is the first higher order
is illustrated in figure 6. A 3x3 pre-

average followed by a 3x3 gradient operator yields a resulting neighborhood size of 5x5.

Thus in figure 6 we also show the 3x3 preaverage
Prewitt and we show the 5x5 pre-average followed

followed by a 3x3 gradient under the 5x5

by the 3x3 gradient under the T7x7 Prewitt.

The noise is higher in the pre—-average edge—detector. For c¢omparison purposes the 5x5

Nevatia and Babu (1980) compass operator was
The Prewitt operator

virtually the same cresult.
computation.

It is obvious from these results that
neighborhood sizes than 3x3.
thicker edges.

To detect edges, the gradient value must be thresholded.

compared with the 5x5 Prewitt.

Unfortunately,

They give
has the advantage of requiring half the

good pgradient operators must have larger
the larger neighborhood sizes also yield

In each case, we chose a

threshold value which makes the conditional probability of assigning an edge given that
there is an edge equal to the conditional probability of there being a true edge given that
an edge is assigned. True edges are established by defining them to be the two pixel wide

region in which each pixel neighbors some pixel

having a value different from it on the

perfect checkerboard. TFigure 7 shows the thresholded Prewitt operator (quadratic fit) for a

variety of mneighborhood sizes.

Notice that because the gradient is zero at the saddle

points (the corner where four checks meet), any operator depending on the gradiemt to detect
an edge will have trouble there.

Figure 6 illustrates the Prewitt Operator
done by using a least squares quadratic fit
in the neighborhood versus doing preaveraging
and using a small fitting neighborhood size.
The no preaveraging and using a small fitting
neighborhood size, The no preaveraging
results show slightly contrast.
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Figure 7 illustrates the edges obtained
by thresholding the results of the Prewitt
operator.



IV. 2 The second derivative zero crossing edge operators

Marr and Hildreth (1980) suggest an edge operator based on the zero crossing of a
generalized Laplacian. In effect, this is a non—-directional or isotropic second derivative
Zero crossing operator. The mask for this generalized Laplacian operator is given by
sampling the kernel

at row colum coordinates (r,c) designating the center of each pixel position in the
neighborhood and then setting the value k so that the sum of the resulting weights is zero.
Edges are detected at all pixels whose generalized Laplacian value is of one sign and one of
whose neighbors has a generalized Laplacian value of the opposite sign. A zero-crossing
threshold strength can be introduced here by insisting that the difference between the
positive value and the negative value must exceed the threshold value before the pixel is

declared to be an edge pixel, Figure 8 illustrates the edge images oproduced by this
technique for a variety of threshold values and a variety of values for o for an 11 by 11

window. It is apparent that if all edge pixels are to be detected, there will ©be many
pizxels declared to be edge pixels which are really not edge pixzels. And if there are to be
no pixels which are to be declared edge pixels which are not edge pixels, then there will be
nany edge pixels which are not detected. Its performance is poorer than the Prewitt

operator,

The directional second derivative zero crossing edge operator introduced in this paper is
shown in figure 9 for a variety of gradient threshold values. If the gradient exceeds the
threshold value and a Zero—crossing occurs in a direction of + 14.9 degrees of the gradient
direction within a circle of one pixel length centered in the pixel, then the pixzel is
declared to be an edge pixel. This technique performs the worst at the saddle points, the
corner where four checks meet because of there being a zero gradient there.

Slareei.4

D VDrOoIMMIIT -
M= M A N

Figure 8 illustrates the edges obtained by Figure 9 illustrates the directional
the 11x11 Marr-Hildreth zero-crossing of derivative edge operator for 4 different
Laplacian operator set for three different thresholds.

Zero-crossing thresholds and three different
standard deviations for the associated
Mexican hat filter.
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Figure 10p illustrates the directional
derivative edges obtained from the aerial
photograph by first 3x3 median filte:ning,
then replacing each Pixel by the closer of
its 3x3 neighborhood minimum or maximum,
then taking the directional derivative edges
using a 7x7 window, then doing g connected
components on the non-edge Pixels, and
removing all regions having fewer than 20
pixels, and then displaying any pixel
neighboring an pixel different thap it as an
edge pixel,

There is much work yet to pe done. We need to explore the relationship of basis function
kind, (polynomial, trignometric Polynomial etc.), order of fit, and neighborhood Ssize to the
goodness of fjt, Evaluation must be made of the confidence intervals produced by the
technique. The technigue needs to be generalized so that it works on saddle points created
by two edges crossing. A suitable edge linking method needs to be developed which uses
these confidence intervals, Ways of incorporating semantic information and ways of using
variable Tesolution need to be developed. An analogous technigue for roof edges needs to bpe
developed. We hope to explore these issues in foture Papers,
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