A Unified Approach for Document Structure Analysis
and its Application to Text-line Extraction

Jisheng Liang!

Ihsin T. Phillips?

Robert Haralick!

T Department of Electrical Engineering
University of Washington Seattle, WA 98195

! Department of Computer Science/Software Engineering
Seattle University, Seattle, WA 98122

Abstract

In this paper, we formulate the document segmen-
tation as a partitioning problem. The goal of the
problem is to find an optimal solution to partition
the set of glyphs of a given document to a hierarchi-
cal tree structure where entities within the hierarchy
have their physical properties and semantic labels.
A wunified approach is proposed for the partitioning
problem. The Bayesian framework is used to assign
and update the probabilities. An iterative, relazation
like method is used to find the partitioning solution
that maximizes the joint probability.

We have implemented a text-line extraction algo-
rithm using this framework. The algorithm was eval-
uated on the UW-III database of some 1600 scanned
document image pages. For a total of 105,020
text lines, the text-line extraction algorithm identi-
fies and segments 104,773 correctly, an accuracy of
99.76%. The detail of the algorithm is presented in
this paper.

1 Introduction

Given a document image, the end result of a docu-
ment segmentation algorithm, in general, produces
a hierarchical structure that captures the physical
structure and the logical meaning of an input docu-
ment. The top of the hierarchical structure presents
the entire page, and the bottom of the structure in-
cludes all glyphs on the document. Entities in the
hierarchy are labeled and are associated with a set of
attributes describing the nature of the entities. For
example, the character set on a textual document
would reside at the bottom of the hierarchy; each
character would be labeled as a “glyph”, and the at-
tributes for the glyph may be the ASCII value, the
font, style, and the position of the character. The
next level up may be words, then, text-lines, text-
zones, text-blocks, and so on to the entire page.
Most known page segmentation algorithms [1]-[15]
construct the document hierarchy from level to level,
up and down within the hierarchy, until the hier-

archical structures are built and the segmentation
criteria are satisfied. Within this model, the page
segmentation problem may be considered as a se-
ries of level-construction operations. That is, given
a set of entities at a certain level of hierarchy, say
source_level, the goal of the level-construction opera-
tion is to construct a set of entities for another level,
say target_level.

In this paper, we propose a methodology for for-
mulating and solving the document page segmenta-
tion problem. Our methodology uses the Bayesian
framework. The methodology can be applied, uni-
formly, to any level-construction operation within
the document hierarchy. To illustrate the usage of
this methodology, a text-line extraction algorithm
has been implemented and presented in this paper.

The remaining of this paper is organized as fol-
lows. In Section 2, we present the proposed method-
ology for the document segmentation problem and a
general purpose algorithm derived from the method-
ology. In Section 3, we give, in detail, the text-line
extraction algorithm which we implemented using
the proposed methodology. In Section 4, we discuss
how those probabilities used in the algorithm were
computed. The paper summary is given in Section 6.

2 The Methodology

2.1 Document Structure Analysis
Formulation

Let A be the set of entities at the source_level. Let IT
be a partition of A and each element of the partition
is an entity on target_level. Let L be a set of labels
that can be assigned to elements of the partition.
Function f : I — L associates each element of IT
with a label. V : p(A) — A specifies measurement
made on subset of A, where A is the measurement
space.

The problem can be formulated as follows: given
initial set A, find a partition IT of A, and a labeling



function f : I — L, that maximizes the probability
P(V(r):Tell, f II|A)

= P(\V(r):T7elllA I, f)P(I, f|A)
= PWV(r):Ttell|lAIYf)
x P(f|IT, A)P(IT|A) (1)

By making the assumption of conditional indepen-
dence, that when the label f(7) is known then no
knowledge of other labels will alter the probability
of V (1), we can decompose the probability 1 into

PV(r):Tell, f,H\A)
= [I Pv@I£(m)P(fIIT, AP

Tell

(IT]4) (2)

The possible labels in set L is dependent on the
target_level and on the specific application. For ex-
ample, [ € L could be text content, functional con-
tent type, style attribute, and so for.

The above proposed formulation can be uniformly
apply to the construction of the document hierarchy
at any level, e.g., text-word, text-line, and text-block
extractions, just to name a few. For example, as for
text-line extraction, given a set of glyphs, the goal of
the text-line extraction is to partition glyphs into a
set of text-lines, each text-line having homogeneous
properties, and the text-lines’ properties within the
same region being similar. The text-lines’ properties
include, deviation of glyphs from the baseline, direc-
tion of the baseline, text-line’s height, and text-lines’
width, and so for.

As for the text-block segmentation, for example,
given a set of text lines, text-block segmentation
groups text lines into a set of text-blocks, each block
having homogeneous formatting attributes, e.g. ho-
mogeneous leading, justification, and the attributes
between neighboring blocks being similar.

2.2 A General Purpose Algorithm
for Document Entity Extraction

Given an initial set A, we first construct the read or-
der of the elements of A. Let A = (Ay, Aa, -, Aym)
be a linearly ordered set (chain in A) of input enti-
ties. Let G = {Y, N} be the set of grouping labels.
Let AP denote a set of element pairs, such that AP C
Ax A and AP = {(AZA])‘A“A] € A and j = Z+1}
Function g : AP — @, associates each pair of ad-
jacent elements of A with a grouping label, where
9(1) = g(A;, A;11). Then, the partition probability
P(II|A) can be computed as follows,

PUTIA) = Plgla)

P(g(1), -, g(N = D)|4r,- -, Ay)
= (()|A17A2) - P(g(N — 1) An_1, A)
=TI Pl A (3)

i=1

Therefore, the joint probability is further decom-
posed as

PV(r):Tell, f 1I|A)

[[ PvnIf(r) x P(f111, 4)
Tell
x H P(g(i)|A;, Aiyr) (4)

An iterative search method is developed to find
the consistent partition and labeling that maximizes
the joint probability of equation 4.

1. Determine initial partition

Let t =0, IT' = {{A,,}}M_,

(a) Compute P?(Y) = P(g(i) = Y|A;, Aiy1)
and P?(N) = P(g(i) = N|A;, Aix1) where
1<i<M-—1.

(b) Let R C A x A  and

= {(4i, 4ip1)|P)(Y) > PP(N)}. Up-
date partition
o' = {r|r = {4i, A, - ,Aj}, where
(Ak, A1) € Rk =i, j — 1}

2. Search for optimal partition adjustment
Repeat
e Fori=1to M —1 Do
— It A, eU, Aixa € W, U #W Then,
(a) Let
T=UJw

and

=T\ -U-W)

(b) Find labeling f by maximizing

]Dlabel — H P ) ( |A H)
TEH
(c) PE(Y) o P’(Y) X Puper, and

d
H(N) = P (V).
—If A; e W and A;41 € W, where W =

{Ak:"':Ai7Ai+1:"'7Aj}7 Then

(a) S = {Ag,---, 4} and T =
{AAZ'+1="'=A]'}
nm=ut-wyysyr

(b) Find labeling f by maximizing
])label—HP ) (f|A H)

rell

(¢) P{(N) o P°N) x Py, and

Pi(Y) =P '(Y)



End
e Select k such that,

(3

k = arg m?X(maX{ﬁit(Y); Iﬁt(N)})

o If P{(Y) > PL(N), Then
- T= UUW where Ay € U7Ak+1 ew
— o+t =t -uv-w)yr
Else, W:{Ai,-'-,Ak,Ak+1,-'-7Aj},
—Let S = {4;,---, A4} and T =

{Ak+17"'7Aj}

— o+t =t -w)yysyr

o If P(V,f, II*T1|A) < P(V, f, ITt|A), end
and return I7°.
Else, let t =t 4+ 1 and continue.

Our method consists of two major components
off-line statistical training and on-line segmentation.
Section 3 presents our on-line algorithm of text-
line and zone segmentation. Our statistical training
method is given in section 4.

3 Text-line Extraction Algorithm

Figure 1 gives an overview of the text-line segmen-
tation algorithm. Without loss of generality, we as-
sume that the reading direction of the text-lines on
the input page is left-to-right. The text-line segmen-
tation algorithm starts with the set of the connected-
components bounding boxes of a given binary image
of a textual document.

Algorithm:
1. Extract & Filter Glyphs:

We apply the standard connected-component
algorithm to obtain the glyph set, C =
{c1,¢2,---,cm}. Those components that are
smaller than the thresholdg,,.;; or larger than
the threshold;q, e are removed from C.

2. Locate Glyph Pairs:

For each ¢; € C, we search for its “nearest right
mate”, ¢;j, among those “visible” right neigh-
bors of ¢;. When a right mate is found, a link
is established between the pair. The definitions
for the nearest right mate and the visible right
neighbors are given in section 3.1. Note that,
a glyph at the right-most edge of a document
would not have a right mate. At the end of
this step a set of text-line segments are estab-
lished, Tsegment = {t1,t2,---,tk,}. For each
linked pair, ¢; and ¢;, we compute the group-
ing probability, P(sameline(i, j)|c;, ¢;). This is
the estimated probability that two components
with their sizes and spatial relationships lie on
the same text-line.

. Group Text-lines:

For each t; € Tsegment formed in step 2, we
check each link (c;,¢;) € t; and estimate the
linking probability P(link(i,j)) between ¢; and
cj. If P(link(i,j) = N) > P(link(i,j) =Y),
we disconnect (c;,¢;) link. That is, ¢ becomes
two subsegments.

During the initial partition, P(link(i,j)) =
P(sameline(i,j)), and this step yields our ini-
tial text-line set, Tipitiar = {1,182, -, tk, }-

. Detect Base-line & X-height:

For each t; € Tinitiai, we apply a robust line
fitting algorithm to the right-bottom corners of
all glyphs in t; to obtain the base-line and the
direction of t;,. The computation of base-line
and X-height are given in Section 3.2.

. Detect Page Skew:

The median of all the computed base-lines’
direction for the entire set Tjnizia is taken
as the page skew angle, anglegge,. If the
angleggew > thresholdsge.,, we rotate the im-
age by —anglegpe, using the technique given
in [17], and the process repeats from step 1.
Otherwise, proceed to the next step.

. Compute Text-line Probability:

For each text-line t; € Tinitiar, We compute its
probability of having the homogeneous text-line
properties,

P(V(ty)|textline(ty)),

where V(t;) is the measurement made on the
text-line #,.

The observation that we make is the component
distance deviation oy, of #; from its base-line.
If P(oy,|textline(t;)) > threshold, we accept
t;. Otherwise, we pick the weakest link (c¢;, ¢;)
within ¢ as the potential breaking place where
we may sub-divide ¢; into £;; and ;.

. Adjust Pairs linking Probability:

To determine whether to sub-divide £, we com-
pute tx1’s and tgo’s base-lines, and their compo-
nent deviations, o¢,, and oy,,.

We update the linking probability between ¢;
and ¢; by combining their grouping probability
with the text-line probability,

P(link(i,j) = V)
x P(sameline(i,j) = Y|ci, ¢;)
x P(oy, [textline(ty)),
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Figure 1: Tllustrates the processing steps of the text-line segmentation algorithm.

and
P(link(i,j) = N)
x P(sameline(i,j) = N|c;, ¢;)
x P(oy,, |textline(tg))
x P(oy,,|textline(tys),
where

P(link(i,j) = Y) + P(link(i,j) = N) = 1.

If P(link(i,j) = N) > P(link(i,j) = Y), the
process repeats from step 3. Otherwise, proceed
to the next step.

. Detect Text Regions and Zones:

To detect text-regions with respect to all text-
lines in Tinierim, we do as follows. For each text-
line ty, € Tinterim, we compute it’s bounding
box and the three bounding box edge positions:
the left, the center, and the right.

Then, a horizontal projection profile is com-
puted on all the text-line bounding boxes. Each
text-line box constitutes one count on the pro-
file. A horizontal cut is made where the gap
within the profile satisfies our cutting criteria.
The computation of the projection profile and
the cutting criteria are given in detail in sec-
tion 3.3.

The result of the last step is a sequence of hor-
izontal text-regions, R = {R1, Rs, -, R.}. In
this step, each of the region, R;, is to be fur-
ther decomposed into a sequence of text-zones
by cutting R; vertically. The top and the bot-
tom edges of R; become the top and the bottom
edges of the text-zones. Our text-zone detection
finds the left and the right edges of text-zones
within R;.

Let R; = {t1,t2,---,tp} be a horizontal text-
region, R; € R. To detect a text-zone within

R;, we compute the vertical projection profile
on the left, the center, and the right positions
of all text-lines t; € R;.

Next, we locate the bin with the max count
on the profile. If the max count comes from,
say, the left position of the majority of the text-
lines that contribute to the max count, we say,
we have detected a left-edge of a text-zone, Z,,.
Let {t1,t2,- -, t;n } be the sequence of text-lines
whose left positions fall within the bin which
has the max count. The left-edge of Z,, is esti-
mated as the median of the left edge position of
all text-lines within Z,. The right edge of Z,
is computed in a similar fashion. The top and
the bottom edges of Z,, are the top and the bot-
tom edges of R;. Then, all the text-lines within
Z,, are removed from further consideration, and
this step is repeated until each text-line in R is
assigned to one of the detected text-zones. A
complete description of this step is given in sec-
tion 3.3.

. Check Global Consistency (Splits & Merges):

Let Z = {Z,Z5,---,Z,} be the set of the
detected text-zones from the last step. Let
Z; € Z and Z; = {t1,ta2, -+, tx}. We examine
the probability, Peontest(w(t;),w(Z;)), that ¢;’s
attributes w(t;) being consistent with its neigh-
boring text-lines within Z;. (The computation
of P.ontert 1S given in section 3.4.)

If Poonteat(t;) < thresholdcontest, we update
the linking probability for each pair within
tj, and the process repeats from step 3.
Step 8 and 9 are repeated until Peopteqt(t;) >
threshold onteqt is satisfied for all ¢;. The com-
plete description of the global consistent check,
the split and the merge procedures are given in
detail in section 3.4.



10. Postprocess Text Lines: Finally, all components
which were initially put into the reserved set
and those text-lines which were not included
during the text-zone formation, or as the results
of splitting, are now be individually examined
to determine whether it could be included in
any of the segmented text-lines.

Figure 2 and 3 illustrate the text line detection
process. Figure 2(a) shows a set of connected com-
ponent bounding boxes. The extracted initial text
line segments by merging pairs of connected compo-
nents are illustrated in Figure 2(b). We notice some
text lines are split while some are merged across dif-
ferent columns. Figure 3(c) plots the extracted text
regions by grouping the edges of text segments. Fi-
nally, the corrected text lines given the observations
on text regions are shown in Figure 3(d).

A few cases that the algorithm failed are shown
in Figure 4. A vertical merging error was shown in
Figure 4(a). Figure 4(b) and (c) illustrate horizontal
and vertical splitting errors due to the large spacing.
A spurious error caused by warping is shown in Fig-
ure 4(d).

3.1 Mate Pairs and Grouping
Probability

Let C = {e1,¢2,---,cm} be the set of glyphs, the
connected-component set after the too small com-
ponents are removed. Each glyph ¢; € C is repre-
sented by a bounding box (x,y,w, h), where z,y is
the coordinate of top-left corner, and w and h are
the width and height of the bounding box respec-
tively. The spatial relations between two adjacent
boxes are shown in Figure 5.

Figure 5: Illustrates the spatial relations between
two bounding boxes that are (a) horizontally adja-
cent (b) vertically adjacent.

For a pair of bounding boxes a and b, the hori-
zontal distance dj, (a,b) and vertical distance d, (a, b)
between them are defined as

if zp > x, +w,
To —xp —wp 1f 26 > xp + WY
0 otherwise

Tp — Ty — Wq

dh(a= b) =

yb_ya_ha ifyb>ya+ha
do(a,0) =< Ya—up —hy iy, >uyp+hy
0 otherwise

The horizontal overlap o (a,b) and vertical over-
lap 0,(a,b) between a and b are defined as

Ty +w, —xp ifxp > 20, 1y <2y +wy

op(a,b) =¢ xp+wy —x, fxy >, 20 <Tp +WH
0 otherwise
Yo +ha —yp i yp > Yo, Yp < Yo+ ha
0p(a,0) =< Yo+ ho —ya I Yo > Yy Yo < Yo+ ho
0 otherwise

Let ¢, = (%4, Yo, Wa, ha) and ¢y = (x4, yb, ws, hy) be
two glyphs. We define ¢, as a “visible” right neigh-
bor of ¢, if ¢y # cq,Tp > Z4,and o0,(a,b) > 0. Let
C, be the set of right neighbors of ¢,. The “nearest”
right neighbor of ¢, is defined as

arg min (dp(a,i)|c; # Ca,Zi > Ta,0,(a,i) > 0).

c;€C,
For each linked pair, ¢, and ¢, we as-
sociate with their link with the probability,

P(sameline(a,b)|c,, cp), that indicate how probable
they belong to the same text-line. Given the obser-
vations of their heights and widths, and the distance
and the overlaps between the pair: h,, wq, hy, wp,
d(a,b), o(a,b), we compute the probability that ¢,
and ¢, belong to the same text-line as:

P(sameline(a,b)|hqa, wq, hy, wp, d(a,b), o(a,b)).

3.2 Base-line, X-height, and Skew
Angle

The baseline coordinate of a text-line is estimated
using a robust estimator. The robust estimation
means it is insensitive to small departures from the
idealized assumptions for which the estimator is op-
timized.

We want to fit a straight line y(z;a,b) = a + bz
through a set of data points, which are the bottom-
right corner of glyph boxes, since ascenders are used
more often in English texts than descenders. The
merit function to be minimized is

N
> lyi —a—bai.
=1

The median ¢ of a set of numbers ¢; is also the
value which minimizes the sum of the absolute devi-
ations ). |c; — cp|. It follows that, for fixed b, the
value of a that minimizes the merit function is a =
median{y; —bz;}, where b = Ziil sgn(y; —a—bx;).
This equation can be solved by the bracketing and
bisection method [16].
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Figure 2: Illustrates a real document image overlaid with the extracted bounding boxes of (a) the connected

components; and (b) the initial text line segments.
Given a set of baseline angles {61,6,---,6p}, the
skew angle of page is estimated as

79P}-

If skew angle 6 is larger than the threshold,
thresholdy the page will be rotated by —6.

For each given text-line ¢; and the estimated base-
line (a,b), we compute the absolute deviation of
glyph from the estimated baseline

Zh}z*a bT?‘

The x-height of a text-line is estimated by taking
the median of the distance from the top-left corner
of each glyph box to the baseline

zh(t;) = median{d(z;, y;,a,b)|1 <i < N}.

gpage = median{()l, 92, s

o(ti,a,b)

Given the observations on text-line ¢;, we can com-
pute the likelihood that ¢; has the property of a text-

line
P(xh(t;),0(ti,a,b))|textline(t;)).

3.3 Text-zone Formation

Horizontal Projection of the Text
Line Boxes

Given a set of text-line bounding boxes T =

{t1,t2,---,tpm}, our goal is to group them into
a sequence of horizontal text-regions R =
{R1,Ry,---,Rn}. We do the following.

Let (z;,y:, w;, h;) represents the bounding box of
the text-line t; € T'. t; is bounded by z; and z; +w;.

Given an entity box (x, y,w, h), its horizontal pro-
jection (Figure 6) is defined as

horz-profile[j] = horz-profile[j] + 1,2 < j < = + w.

Vertical Projection of the Text Line
Edges

The vertical projection of a set of entities is de-
fined as

vert-profile[j] = vert-profile[j] + 1,y < j <y + h.
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Figure 3: Illustrates a real document image overlaid with the extracted bounding boxes of (c) the text

regions; and (d) the corrected text lines.
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boxes.

Illustrates the horizontal projection of bounding

Let (z;,y;, w;, h;) represents the bounding box of
a text-line ¢; € T. We assign the left edge of ¢; to be
x;, the right edge of ¢; to be z; + w;, and the center
of t; to be x; + w;/2. The vertical edge projection
on the three edges of the text-line bounding boxes
of all t; € T is defined as:

Oleft[j] Oleft[j] + 1.7 =
Ccenter[j] Ccenter[j] + 177 =T + “)/2
Cri,gh,t [7] = Crighf[.j] + 17 =z+w.

Text-zone Detection Algorithm

1. Compute the horizontal projection profile of all
text-line boxes.

2. Segment the page into a set of large regions, by
making cut at the gaps of horizontal projection
profile, where the width of gap is larger than a
certain threshold. The threshold is determined
by the median height of detected text-lines.

3. For each region

(a) Compute the vertical projection count C
of the left edges Ejcs;, right edges E,igns
and center edges F enter 0f text-line boxes.

(b) Find a place which has the highest to-
tal count within its neighborhood of
width w. z = arg;, ;max(}, Cix,i €
{left,right,center},j—%w <k< j—i—%w),
where w is determined by the dominant
text-line height within the region.
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Figure 4: Tllustrates examples that the text detection algorithm failed.

(c) Determine the zone edge as the median of
edges E;, within the neighborhood j —
%w <k<j+ %w.

(d) For each edge Ej, finding its correspond-
ing edge of the other side of the box
Ej,j #i

(e) Determine the other edges of this zone by
taking the median of Ejj

(f) Remove the text-line boxes enclosed by the
detect zone from T'

(g) If T = 0, an empty set, we are done, oth-
erwise, repeat this step.

If the inter-zone spacing between two adjacent
zones is very small, it may cause the majority of
text-lines from those two zones to merge. On the
other hand, a list-item structure usually has large
gaps and this causes splitting errors. In order to
detect these two cases, we compute the vertical pro-
jection profile of glyph enclosed by each zone.

If there is a zero-height valley in the profile, com-
pute the probability that the region should be split
into two zones

P(twozone(c)|wgap, n, b, by, b, wy, wy),
where w,q, is the width of profile gap, n is the total
number of text-lines within the current region c, h,,
is the median of text-line height within ¢. h; and w;
(h, and w,) are the height and width of the region
on the left (right) side of gap. If the probability is
larger than a certain threshold, split the region at
the detected gap.

Given a pair of adjacent zones, the probability
that they are part of the list-item structure is:

P(list-item(cy, ¢)|wgap, bu, by, wi, we,ng, Ny ),

where n; and n, are the number of text-line within
the left and right zones respectively.

3.4 Text-line Splitting and Merging

Given the detected zones, we can determine if a
text-line is horizontally merged or split, or vertically
merged or split.

Given the observations on a text-line ¢t =
(c1,¢2,+ -, ¢m) and its neighbors N(t) within the
same zone Z, we compute the probability that ¢ is
vertically consistent, merged, or split:

P(v-consistent(t, N (t))|h(t), hn(t), ht(c), hn(c))

3

where h(t) is the height of text-line ¢, hn(t) is the
median of text-line height in zone N(t), h¢(c) is the
median height of glyphs in ¢, and hy (¢) is the median
height of glyphs in N(¢). Then, we can update the
linking probability between a pair of adjacent glyphs
¢; and ¢;:

P(link(i, j)) o P(sameline(i, j)|c;, ¢;)
x P(v-consistent (¢, N (t)))

where ¢; €, and ¢; € Z.

Given a pair of adjacent text-lines t,, and ¢,
within the same zone, we can update the linking
probability between a pair of glyph ¢; € t, and
cj €ty

P(link(i, j)) o« P(sameline(, j)|c;, ¢;, samezone(3, j))

x  P(ci, cj|sameline(i, j)) P (sameline(i, j))

x P(samezone(i, j)|sameline(i, )).

Similarly, if a text-line is across two or more zones,
we can update the linking probability for each pair
of adjacent glyph that belong to different zones

P(link(i, j)) < P(sameline(i, j)|c;, ¢, diffzone(i, j))
x  P(c;, cj|sameline(s, j))P(sameline(i, j))

x P(diffzone(i, j)|sameline(i, 7)).

4 Probability Estimation

Discrete lookup tables are used to represent the es-
timated joint and conditional probabilities used at
each of the algorithm decision steps. We first quan-
tize the value of each variable into a finite number
of mutually exclusive states. If A is a variable with
states a1, -, a,, then P(A) is a probability distri-
bution over these states: P(A) = (x1, -+, Ty)
where z; > 0 and >, z; = 1. Here, x; is the
probability of A being in state a;. If the variable B



has states by, -, by, then P(A|B) is an n x m ta-
ble containing numbers P(a;|b;). P(A, B), the joint
probability for the variables A and B, is also an nxm
table. It consists of a probability for each configura-
tion (a;, b;).

We conduct a series of experiments to empirically
determine the probability distributions that we used
to extract text lines. A tree structure quantization
is used to partition the value of each variable into
bins. At each node of the tree, we search through all
possible threshold candidates on each variable, and
select the one which gives minimum value of entropy.
The total number of terminal nodes, which is equiv-
alent to the total number of cells, is predetermined.
Finally, the bins on each variable form the cells in
the space. For each joint or conditional probabil-
ity distribution, a cell count is computed from the
the ground-truthed document images in the UW-
IIT Document Image Database. Rather than enter-
ing the value of each variable for each individual in
the sample, the cell count records, for each possi-
ble combination of values of the measured variables,
how many members of the sample have exactly that
combinations of values. A cell count is simply the
number of units in the sample that have a given fixed
set of values for the variables. The joint probability
table can be computed directly from the cell count.

A few parameters, such as those thresholds used in
the algorithms. Their values are estimated. A repre-
sentative sample of a domain was used and a quan-
titative performance metric was defined. We tuned
the parameter values of our algorithm and selected
the set which produces the optimal performance on
the input population. Assuming the criterion func-
tion is unimodal in the parameter value within a cer-
tain range, we used a golden section search method
to find the optimal value within that range.

5 Experimental Results

We applied our text-line extraction algorithm to the
total of 1600 images from the UW-III Document
Image Database. The numbers and percentages of
miss, false, correct, splitting, merging and spurious
detections are shown in Table 1. Of the 105,020
ground truth text-lines, 99.76% of them are correctly
detected, and 0.08% and 0.07% of lines are split or
merged, respectively. Most of the missing errors are
due to the rotated text.

6 Summary

In this paper, we formulate the document segmen-
tation as a partitioning problem. The goal of the
problem is to find an optimal solution to partition
the set of glyphs on a given document to a hierarchi-
cal tree structure where entities within the hierarchy

are associated with their physical properties and se-
mantic labels. A unified approach is proposed. The
Bayesian framework is used to assign and update the
probabilities during the segmentation. An iterative,
relaxation like method is used to find the partition-
ing solution that maximizes the joint probability.

A text-line extraction algorithm has been imple-
mented to demonstrate the usage of this framework.
This algorithm consists of two major components —
off-line statistical training and on-line text-line ex-
traction. The probabilities used within this algo-
rithm are estimated from an extensive training set
of various kinds of measurements of distances be-
tween the terminal and non-terminal entities with
which the algorithm works. The off-line probabili-
ties estimated in the training then drive all decisions
in the on-line segmentation module. The on-line seg-
mentation module first extracts and filters the set of
connected components of the input image to obtain
a set of glyphs. Each glyph is linked to its adjacent
neighbor to form glyph pars. Associated with each
link is the pair’s linking probability. The entire text-
line extraction process can be viewed as an iterative
re-adjustment of the pairs’ linking probabilities on
the glyph set. The segmentation algorithm termi-
nates when the decision can be made in favor for
each link within the final set of text-line segments.

The algorithm was tested on the 1600 pages of
technical documents within the UW-III database. A
total of 105020 text lines within these pages, the al-
gorithm exhibits a 99.8% accuracy rate. Currently,
we are implementing a text-block extraction algo-
rithm, also using the proposed framework. This new
algorithm is currently at the testing phrase and the
prelimary result looks promosing.
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