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Abstract

Although many special purpose inspeclion systems
have been developed, general purpose systems utiliz-
ing CAD models of the paris are still in the research
stage. While it 15 easy lo define ad hoc algorithms for
inspection, it is much more difficult to justify the al-
gorithms with solid theory. In this peper we describe
a CAD-model-based machine vision system for dimen-
sional inspection of machined parts, with emphasis on
the theory behind the system. The original coniribu-
tions of our work are: 1) the use of precise defini-
tions of geometric tolerances suitable for use in image
processing, 2) the development of measurement algo-
rithms corresponding directly to these definitions, 3)
the derivation of the uncertainties in the measurement
tasks, and 4) the use of this uncertainty information in
the decision-making process. Our initial experimental
results have verified the uncerlainty derivatlions siatis-
tically and proved that the error probabilities obtained
by propagating uncertainiies are lower than those ob-
tainable without uncertainty propagation.

1 Introduction

The problem of automating industrial inspection
tasks is an interesting and challenging one. Mod-
ern design techniques are performed via computer and
produce a geometric model of the part being designed.
Three-dimensional graphics techniques can be applied
to this model to generate various views of the object
for the designer to look at. It is clearly desirable to
develop machine vision techniques to inspect the fin-
ished (or partially finished) part.

Many special purpose inspection systems have been
developed; some are even in use on the factory floor.
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General purpose systems are still in the research stage.
While it is easy to define ad hoc algorithms for inspec-
tion, it is much more difficult to justify the algorithms
with solid theory. This section motivates our approach
to the problem and discusses related work. Section 2
starts with a discussion on conventional and geomet-
ric tolerancing schemes, defines the simulated datum
features used in this work, and explains the construc-
tion of these datum features. Section 2 also defines
the different tolerance types and describes the algo-
rithms that carry out the inspection tasks. Section
3 explains the need to propagate uncertainty infor-
mation in measurement tasks and carries the reader
through one task, namely measurement of straight-
ness of edges. Section 4 explains the relevant image
processing operators and sequences used in extracting
the required features from an image. Section 5 dis-
cusses the experiments and results, and we conclude
with section 6.

1.1 Statement of the Problem

The purpose of tolerance specifications is to enable
us to decide whether a manufactured part is accept-
able. This will be the case if all its features (edges and
vertices in our work) are within the corresponding tol-
erance zones, the size, shape and orientation of which
are dictated by the tolerance assertions. In our present
work, we consider only edge and vertex features. As-
sume there is 1) a solid model M with vertex set VM
and edge set M and 2) a part P to be inspected with
vertex set V¥ and edge set EP. This part P has a
one-to-one feature correspondence with the model M.
It wil pass the inspection test if all its features in sets
V¥ and EF satisfy the tolerance specification(s) im-
posed o1 the corresponding features of the ideal model
M. The pose and orientation of the part P is known
with some uncertainty. We have one or more images



of the part. The problem is to determine whether the
part P passes the inspection test.

1.2 Motivation for our Work

An inspection task can be broken down into three
stages: the object recognition/pose determination
stage, the inspection stage, and the decision-making
stage. The output of the recognition stage is the iden-
tity of the object being inspected and a transforma-
tion matrix. In the inspection stage, image process-
ing, feature extraction, and measurement routines are
employed to access and test those features required by
the inspection task. The decision-making stage deter-
mines whether the manufactured part being inspect-
ed is satisfactory (“in spec”) or not (“out of spec”).
Since a real part is never perfect and a real image is
never noise free, the position and orientation obtained
from the recognition stage have uncertainty associated
with them. Noise in the image creates uncertainty in
the estimated attributes of the entities obtained as a
result of image processing.

Our beliefs about the need for propagation of uncer-
tainty are an important factor in this work. A second
key factor that has motivated the work is the need to
have precise definitions for the various types of toler-
ances and the need to have measurement algorithms
that perform a measurement task ezactly the way it is
laid out in the tolerance definitions. The one common
inadequacy of a number of related works has been the
fact that the measurement algorithms do not follow
the guidelines set up in the formal definition of toler-
ances. In this work, we try to bridge the gap and make
the measurements correspond exactly to the definition
of tolerances.

1.3 Related Literature

Though there is an abundance of literature in the
area of automatic visual inspection for specific do-
mains (e.g: solder joints, printed circuit boards, light
bulb filaments, etc.), literature on inspection systems
(specifically CAD-based) for general machine parts is
hard to come by.

Requicha [7] was the first to lay down a formal the-
ory of tolerancing. We draw on the ideas in this sem-
inal work and the guidelines prescribed in the ANSI
standards [1] to set up formal definitions of the vari-
ous tolerances. Park et al [5] discussed issues in devel-
oping an automated inspection system with emphasis
on achieving an integrated CAD-Vision model, not on
the tolerance theory or the measurement tasks. Oth-
er inspection systems have been described by (8] and
[2]. Although a number of coordinate measurement
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machine (CMM) vendors claim to have solved the in-
spection problem, they work by fitting surfaces and
curves to image data and inspecting the parameters
of the fit. This, however, is not what the industrial
standards prescribe.

2  Tolerancing Schemes

Conventional tolerancing schemes resort to exces-

sive use of implicit datums, leaving the designer to
resolve inherent ambiguities. Lack of explicit datums
leads to varying interpretations of what the designer
really intended. Geometric tolerancing, which is wide-
ly used in industry, is well-defined in the ANSI stan-
dards. In this scheme, use is made of explicit datum
features. We make a simple extension to the guide-
lines laid out in the ANSI standards and the formal
theory proposed by Requicha [7] to enable the impo-
sition of tolerances on two-dimensional object features
that are observable in an image. We decide if an ob-
ject feature is acceptable or not depending on whether
the feature lies within zones created by offsetting the
feature’s ideal shape.
It is not always possible to define dimensions exactly
on an imperfect object feature. Geometric toleranc-
ing employs “simulated datum features” to overcome
this problem. A simulated datum feature is a perfectly
formed geometric entity that is associated with an im-
perfectly shaped, manufactured object feature. Mea-
surements made using imperfect object features are
not well-defined/meaningful. The standards suggest
the use of simulated datum features (henceforth re-
ferred to as just datum features) in order to make
the measurements well-defined. Thus, our inspection
system must associate with imperfect, real features,
corresponding perfectly-formed features so that mea-
surements can be made.

We consider five geometric features in our inspec-
tion tasks. They are: straight lines, circles with the
material side external to the circle, circles with the
material side internal to the circle, rectangles with the
material side external to the rectangle, and rectangles
with the material side internal to the rectangle. These
correspond to the two-dimensional counterparts of a
planar feature, a cylindrical slot, a cylindrical part, a
rectangular slot, and a rectangular part, respectively.
In order to implement our measurement tasks, datum
features have to be associated with these five geomet-
ric features.



2.1 Datum Features - Definitions

Planar Object Features: Planar object features in
3D are just planar surfaces of the part. A popular
industrial practice used to associate a planar datum
to an irregular surface is to let a known planar object
rest on the irregular surface. We are going to inspect
edges which are 2D projections of planar surfaces. The
simulated datum feature for an edge is a straight line
positioned so as to minimize the integral sum of dis-
tances between points on the edge to the straight line.

Cylindrical Parts and Slots: The 2D profile of a
cylindrical part is a circle with the material side in-
ternal to the circle. The associated simulated datum
is the smallest circumscribing circle. The 2D counter-
part of a cylindrical slot is a circle with the material
side external to the circle. In ANSI terminology, a
cylindrical slot is an internal feature. The associated
simulated datum is the largest inscribing circle.

2.2 Datum Features - Construction

It is not enough to merely define datum features.
In addition, we must specify how these features are to
be constructed, and their constructions must be suit-
able for implementation in the digital image domain.
This section deals with the actual construction of the
different datum features we discussed before.
Straight Line Datum: According to ANSI standard
Y14.5M, where a nominally flat surface (in two dimen-
sions, a straight line) is specified as a datum feature,
the corresponding datum is simulated by a plane ( a
straight line in 2D) contacting the high points of the
surface. This gives us a simulated datum that is phys-
ically and geometrically meaningful and the datum is
“close” to the irregular surface in some sense. Refin-
ing this idea further, we can require that the integral
sum of distances from the simulated plane to the ir-
regular surface be a minimum. This makes the datum
plane “the closest” to the actual manufactured sur-
face. Thus, in two-dimensions, we have the following
problem.

Given N points in 2 space, construct a supporting
line L! to these N points such that the sum of perpen-
dicular distances from the N points to this line L is
a minimum. The following theorem gives the solution
to this problem.

Theorem:
Given N points in 2 space, the supporting line that

1'We require L to be a supporting line because we want the
datum to completely enclose the irregular edge.
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minimizes the sum of perpendicular distances to these
N points passes through an edge of the convex hull of
the N points.

Thus, given N points in 2 space belonging to an edge,
the simulated datum straight line is constructed in
the following way. Construct the convex hull CHy.
The supporting line that minimizes the sum of per-
pendicular distances is an edge E; of the hull. So, we
can compute the sum of perpendicular distances for
all the edges of CHy. Choose the edge yielding the
lowest sum of distances. This is the required straight
line datum.

Circular Parts and Slots: The required simulated
datum is the smallest circumscribing circle to the set
of edge points constituting the circle. The simulated
datum is the largest inscribing circle for the set of edge
points constituting the slot outline.

Constructing the smallest circumscribing circle and
the largest inscribing circle for a set of 2D data points
is a well-defined computational geometry problem [6].

Tolerance Definitions and Measure-
ments

2.3

In this section, we will define a few of the toler-
ance types and give a brief account of the algorithms
to make those tolerance measurements on an object
feature.

Straightness of an Edge

Definition: An edge with a straightness tolerance T,
conforms to the specification if it can be enclosed com-
pletely by two parallel lines at a separation less than
¥

Measurement: We check for the straightness in the
following way. The required simulated datum feature
(in this case, a straight line) is first constructed. This
datum line is then translated until all the edge points
are on or between the simulated datum and this trans-
lated version. If the distance between these two par-
allel lines is less than T, the edge conforms to the
straightness specification.

Angularity of Edges

Definition: Let the ideal angle between two edges be
fia and let the angular tolerance be specified by Tj,.
The two edges satisfy the angular tolerance, if the an-
gle between the two associated simulated datum fea-
tures is 0,5, satisfying ;g — Ty /2 < Oops < Oia+ Ta/2.
Measurement: We construct the simulated datum



features associated with the two edges as outlined be-
fore. Then we measure the angle between the two
resultant straight lines. The measured angle must to
lie within the interval [6;4 — T,/2,8:4 + T./2] for the
edges to conform to the angularity tolerance.

3  Uncertainty Propagation in Mea-
surements

A real image is seldom absolutely noise free. Noise
in the image leads to uncertainties in the attributes
of the entities output by image processing algorithms.
Uncertainty in the lower-level image entities leads to
uncertainty in the tolerance measurement tasks. To
illustrate this, we will take the reader through one
task, namely measurement of straightness of an edge.
The derivations for variances of other measurements
are similar in principle.

3.1 Noise Model

Let the true edge pixel position be denoted by
(zi)¥:). Let the observed edge pixel position be de-
noted by (2, 4:). Our model for the noisy, observed
edge pixel is, &; = z; + ¢, §i = yi + &;. where, €; and
&; are samples from independent distributions that are
even functions [9], with mean zero and variances o,
and oy, respectively.

3.2 Datum Line Uncertainty

The simulated datum line for straight edges is the
nearest-supporting line that passes through an edge
Ly of the convex hull of the edge pixels. Let us denote
the end points of this hull edge by (z1,%1) and (z2, y2).
We can write the line equation as L; : az + By +
v = 0. Since, we only have noisy observations (£1,%1)
and (%2,%2), the observed line parameters would be
expressed as functions of (&, 2).

Let us estimate the behavior of one of the line pa-
rameters o as a result of noise on the edge pixels. We
will represent o by a Taylor series expansion around
the true edge points (z1,¥;) and (z2,y2). We can then
truncate the Taylor series as an approximation and in-
clude only the linear terms. As a result

& = a+ (y%fl—)g{(yl —y1) = (2~ )]
#2200 i g (- e
21 = v2) — (G - )]
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Squaring the above equation and taking expectations
on both sides results in

Vi = Wi+ vig) (Y2l o)
+V1ai) + Vi) (2=l e o)

+2 [CO‘U[.’E}_ y :‘J]_] + C‘ov[:r“g, jz]]
((yz — 3}1)3(32 = 21) _ (-'52 — 31)(9’2 - yl)

ds d*

In a similar way, we can estimate the variances of
the parameters 4 and ¥ in terms of the coordinates
(z1,¥1) and (z2,42). To measure the straightness of
this edge, L1, we have to find another line parallel to
this datum line and such that all the edge pixels are
on or between the two lines. Assume that this parallel
line, Ly, passes through (z3,ys). The equation for L,
is Ly : &z + By — (&z3 + ﬁys) = 0. The distance be-
tween the two parallel lines that should conform to the
straightness tolerance is d = &z + Bys + ¥. Since «
and f are themselves functions of § which is the angle
that the line makes with the X-axis, we can rewrite d
as a function of § and v. Proceeding with the trun-
cated Taylor series expansion as before,

v(d

V[8)[z3co8 0 + yssin 6] + V[5] +

2[z3cos 6 + y3 sinf]Cov[d, 4] (2)
Equation 2 expresses the uncertainty of the
straightness measurement, given the observed coordi-
nates of the two edge pixels that support the datum
line ((#),91) and (&3,92)) and the third edge pix-
el (£3,93) that is farthest away from this datum line,
and the variances of the observed edge pixel positions.
Thus, the uncertainties in the edge pixel positions have
been propagated all the way up to the measurement
task.

4 Image Processing for Inspection

Tasks

The image processing operators, instead of oper-
ating on the entire image, operate only in specific
regions, called “search windows” where we expect
features (such as edges) to lie. Given the uncertain
transformation matrix and an estimate of the noise in
the image, an accurate estimate of the size and po-
sition of these search windows can be obtained [4].
The first step in our image processing sequence is
edge detection followed by a shrinking operation. The
edge detector output is contaminated with stray noise
specks, spurious edge pixels and small segments that



cannot be grouped with other segments on the basis
of adjacency or orientation. Thus, a necessary step
after edge detection is symbolic grouping, based on
adjacency and orientation, of edge pixels to form a
higher-level entity. The set of edge segments output
by the grouping process is directly used by the mea-
surement procedures. Corner pixels are obtained as a
by-product of the grouping process described above.
Points of high curvature on the arc segments are clas-
sified as corners.

5 Experiments and Results

We have run a preliminary set of experiments to
validate our procedures. As a first step in our exper-
iments, we checked for the accuracy of the variance
formulas derived for the various measurement tasks.
We employed a statistical testing procedure for this
purpose, taking the straightness measurement as an
example task.

In order to test whether 0'2;, the variance of the
straightness measure d is equal to V[d], the analytic
formula derived for, the null and alternate hypotheses
were formulated to be

)

Hy:0%; = Vid]
Hy:0%; # V[d),

and the test statistic to be
*i=Vid]

o N
Test = e —
o

Since the distribution of o2 ; is not known, we approx-
imate the mean and variance of &2 4 by the experi-
mental mean straightness measure variance and the
mean variance of the straightness measure variance,
respectively. The statistical test was carried out with
the significance level =0.05, corresponding to a value
of £1.96 for a normalized Gaussian random variable.
Thus the null hypothesis would be accepted if the test
statistic were between +1.96.

Figure 1 shows the result of the statistical test for
a line oriented at 459, with perpendicular distance to
the farthest edge point being 35 pixels. The statisti-
cal test value fell below the significance level when the
distance between the two points fell below 12. Thus,
for the linearization approximations made in the vari-
ance derivations to hold, the two points that support
the datum line must be separated by at least four
standard deviations (of the noise).

The second stage of our experiments focused
on determining the performance of the measure-
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Figure 1: Results of the statistical test to verify
straightness variance. The datum line used was ori-
ented at 45°. The straightness of the synthetic edge
used in this test was 35 pixels. The distance between
the two edge points that support the datum line was
varied from 20 pixels down to 10 pixels. The test fails
when the absolute value of the test statistic becomes
higher than 1.96 (significance level & = 0.05). The test
comes close to a breakdown when the distance is 12
pixels (4 times ¢) and breaks down when the distance
is 10 pixels.

ment algorithms with and without error propaga-
tion. We again tested the straightness measurement
algorithm. Our experimental object, shown in Fig-
ure 2, was modeled using PADL-2 and machined on
a CAMM-3 modeling machine (with some apparent
gross errors in a couple of edges). We selected two
edges in this image: a “good” edge (in terms of s-
traightness) and a “bad” edge. We determined the
datum lines for the good edge and for the bad edge.
An evaluation process influenced by [3] was then
employed (see [4] for a detailed description of the ex-
perimental methodology. This procedure starts with

Figure 2: The machined object.



Error Probabilities For Stroigntness Measurement
Noise SD=10, Good Edgs Stroghtneas=1.15, Bad Edga = 3.35
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Figure 3: Error probabilities with noise ¢ = 1.0.

Error Probabilities For Straightress Measurement
Noize S0=1.5, Good Edge Stroightnesam .15, Soa Edge = 3.35

08¢ 1

o
o
L

Misdeteclion

o
-

02 - 4

2.0

L
0. 0.2 C.4 0.6 o8 o

=1

o————a Without Efror Propogotion Faise Alarm

Using Error Propagation

Figure 4: Error probabilities with noise o = 1.5.

the real data obtained from the image and performs
1000 different perturbations at each of several noise
levels to thoroughly test the procedures. The false
alarm and misdetection probabilities we obtained for
various noise levels have been plotted in Figures 3 and
4. Our results show that the decision making proce-
dure that takes error propagation into account vields
lower error probabilities than the one that does not
propagate errors.

6 Conclusions

In this paper, we described a CAD-based machine
vision system for dimensional inspection of machined
parts. The system performs inspection by strictly ad-
hering to well-defined tolerance definitions. We prop-
agated uncertainties from lower-level edge pixels all
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the way up to the measurement tasks. We then incor-
porated these uncertainties in our decision making to
rule a feature acceptable or not. Our experimental re-
sults verified the uncertainty derivations statistically
and also proved that the error probabilities obtained
by propagating uncertainties are lower than those ob-
tainable without uncertainty propagation.

This work sets up a theoretical and operational
framework for a CAD-based inspection system. Addi-
tional measurement tasks can be included by setting
up precise tolerance definitions adhering to the guide-
lines described. Uncertainty propagation for these ad-
ditional tasks can be done by following the methodol-
ogy outlined for the straightness of edge task.
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