Validating Image Analysis
Algorithms

Questions

e Does the image analysis program in
fact implement what the design indicated
should have been implemented?

e Does the system behave in the ex-
pected way?

e Does the system meet its performance
specification?



Validating Image Analysis
Algorithms

e Model fitting methodology
— Model parameter estimation
— Registration

— Alignment
e Ground truth based methodology

— Border detection
— Segmentation

— Anomaly recognition
e Performance specification

— Proper specification statement
— Sample size for validation test
— Validation Test



Model Fitting Methodology

In the model fitting paradigm, the
unobserved ideal data vector X,

X:

is composed of many instances of in-

dividual points z1,...,zy, each associ-
ated with the model parameter vector
©

The model states:

flz,,©)=0, n=1,...,N



Registration Example

Let

u1,...,uy be N points in the patient
coordinate frame.

v1,...,vny be N corresponding points
in the reference coordinate
frame.

© be the transformation
parameters.

If there were
® no observation noise
® no errors in point correspondence

e reality were to completely obey the
transformation A

then
h(”n? @) = Up

In this case, x, = (u,,v,) and

f(x,,©) = h(v,;0) —u,



Noise Model

There is a noise model Athat relates
the observed noisy data X to the un-
observed ideal X.

X=X+¢
where ¢ is assumed to have a mean 0
and a covariance ..
Just as X was composed of individual

points ¢ is also composed of individual
points.

Tp=xp+ &,
where &, has mean 0 and covariance X,
and &, is uncorrelated with &,, m # n.

>0 0 ... 0
0 > 0 O

0 ... 0 Xy



The Criterion Function

There is a non-negative function 7 (X, O)
satisfying

F(X,0)=0

For a given X , the image analysis al-
gorithm determines a © that minimizes

F(X,0).
e What is the covariance matrix Z@@

e What should the form of F be?



Model

X Ideal Noiseless Unobserved
X =X+AX Noisy Observable

© Ideal True Parameter

O =0+ A0 Estimated Parameter

F Functional Form

Problem Statement

Suppose © minimizes F(X,0).
Find © to minimize F(X,0O).



Least Squares

F(X,0)

Maximum Likelihood
Estimation

F(X,0)=—Log P(X|O)

Bayesian Estimation
F(X,0)=—Log P(X|©)P(©)



Correlation

F(X,0)=Xpxh
where Xj is the image X translated by

0.

0 = argmax Xy * h



Curve Fitting

\J Unknown Free Parameters
of Curve
] Estimated Free Parameters
of Curve
X, Ideal Noiseless Point on Curve
x; = x; + Ax; Noisy Observation
f Form of Curve

Problem Statement

Given that
flx;,0) =0, i=1,...,1
h(W) =0
Find ¥ to minimize

N

I
.;1 fQ(:IA:iv qj)

subject to the constraint h(V) = 0.



Let

)A( — (:Ulv 737[)
X = (21,...,27)
© = (V,0)
O = (I,

Define
F(X,0) = il P22, 1) + AR(D)

Find © to minimize F(X,0) where ©
minimizes F (X, ©O).



Exterior Orientation

(Zyy Yn, 2n) 1" 3D Model Point

(tn,v,)  n'" Unobserved Noiseless 2D
Perspective Projection of (z,,y,, z,)

(U, Up) Observed Noisy 2D

Perspective Projection of (z,,y,, z,)

Unknown Rotation Parameters

Estimated Rotation Parameters

Unknown Translation Parameters

Estimated Translation Parameters

Model
k

(Uns V)" = —(pn, qn)" Where
n

(Pus @ns )" = R(O) (@0, Yy 20)" +
where R(y) is the 3 x 3 rotation ma-
trix corresponding to the rotation an-
gle vector 1.

(Un, Up) = (un, Un) + (Aty, Avy)

N N €>“@



Problem Statement

Let
0 = (1)
O = (¢¥,1)
X <<xn>ynuzn> n:17 -aN;
(Up,vp) :m=1,...,N >
X = < (Tny Yn, 2n) o =1,..., N;
(Up, 0p) :m=1,....,N >
Define
~A A N ~
F<X7@> — ,;1 fn(unavnawaﬂ
where
fa (i, 01, %)

_ - (1,0, 0)(R(¥) (%, Y, z0)' +
C 0,0, 1)(RW) (@, Yny 2a) +

6, — 1O 0) (R()(@ns Yy 20) +
(0,0, D)(R(¥) (%0, Yo, 20) +



Find © to minimize F(X,0) where ©

minimizes F(X, O).



Error Propagation

How does the random perturbation AX
acting on vector X propagate to the
random perturbation A© acting on the
parameter vector ©7

The solution @ = O + AO minimiz-
ing F(X + AX,0), must be a zero of
g(X + AX,0), the gradient of F.

The gradient g of F is a K x 1 vector
function.

9(X.6) = 7 (X.6)



Solution

To determine the effect that AX has on
AO, we take a first order Taylor series
expansion of g around (X, 0):
gV X +AX,0+A0) = ¢" X, 0)
agKXN(X O) Nx1
S AXY
T X

ag/[(xK(X7 @)/ Kl
AO™
* 00

But since O+A0O extremizes F(X + AX,0 + AO)
g X +AX,0+A0) =0.

Since © extremizes F (X, O),
g(X,0) =0.

Therefore,

0X 00 A0

0




Since the relative extremum of F is
a relative minimum, the K x K matrix

0y of

00 00
must be positive definite for all (X, 0).
This implies that

dg O f?

00 0%6

is non-singular. Hence
g . _
(56

exists and we can write:

—(X,0)===(X,0)

—(X,0)=—==(X,0)

so--(fgmo) (B sx



Covariance Matrix

s0=- (800 (o) ax

If F|AX] =0, then E[AB] = 0.

Let Y rone be the covariance matrix
of the random perturbation AO.

Saone = E[AOAO
- (30) (S axi- () (22 s

00 0X 00 0X
_ (89 (9gY , 39)(&61)‘1
96 0X EIAXAX] ((9X 00

_ (99)7 (99 (ag)<59>1
~loe) \ox) 72 ox) o6



Covariance Matrix

s on] (A a
AOAX' — (§g<x o) gj’;(X 0)) AxAX
E[AOAX] — (gé])(X, o) g)’;(x o)) ElAXAX]
YAOAX = (gg(X, @)) (gi(X @)),ZAXAX



Thus to the extent that the first or-
der approximation is good, (i.e. F[|AO] =
0), then

Ygo = LABAS



Estimated Covariance Matrix
Expand ¢(X,0) around g(X + AX,0 +

AB) = g(X,0).
g(X,0) = g(X,0) - (%(X,é))/ax
dg
- 9(X,6)a0

In a similar manner,

so-—((xi0) B0 ax

This motivates the estimator f]A@A@ for

EA@A@ defined by

. 0 0 !
YAOAO = (ag(X 9)) (8;0( 0)| Saxax

<(xx0) (G5t




So to the extent that the first order
approximation is good, Z@@ = Y676

The relation giving the estimate f]éé
in terms of the computable

ag(X ©) and g)’;

means that an estimated covariance ma-
trix for the computed O can also be
calculated at the same time that the
estimate © of O is calculated.

(X,0)



Closest Distance

Given an  and a covariance matrix
Yz, find the minimizing value of

(2 —2)S (& — )

T

taken over all x satisfying
h(z) =0

where we know that z is not too far
from the minimizing x.



Largest Probability

If £ has a Normal distribution with
mean z and covariance ;;, then the
density function for z is

| 1

z exp — (2 — )Y (3 — )

p<5€> = (27T>N/2 | Mg |1/2
Then the log density is

Nlog2m +log | X35 | 1 o

log p(z) = 5 —2@_37)/2@5:

Thus the value of 2 that minimizes

(2 — )2 (& — )

T

over the constraint i(z) = 0 is the value
of r that maximizes the log density.



Closest Distance
Define
€= (2 —2)303 (2 — )+ Mh(x)

TxT

Then the minimizing r must satisfy
O 2
0e* _

ox

Now

Oe? P Oh(x)
G = 22 —x)(—=1)+ A 9

Hence

Oh(x)
ox

0= =22 (2 —x)+ A
AOh(x)
2 Oz




Closest Distance

Since 7 is not far from the minimizing
r, we can write

Oh(x)’
ox

And to a first order approximation we
assume,

h(z) = h(z) + (z — x)

Oh(z)  Oh(i)

Ox ox
And since h(z) =
. On(z) .
(@) = 220 (¢
implies
AOh(Z)

2 Ox A
Ly 0n@)
2 ox

Oh(x) _ Oh(z)
or O

Now,




Closest Distance
Multiply both sides by 242,

6’]@(@)/ B Aé’h(ﬁ:)'
ox 2 Ox

N—

(z—x

_ ox

i, Onl@

ICON
9 ()5 Oh(a)

TT Py

ox




Closest Distance

Now
AOh(Z)
2 Ox

— Th()

2
h?(2)
Oh@)'s;,  Oh(z)

TT or

Therefore, the minimizing value of

(& —2)S5 (@ — =)

taken over all x satisfying h(z) =0 is

h*(2)
( )Z _Oh(2)

T or




Finding The Minimizing x

Since,
A h(z)
9 Oh(2
2 ( )’ PN 82:)
and
A, Oh(z)
L —X) = Xge—(p
(& —z) 2 ox
The minimizing r can be computed
by
. h(z) Oh()
T oha)'s, oM G



Covariance For Any Parameter
Model Fitting Problem

In the parameter model fitting prob-
lem, the unobserved ideal X is com-
posed of many instances of individual
points x1,...,xy, each associated with
the model parameter O.

The model states:

flz,,©)=0, n=1,....,N



Noise Model

There is a noise model Athat relates
the observed noisy data X to the un-
observed ideal X.

X =X+¢
where ¢ is assumed to have a mean 0
and a covariance ..
Just as X was composed of individual

points ¢ is also composed of individual
points.

Ty =Tp+ &,

where £, has mean 0 and covariance
Yz, and &, 1s uncorrelated with ¢&,,






The Criterion Function

The Criterion function for the deter-
mination of the unknown parameter ©
finds that value of © so that the sum of
the minimizing distances, in the norm
of 7!, between the observed points and
the minimizing points is minimized.

F(X,0) = F(x1,...,2x,0)

f2<xn7 @>
o n—1 8h(xn)/§j Oh(zy)

ox Indn  OJx

|
M=




Gradient of the Criterion

Function
oOF
00
N O f 2(:1:”, @)

nz::1 00 gg(l’n, @)/anxn Ox (.I'n, @)

N gi;(xna @)/Z:ﬁn@na (T, ©)2f (1, O) g@ (Tn, ©)
= (9 (2, 0)' i3, % (2, ©))
0 ns Inln Qg
fQ(xna @>a@ (gf<xm O)'%s,z, ax<xna @>>
(% (20, ©)' S5, 2 (2, 0))

Ox
N 9% (1, 0)
2 na@ oo o
2 2 O or e s (2, )

%?gf@m @)/an:cna (2, @>>
<af<37na @)/anﬂcn O (x”’ @)>2




Taking Partial Derivatives

Of A Product Of A Scaler
Function With a Vector

Function

Suppose that f is a scaler function of
a K x 1 vector variable © and that v

iIs a M x 1 vector function of a vector
variable ©. Then,

0
5o [(©)0(0)
is a K x M matrix defined by

9 of

0 / /
55 (©)0(0) = £(8) L 0(e) + 5 u(®)



Partial of Gradient

dg N 19, O (x,,, ©)
A 2 " 6 00\
90~ o fzn, >8@a£(xn,@)’2@nxngf(x,@) "
ﬁ /
00 (2, 0) 5,5, 50(2,0O)
0 (0f N Of
f2(33n, @) 0 99 (3113 (33'”, @) Exnxnaa: (I’n, @? _
2 aixn76/2££aixna@ /
2f<37n7 @)%( o @) 8@8 8:13( ) n@?}@x( ;)
%C’jﬂ? @)/Zi'ni'n%(xrw @>>




Partial of Gradient

We evaluate the partial derivative at
(x1,...,2y) where

flz,,©)=0, n=1,...,N

Therefore,
99 . N Of o (21.0) |
Yy _ 2 . O 00 !
N af af / 1
— 2 o mny

oy Ben Ok, 0

n=1 gﬁ(fﬂm @yzxni"n ax@jna O)




Partial of Gradient

99 8 8f(:13 @)
= 2f(x, 8@ n
af 6)f(:zz' @) !
2——(x,, © 9O\ B
axn(a: ,0) L (3,,,0)' 5,5, 9 (2, ©)
0 / )
f(x,,0) 9 36 (:(#,0) Efﬁn@nc‘?f(xn’@p _
ox, gi(xn,@)/zxn@na <£Cm@>)
" Ox " of / 2
" (x(a:n,@> S0, 2L (:cn,@))




Partial of Gradient

We evaluate the partial derivative at
(x1,...,2y) where

flz,,©)=0, n=1,...,N

Therefore,
% _ zﬁf(a: O) ol O) |
&zzn 83371 " gi(xn, @)’aningi<$n, @)
of of 1
— 9 (xn,@)(:cn,@)’( / )
0x, 06 gf;(:vn, ©) anxngi(:ﬁn, ©)



Partial of Gradient

@MXK

0xq
agMNXK @MXK

— 0x9
0X

99" (dg Od g’
0X  \Oxy Oxs = Oxy

( (01 O (@10) - Gola, Oglen. OF

%(ajb@)lzl‘lxl%(wl?@) %(xN7@)/E$NJZN%($N7@)



General Case Covariance

g’

Bg's 09 _ N G5(n O3l (s O)ae, 57 (w0, ©) G, €
aX XX(?X n=1

ox

gf;( @)/an:ﬁna (fn,@)f
_ g mln O) (O
e gi (@, @)/anl‘nax (Zn, ©)

dg

= 2.0(X,6)

3




General Case Covariance

0y (09)‘1
0X XX9X 06

5 X 9L (2, @)gé(:cn, O)
n=1 gf ([lﬁn, @)/anxn i (Zl?n, @)

_ | e 96
n=19L(z,,, ©)%; 5.9 (x,,0)

af (xn’ @) of (xm @)/ )1

;



General Case Covariance

2 N g@(%a @>8ascn(xn7 @)/Zinﬁjn
XX nZ::l g:];(mm @),Zi‘n@ngg(ivn’ @)
ag B N aé(ﬁl?@, @)%(xzy @>/

25 5 (i, ©) 55 (w1, ©)
i=1 g‘;(ﬂiz, @)’Z@a&igi(% @)
N 5 (@0, ©) g (20, ©) Vi,
=1 (2, 0)%,4, % (2,,0)
Jz\f: %(mi,@)%@u@)’
i=1 gggf(xi, @)’Z@mgi(fﬁu )
> %(SC”, ®>E§:é];(xnv @yzinff?n
n=1 9(z,,0)%; .5 (x,, 0)

—1
X

=

X



Hypothesis Testing

Z:ZO and,u:uo

Define:
Ly
v N n=1 tn
and
1 N
S = N1 ngl(xn — ) (x, — )

where the data vectors x,, are p-dimensional

and the sample size is M.
Define
B=(N-1)S

and
A= (e/NPYEIBE Y x

exp (—[tr(BYg ") + N(Z — p10)' g (T — po)]/2)
Test statistic:

T = —2log A



Distribution under true null hypothe-
sis is Chi-squared:

I~ Xz%(p+1)/2+p

Reference: Anderson page 442.



