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ABSTRACT

The use of coarse volumetric, geometric and
relational models for the analysis of perspective
projections of solid objects is discussed. Using
these models, equations are
computation and estimation of the camera parameters
under which the perspective projection image was
created. A matching scheme is developed for the
process of identifying an unknown object in a
scene.
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I. Introduction

A computer system is given a single perspective
view of an unknown object, taken from an
unspecified camera position. Its goal is to
describe and possibly identify the object in the
scene. Our experiments deal with a class of man-
made objects including furniture such as chairs,
tables, desks, etc. The methods presented in this
paper could be - extended to include other types of
objects in a relatively straightforward manner.

Human beings have the capacity to perform visual
recognition tasks with relative ease and often show
very good performance even when the picture is
degraded by noise. Depending on the camera geometry
and the lighting of the scene, parts of the object
may be occluded or shaded to the extent that object
identification becomes extremely difficult. The
ability to extract the significant parts of the
image, and to reason about the geometric and
spatial relations between these extracted parts
seems to play a definite role in the process of
recognition. In an effort to explain, and possibly
achieve the level of human efficiency, various
researchers have favoured the idea that analysis of
scenes relies on the presence of a-priori knowledge
about the scene and the nature of the objects
likely to be found in it.
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This paper discusses a modeling scheme for
describing three-dimensional objects, and the
geometric reasoning that can be done using the
information stored in these models.

II. Literature Review

We first present a brief review of some of the
other work being ~done in this area by other
researchers. This is by no means a complete survey.
It 1is mainly intended to be indicative of the
variety of techniques being examined.

Object Modeling

There exists a large volume of work which has
been reported in the field of three-dimensional
object modeling and representation. Most of the
current techniques build up descriptions of objects
from simpler primitives in various ways.
Constructive solid geometry (VOET7) systems use
set-theoretic "additions" and "subtractions" of
solid primitives to assemble objects. Binford
(BIN71) first proposed a scheme of decomposing
objects into "generalized cylinders". The
generalized cylinder modeling was incorporated in a
system for performing scene analysis experiments by
Nevatia (NEV77). This technique was extended to a
hierarchic system by Marr and Nishihara (MART75).
The modeling scheme used in our work is the
"generalized blob" model proposed by Shapiro et.al.
(SHA80a) .

Image Decomposition

Decomposition of images into "meaningful parts
has also received a considerable amount of
attention. Conceptually the parts that are
obtained, should correspond to projections of the
three-dimensional primitives used for modeling.
Two-dimensional shape decomposition algorithms have
been reported by several researchers. The graph-
theoretic clustering algorithm used in our work is
based on the visibility of boundary points as seen
from other points around the boundary. This
algorithm is due to Shapiro and Haralick (SHAT9).

Matching Schemes

Relational matching of polygonal shapes has been
reported by Shapiro (SHA80D) . Brookes
(BRO80,BR0O81) used symbolic reasoning in the
context of recognizing three-dimensional objects



from single perspective views. Relational matching
traditionally has required large exponential-time
searches. The use of discrete relaxation for the
matching -process was formalized by Rosenfeld et.al.
(ROS76). Later Haralick and Elliott (HART9)
examined speedups and tree pruning techniques that
could be used for speeding up the tree searches
used in such matching processes.

III. Generalized Blob Models

The modeling scheme used in our work, is the
generalized blob scheme developed by Shapiro et.al.
(SHA80a).  This technique has been described in
detail in (MUL81). In this paper we will only
review the features required for the geometric
reasoning processes.

Description of Three-Dimensional Objects

The generalized blob model describes three-
dimensional objects in a rough relational
framework. The modeling scheme describes three-
dimensional objects in terms of their constituent
primitive parts. All models are decomposed into
three basic shapes. These are sticks, plates and
blobs. Sticks are inherently linear features, like
chair legs, and are modeled as straight 1lines in
three-space. Plates are the flat parts like chair
backs or table tops. These are modeled as circular
disks in three space. Blobs are modeled as spheres
and are the parts that occupy a large volume.

The model contains a list of the parts of the
object, along with the geometric and relational
interactions among them. There are three main
relations which have been used for the task of
object recognition: unary, binary, and the ternary
relations. The - unary relation describes the
relative lengths, areas, volumes, and types of each
of the primitives. Of course, sticks do not have
any -area or volume, just as plates do not have any
volume. All these characteristics are relative to
the smallest part in that particular model. This
makes the description of the objects invariant
under global scale changes.

. The binary and the ternary relations are the
most important relations in a model. These
relations describe how the primitive parts fit
together to make up the structure of the object.
The binary CONNECTS/SUPPORTS relation describes
pairs of touching primitives by specifying the
spatial relationships in terms of symbolic points
and the geometric relationships in terms of the
angles formed between the various significant -axes
of the primitives involved. All measurements are
specified with respect to 1local part-centered
coordinate  systems. This makes the object
description translation and rotation independant.
We describe the encoding of the CONNECTS/SUPPORTS
relation in detail in Section 4.3.

The TRIPLES relation makes explicit the nature
of subassemblies of three parts. For every set of
three primitives, A, B and C, such that both parts
A and C touch the middle part B, the TRIPLES
relation specifies the spatial . relationship of A
and C to B, along with one angle necessary to fix
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the geometry. This angle is the one formed between
the two lines joining the centers of parts A.and C,
to the center of B. A simple example involving
three sticks is shown in Figure 1. This
information is also used in the geometric reasoning
process. Since the models are supposed. to be
inexact, there is an implicit tolerance on the
measurements specified in all relations.

The Geometry of a Binary Connection

In this section we will examine the way in which
a binary connection would be encoded in the
database. In particular, we will study the nature
of a plate-plate connection in which the edges of
the plates touch each other. This kind of a contact
oceurs very often in man-made objects. For example,
the back of a chair and the seat touch in that way
(Figure 8).

Connection of Two Plates As was described in the
previous section, plates are modeled as three-
dimensional planar circles. Assume ‘for the purpose
of this illustration, that both plates have unit
radius. Let us examine how many  geometric
parameters have to be specified in order to
describe the possible ways in which the two plates
could touch.

Since the connection is described in terms of a
local coordinate frame, the coordinate directions
can be chosen so as to make the analysis as simple
as possible. In particular, we choose the origin
at the center of one of the plates, say plate A
(Figure 2), with the Z axis normal to the plane of
A. Let the X axis lie along the 1line joining the
center of A to the point of its contact with B.

Since the radius of B is known, the center of B
can lie anywhere on a sphere centered at P (the
point of contact between A and B). Think of a
polar coordinate system centered at P. The center
of B has two degrees of freedom, and therefore two
angles are enough to describe the ray from P to the
center of B. The plane of the plate B has one more
degree of freedom - all it has to do is pass
through the ray just fixed. Consequently three
angles are enough to characterise the entire plate-

plate edge-edge geometry.

The three angles actually measured, are shown in
Figure 2. Angle alpha is the elevation of the
center of the second plate from the first, beta is
the swing angle of the second plate, and delta is
the angle between the normals to the two plates

It should be pointed out at this stage, that the
encoding of the angles for the connection between
parts A and B is not necessarily the same as the
encoding for parts B and A. The reason for this is
that the angles are specified in terms of
coordinate systems centered at one of the parts (by
convention,. the first part). This is not
necessarily a drawback, since given one encoding,
it is possible to compute the other, resulting in
conceptual  simplicity at the expense of
computational speed.




To achieve rotational and reflectional
independence, the angles are constrained to lie
within certain narrow ranges. Alpha can lie
between O and 90 degrees, beta from O to 180
degrees, and delta between -90 and +90 degrees.
Note that alpha and beta do not have signs. Since
there is no global coordinate system, there is no
way of specifying clockwise or anti-clockwise
rotations. This is precisely what makes the
description insensitive to mirror image
reflections. However because of this feature, if
the three angles are given, up to eight physical
interpretations can be constructed. Figure 3 shows
the four different orientations of the ray from P
to the center of B given the angles alpha and beta.
For each of these orientations, there are two
possible orientations for the angle delta. Figure 3
also shows how these eight descriptions are related
- they are reflections about the XZ plane. 1i.e.
the plane containing the normal to A and the line
from the center of A to P.

At the expense of having to examine more than
one interpretation for  the three-dimensional
object, we achieve the simplicity of having the
description of a chair remain the same if the chair
were viewed in a mirror.

Other Primitive Connections Not all part pairs
require three angles. Some connections such as a
stick-stick connection in which the ends of the
primitives touch, require only a single angle. No
connection type needs more than three angles in any
case. For a complete explanation of all the angles
necessary to describe every possible pair of
primitives, see (MUL81).

The three angles are used
obtaining an interpretation
projections of objects. However, before we can
examine the computations involved, we need to look
at the nature of the process by which the images of
the scene are generated from physical three-
dimensional objects.

in the process of
of two-dimensional

Perspective Projections and the Camera Geometry

The view that is generated from an object in the
real world is the result of the interaction between
the camera geometry and the the actual surfaces and
parts of the object.

Perspective Normal Projection The projection of

a point in three dimensional space onto the camera
screen is shown in Figure 4. The location in screen
coordinates of the point, can be expressed as

xs ys f

x! y' d
The camera itself is located with its origin at Xc,
Ye and Zec in the world coordinate system. Without
loss of generality, we can assume that the negative
7 axis of the camera, points towards the origin in
world coordinates. If it does not, it can be made
to do so by a simple translation of the appropriate
coordinate frame.

Given the physical coordinates of the object
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parts, the focal ratio of the camera and the
location of the camera in terms of the object
coordinates, the exact image of the object can be
mathematically generated. However, even if we are
given the exact image of a three-dimensional
object, it is not possible to compute the inverse
of the projective transformation. Every point in
the scene is the image of an entire line in three-
dimensions. This 1line is shown for an arbitrary
point P, in Figure 4.

The problem we are faced with is that we know
even less information than what is indicated above.
We do not know the exact camera location (even
though we may have some a-priori information
about the possible range of locations that the
camera could occupy. For example, in aerial
photography, we can assume that the height of the
camera above the ground plane 1is larger than the
horizontal scale of the object.

To make the problem mathematically tractable, we
can make some simplifying assumptions about the
nature of the projection involved. In particular,
we can assume that the swing angle is zero and the
Y axis of the camera coordinate system points in
the same direction as the Z axis in the world.
That is to say, all our views are 'right side up'.

Further, we can assume that the camera is
located at a very large distance from the object,
and the focal length of the 1lens is large. The
resulting projection is called a perspective normal
projection (c.f. Brookes (BRO81)), because it is
the equivalent of a normal projection onto a plane
which is parallel to the screen and close to the
object, folowed by a perspective projection of that
image onto the camera screen. This leaves Jjust two
unknowns necessary for specifying the camera
location. These two parameters are the tilt and the
pan angles of the camera as illustrated in Figure
5.

Projection of Primitive Parts What do the three
primitive parts of our objects 1look like under
perspective normal projection ? Blobs have been
described as spheres in three space.  The normal
projection of a sphere on any arbitrary plane, is
simply a circle. Sticks project as lines (or
depending on the viewpoint, vanish). Plates are
the most interesting since their projection yields
the most information about the relationship of the
camera to the object.

Plates are modeled as circles. The normal
projection of a three dimensional circle is an
ellipse. If the angle between the plane of the
circle and the plane of the screen is theta (Figure
6), the eccentricity of ‘the ellipse is
SIN(90-theta). Perspective normal projection is
simply a normal projection with a constant scaling
factor in both the X and Y directions and
consequently does not change the eccentricity.
Further, under our assumption that the camera is
very far from the center of our object, the scale
factor is close to 1.0. Note that the angle theta
in Figure 6 is 90.0 - the tilt angle shown in



Figure 5. That means that the projection of a plate
yields some information about the picture taking
process. How this information can be utilized is
the subject of subsequent sections.

Projections of sticks also carry information
about the relative spatial arrangement of the
camera and object. Fore-shortening of lines under
projection can be used to extract information about
the inclination of the line to the picture plane.
In the current work being reported in this paper,
the information in projections of sticks was not
used. Only the eccentricities of the projections of
plates was considered.

plates are not always exact
circles. For example, the tops of tables (which
would be modeled as plates), could be square or
rectangular. This causes the observed eccentricity
of the part to be less than the theoretically
predicted value. The result of this discrepancy
will be discussed in later sections.

In real objects,

Estimation of Camera Parameters

Let us assume we have two plates which touch
edge to edge as described before. We shall show,
how the tilt and pan angles of the viewing vector
measured with respect to one of the two plates, are
related to the tilt and pan angles measured with
respect to the second plate. The camera location
serves as a global constraint on the appearance of
the various parts of the object. If we know what
one of the parts of the object looks 1like, its
appearance provides some information about the
possible range of camera positions. Propagating
this information to adjacent parts yields a system
by which these constraints can be verified and used
in narrowing down the possible range of camera
locations.

models do not- have any global
coordinate system, we cannot specify the camera
position in some absolute sense. We can however,
specify the tilt and pan angles of the camera with
respect to local part centered coordinates for each
part. In fact, we will show in this section, that
once we know the tilt and pan angles with respect
to one plate, we can propagate them over to
adjacent plates which it touches, and consequently
to all parts in the model.

Since our

Some Notation We are given two plates U and V,
which touch in an edge-edge type connection (Figure
7), along with the three geometric constraints that
form a part of the CONNECTS/SUPPORTS relation. Let
us also assume that we have selected one of the
different possible physical configurations that
could result from the given geometric values. The
way in which this configuration is decided, will be
described in later sections.

The tilt angle (with respect to a specific
plate) is the angle between the viewing vector L
and the plane of the plate. The pan angle is the
angle between the projection of the view vector on
the plane of the plate, and the vector from the
center of the plate to the point of contact with
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some other pre-specified three-dimensional part.
This means that the pan angle is specified not
merely with respect to a given plate, but also with
respect to its contact with some other specified
plate.

Let the connection of U and V be reported as
(V,U,edge-edge,A,B,D), where A, B, and D are the
three angles required for the specification of the
connection. A is the angle between the vector from
the point of contact between the plates to the
center of plate V and its projection on the plate
U. B is the angle between this projection and the
vector from the center of the plate U to the point
of contact. D is the angle between the normals of
the two plates. All these angles are indicated in
Figure 7.

Cv is the center of plate V, Cu is the center of
plate U, N is the normal to plate U, and V is the
normal to plate V. Similarly, R is the vector from
Cu to the point of contact, and P is the vector
from the point of contact to Cv. In the equations
which follow, all capital letters refer to vectors
or angles, and subscripts of x, y and z refer to
the projections of the vectors on the X, Y and the
Z directions respectively. For example, Px is the
X component of the vector P. F and T are the pan
and the tilt angles. These are qualified by the
lower case letters u and v to denote the plate with
respect to which they are being measured.

All vectors are assumed to be unit vectors. "X
refers to vector cross products and "." refers to
the vector inner products. Multiplication between
‘scalars 1is implicit. i.e. PxNy represents the
scalar multiplication of Px and Ny. All angles are
implicitly in degrees.

The Computations We wish to show that given the
tilt and pan angles Tu and Fu with respect to the
plate U, and the connection angles A, B and D, we
can compute the tilt and pan angles Tv and Fv with
respect to plate V. To do that, we show how all
the vector directions can be expressed in terms of
the given angles A, B, D, Tu and Fu. Once we know
the directions for all vectors in Figure 7,
calculation of the required tilt and pan angles is
simple.

We first define three auxilliary angles A', T'u
and T'v to be 90.0 - A, 90.0 - Tu and 90.0 - Tv
respectively. We first wish to determine a unit
vector S which 1lies along the direction of the
projection of the vector P on the plane of U.

P x N / sin(A")
NxQ

Q
S

in the definition of Q
makes Q a unit vector. Since N and Q are now both
unit vectors and orthogonal, S is also a unit
vector. Since Q is the cross project of the vectors
P and N, it is perpendicular to the plane
containing the two vectors. - Also since N is normal
to the plane of the plate U, Q lies in the plane of
U. Now S is normal to both N and Q. Consequently,
it must 1lie in the intersection of the plane

The division by sin(A?')



containing P and N and the plane of the plate u.
Therefore, it is the projection direction of vector
P in the plane of the plate U.

Using the conventions defined earlier, we have:

cos(A') =N . P
cos(B) =S .R
cos(D) =N .M

The equations for the vectors Q and S may be
expanded in terms of their components in the prime
directions to obtain expressions for Qx, Qy, Qz and
Sx, Sy and Sz. These expressions can be substituted
in the expression for cos(B) and the expression
expanded to yield:

cos(b) = S.R = (NxQ).R

(Ny (PxNy-PyNx) - Nz(PzNx-PxNz))Rx
+(Nz(PyNz-PzNy) - Nx(PxNy-PyNx))Ry
+(Nx (PzNx-PxNz) - Ny(PyNz-PzNy))Rz

cos(B)=
sin(A")
The angles T'u and T'v are defined Dby the
expressions:
cos(T'u) =L . N
cos(T'v) =L . M
The angle Fu is defined as the angle between the

projection of the viewing vector on the plane of
the plate U and the vector R. To obtain the vector
F which is the projection of L on U, we proceed in
the same fashion as we did for the projection of P
on U.

E
F

N x L / sin(T'u)
Ex N

F is now the projection of the unit vector L on the
plane of U. We can now generate the expression for
Fu as the inverse cosine of the dot product of the
vectors F and R.

cos(Fu) R
X N).R
N X L) X N).R / sin(T'u)

and similarly by considering the projection of the
vector L on the plane of V, we get:

cos(F'v)=((M X L) X M).-P/sin(T'v)

The terms involving the double cross products can
be expanded to obtain the expression for the angles
in terms of the components of the vectors. The
expression for cos(Fv), for example, becomes:

((MzLx-MxLz)Mz - (MxLy-MyLx)Mx) Px
+((MxLy-MyLx)Mx - (MyLz-MzLy)My) Py
+((MyLz-MzLy)My - (MzLx-MxLz)Mz) Pz

cos(Fv)=
sin(T'u)

These calculations so far were independant of
the choice for the coordinate directions. Since
the choice of the coordinate system is arbitrary,
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we can select the one which simplifies all
expressions involved. Specifically, let us choose a
right handed coordinate system such that the vector
N becomes (0,0,1) and the vector R becomes (0,1,0).
In this coordinate system, the expressions for the
angles become:

cos(B) = Py/sin(A')

cos(A') = Pz

cos(D) = Mz

cos(T'u)= Lz

cos(Fu) = Ly/sin(T'u)

Out of the five vectors M, N, R, P, and L, the
vectors M, P and L were unknown. N, and R were

defined by our choice of coordinate system above.
However, the lengths of these three vectors is
known (to be unity). So another constraint is that
the sum of the squares of each component, totals to
one for each vector. Also since M and P are
orthogonal, we get the following equation:

MxPx + MyPy + MzPz = 0O

Therefore, we can explicitly solve for the values
of the components of M. This means that the entire
connection geometry is defined. We can determine
the vectors M, N, P and R in terms of the angles A,
B and D.

The vector L is also a unit vector, and its
components are involved in the expressions for the
camera constraints - the tilt and pan angles.

Lx = sin(T'u)sin(Fu)
Ly = cos(Fu)sin(T'u)
Lz = cos(T'u)

The explicit solution of the vectors reveals the
fact that since the signs of the angles A, B and D
are undefined, we have upto eight different
solutions. For the purpose of this section, we
assume that from these eight, one solution has been
extracted. In practice, this choice is made by
propagating the constraints on the camera tilt and
pan angles for each of the eight solutions and the
wrong solutions give rise to inconsistancies,
leaving only the correct solution. For certain
values of the angles, several of these solutions
collapse into a single value (multiplicity of roots
of the defining equations) reducing the search
space.

Once all the vectors shown in Figure 7 are
defined, computation of the required angles T'v and
F'v are trivial. Their values have already been
defined in terms of vector dot products earlier.
There is an added bonus that results in this
computation. Once the vectors are fixed, we can
compute the angles that need to be specified for
the U,V connection. Remember that the angles in a
U,V connection are not necessarily the same as the
angles in a V,U connection. But these angles are
once again definable in termsof the dot products of
vectors already computed.

Using Constraint Propagation in a Tree Search




From the last section, we can see that the pan
and tilt angles of the camera, specified with
respect to any plate, effectively acts as a
constraint on the position of the camera. As we
showed, this constraint can be propagated over to
adjacent plates, and consequently over all the
connected plates in the object. The constraints
have to meet the consistency checks deseribed

below.

Geometric Constraints As described before, the
geometric constraint arises from the fact that a
single camera position generates the entire image.
This 1is imposed by requiring that the when the
propagation of constraint angles yields a value for
the estimated tilt angle of any plate, it has to be

compatible with the value computed from its
eccentricity.
Relational Constraints The images generated

from three-dimensional objects, must also satisfy a
set of relational constraints. If a set of
primitives in the object, participate in connection
relations, and if all the parts are also visible in
the view, their projections should also satisfy the
equivalent two-dimensional connection relations.
Of course, this is not a two way implication. Parts

that touch in the view do not neccesarily
correspond to connected three-dimensional
primitives.

"

Putting It All Together The entire matching
strategy can now be formalized. The process
consists of finding a consistent interpretation

for all the visible parts in the view. This
necessitates a preprocessing phase in which the
image is  decomposed into  constituent two-
dimensional regions (possibly overlapping) which

intuitively, should correspond to the projections
of the models three-dimensional parts.

Two-Dimensional Pre-Processing We worked with a
graph-theoretic  clustering procedure  (SHAT9)
developed for generating near-convex clusters. The
input is an ordered sampling of the points on the
outer and inner (hole) boundaries of the
sillhouette of the projection of the object. Of
course, this method does not retain any of the
detail of lines interior to the sillhouette and
consequently, it does not work well in all possible
cases. However, for many models, the outer boundary
retains enough information for a meaningful
decomposition.

Some of the two-dimensional views that were
were obtained from digitized photographs of

used,
toy furniture. Other views were generated by
computer from -  accurate three-dimensional

descriptions of sample objects from known camera

positions. One set of experiments was run using
the input from the clustering algorithm. A second
set of experiments involved ideal computer

generated decompositions in which all interior and
exterior lines along with the hidden lines, were
used. The results of these experiments are
described later.

The Matching Process Once a decomposition is
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comparison with a model proceeds as
follows. For every three-dimensional part, we try
to select a decomposed polygon in the view. As
these assignments proceed, the tilt and pan angles
computed at each stage refine the previous
estimates for the camera position. The geometric
consistency criterion is used to validate each
possible instantiation by comparing the predicted
tilt angle with the computed value.. If the values
do not lie in the predicted range, that mapping is
ruled out. Of course, tilt and pan angles are
meaningful only in the case of plates. For sticks

obtained,

and blobs, the geometric condition is slightly
different. Since sticks are supposedly long and
thin, their projections also have to be long and
thin, i.e. the. circularity of the region in the

view has to be close to 0. Alternately blobs can
only project onto regions of high circularity. This
condition is enforced as a pair of thresholds that
the measured circularity of the parts must
satisfy.

Error of the Mapping Associated with the mapping
is an error which specifies how well the model
corresponds to the object in the view. The error is
made up of two parts. The first part called the
structural error, quantifies the difference between
the relational structures of the model and the
object in the view. It is the normalized sum of
the total number of binary and ternary relations
that fail to map over to the two-dimensional view.
The second part of the error is the completeness
error which provides a numerical measure of the
completeness of the mapping. It is the fraction of
the total number of parts in the view that were not
the projected image of any model part. The
completeness error also indicates any mismatch
between the sizes of the model and the unknown
object in the view. For example, since the
structure of a table is a subset of the structure
of a chair, the structural error between such a
pair would be zero. However, the completeness error
will indicate that the chair has one part more than
the table (the back).

The total error of any mapping is the arithmetic
mean of these two errors and shows how close the
model is' to the object in the image. The tree
search yields the minimum structural error mapping
between the model and the decomposed view.
Associated with the mapping is the computed
estimate of the unknown camera position.

IV. Experimental Results
The techniques outlined in the previous
chapters, were implemented in RATFOR (a structured

dialect of FORTRAN) and were tested on a variety of
data. A database of eleven three-dimensional
models was used as the source of the three-
dimensional information for the mapping. Two
dimensional views were generated either by computer
graphics system, from known camera positions, or
obtained from digitized photographs. Nine views
were generated for each object in the database at.
varying pan angles around the object. The camera
pan angle was changed in 20 degree increments from



Because of the symmetry of
the views would repeat
outside this range. Each of these views were
decomposed using the two methods described in the
previous section, and the resulting "clusters" were
compared with each model in the set. In each case
the best mapping (one with minimum total error)
was obtained along with an estimate of the camera
position. The results are summarized below.

-90 degrees to +70.
most manmade objects,

Graph-Theoretic Clustering Results

The views clustered with the graph-theoretic
clustering method matched the correct model in 67
percent of the cases. The failures were found in
the cases when there was insufficient information
in the outer boundary alone, to enable a proper
decomposition. One such case is shown in Figure 8.
This is a model of a chair whose arms are plate-
like. These arms obscure the structure of the
chair behind it, and consequently, the outer
boundary fails to retain all necessary information.
On the other hand, objects such as the table shown
in Figure 8, provide enough information 1in their
outer boundaries to enable accurate matches to be
made.

Perfect Decompositions When views were
decomposed based on a-priori knowledge of the
boundaries of the parts, the success rate went up
to 92 percent. The views that failed to match in
these experiments were those containing blobs.
Remember that blobs are idealized as spheres which
should show a high circularity in all orientations.
The blobs in our models were more elongated, and in
some orientations, their circularity did not pass
the threshold set for blobs.

The angles computed for the camera positions
were within 20 degrees of the tilt and pan angles.
The reason for the discrepancy, again, is the
difference between the idealized nature of the
plate, and the corresponding physical structure.
The tilt angle is computed on the assumption that
the part causing the associated projection, is a
circle. However, real plates (such as the tops of
tables) are not always circular. The ones in our
database were rectangular. Projections of
rectangles do not have unit circularity, even when
the tilt angle is exactly 90.0 degrees.
Consequently, the computed tilt angles are lower
than the actual camera angles. This error then
propagates into the pan angles. However, this is
not a very large error, especially if more accurate
matching methods are used to further examine the
models.

On the average each view mapped to 3.4 and 2.0
models in each of the two sets of experiments. This
is because the information on the sticks was not
used for constraint satisfaction. Therefore,
objects which differed only in stick positions and
orientations, would all map to the same view with
the same error.

V. Conclusions

In this paper, we have demonstrated a technique
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by which rough three-dimensional models defining
the structural and geometric relations in an
object, can be used in a scene analysis system. We
have alsoc shown how the geometric information can
be used during the process of matching to constrain
the possible interpretations for parts in the view,
and how the camera location serves as a global
constraint which reduces the possible
interpretations for the scene.

We have experimentally shown that the mapping
scheme 1is a robust method for analysing unknown
views and that, with a proper front end capable of
using more information for region decomposition,
good results can be obtained.

Current research is aimed at wusing the
information available in the foreshortening of
sticks, and using all the information in greytone
pictures for the extraction of the images of
sticks, plates and blobs from the image.
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Figure 3: Illustrates the eight different physical
Figure 1: Illustrates three stick§, A, B, and C, interpretations of a logical edge-edge desgrgption
participating in the TRIPLES relation. Angle"V1 of two plates specified by three angles. Each

is the angle stored with the triple .(A,B,C).
Angles X21 and £23 are stored with the pairs (A,B)
and (B,C), respectively, in the CONNECTS/SUPPORTS

relation.

binary

an edge-edge
and C2 are the
centers of the plates N, and N, are the nérmals to

Figure 2: I1lustrates
connection between two plates. C

Angles alpha, beta

the plates at their centers.
stored in the

and delta are the angles
CONNECTS/SUPPORTS relation.
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vector M, indicates a different orientation of
the second plate relative to the given one.

Screen

dual plane

Figure 4: Illustrates the projection of point P in
three-dimensional space onto a camera screen behind
the lens and dual plane in front of the lens.
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Figure 5: Tllustrates the tilt and pan angles of
the camera--the two unknown parameters of the
perspective normal projection. We assume that the
roll angle of the camera is fixed.

Figure 6: Illustrates the perspective normal
projection of a plate (circle) in three-space.
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Figure 7: Illustrates edge-edge connections of two
plates U and V showing all relevant vectors and
angles.
Cv = Center of plate V, Cu Center of Plate U,
N = Normal to plate U, M = Normal to plate
v,
R = Vector from Cu to the point of contact,
P = vector from the point of contact to Cv.
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Figure 8: Perspective view of a chair and a table
(Sillhouette shown in bold lines).

Figure 9: Graph theoretic decomposition of the
sillhouettes in Figure 8.

10: Ideal decomposition of the
in Figure 8.

Figure
objects



