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Abstract

Standard radiographs provide a significant amount of information for the orthopaedic surgeon. From the
radiographs, surgeons will make many measurements and assessments. A major problem is that measure-
ments are performed by hand and most often by the operating surgeon who may not be completely objective.
The evaluation of the spine radiographs includes progression of scoliosis (curvature of the spine), spondy-
lolysthesis (malalignment of the spine), and progression of degenerative disc disease (such as a "slipped disc”)
or certain spine fractures.

While there are other factors that contribute to the variation from one radiograph to the next, there is an
inherent imprecision in hand made measurements. To the extent that a computer could increase the accuracy
and precision of these measurements, diagnostic accuracy would be increased, exposure to radiation would be
decreased, therapies appropriately assigned. To alleviate the burden of manual measurements, which must
be made by trained professionals, and make them more objective, we have initiated a program to automate
certain radiographic measurements.

Our process has evolved through six basic, partially overlapping steps. The image is digitized. A three
dimensional model is applied to the two dimensional image to reduce the noise generated by soft tissues.
A three dimensional model is used to identify the bony contours. The edges are identified. The image is
edited. Lastly, measurements are made.

This work concentrates on the edge detection step. We first briefly review existing edge detection ap-
proaches and show some results of a general, state-of-the art edge detection algorithm applied to a lower
back human vertebrae. Since the results do not seem to be clean enough for higher-level interpretation, we
present an edge detection model for standard radiographs, which will be the basis for the measurements step.
In particular, we model the edges of interest as a linear combination of basis functions. The problem of edge
detection is then presented as a supervised pattern recognition problem in which the parameters of the basis
functions are learned during the training phase, and the recognition phase uses these learned parameters to
locate pixels that belong to edges. Since edges may appear in any direction, we develop the mathematical
tools to determine the gradient direction of the edge. Finally, we discuss future work in this project.



1 Introduction

The discovery in 1896 that ”"x-rays” could be harnessed to image the internal workings of the body changed
forever the science of medicine. This change was perhaps no more profound than in the treatment of bone
and joint disorders. Today, an orthopaedic examination is rarely considered complete without radiographs.
The orthopaedic surgeon is therefore interpreting radiographs on a daily basis, and assigning treatments
according to the interpretations. Part and parcel of the process of interpretation are measurements made on
the radiographs. For example, the decision regarding the choice of brace treatment versus surgical treatment
for scoliosis is based upon measurements on radiographs of the spine.

Certainly, no such decision is based entirely on measurements from the radiographs. However, the
significance of these measurements is not limited to the initial evaluation. Every treatment, operative or non
operative, has its risks and benefits. The medical community is obliged to review the results of the various
treatments and, as the results dictate, revise the guidelines for treatment.

Continuing with the example of scoliosis, there are two main aspects of measurements on the radiograph
that, in combination with the patient skeletal age (also estimated from radiographs) that are used to deter-
mine the most appropriate treatment. The first of these is the absolute degree of curvature of the spine. A
45% curve in a 10 year old patient probably requires early operative intervention. A 30% curve in a skeletally
mature patient rarely requires any treatment. A 30% curve in an adolescent should be watched closely. The
second aspect is the progression, or lack thereof over time and several examinations. The adolescent with a
30% curve that progresses should undergo surgery. When measurements are made by hand, most surgeons
accept a change of 5% or more as progression as opposed to random variation. It is not hard to imagine the
dilemma that arises when a curve progresses from 30% to 34%.

Orthopaedic measurements are not limited to the spine. Some fractures are treatable by casting, others
require operative intervention in order to achieve an acceptable result. Part of this decision making process
is the displacement of the various fracture fragments. In the case of prosthetic implants, a small change
in the position of an implant may herald failure of the reconstruction long before the patient presents with
discomfort. Thus, in several aspects of orthopaedics, radiographs are made on a regular basis and decisions
regarding treatment are based, at least in part, upon the measurements made from those radiographs.

2 FEdge detection techniques

Physical edges of the objects are fundamental descriptions of physical objects as they relate to transitions
in surface orientation or texture. Edge detection is the identification of the intensity changes corresponding
to the underlying physical changes.

To achieve radiograph understanding, computer systems must relate the raw input data to the physical
structure that cause it, i.e., the objects being radiated. As we mentioned, the first step in this complex
sequence of operations is to obtain a compact description of the input image. At this early stage of processing,
it is essential for the resulting representation to be complete, that is, to capture as much as possible of the
information in the original radiograph. The other necessary characteristic of the representation is that it be
meaningful, i.e., make explicit the important properties of the radiographed scene.

Edges are very likely to be projected as changes in the intensity data received by the sensor. It therefore
appears that a basic low level or early vision process of a computer vision system is the detection, localization
and characterization of the local two dimensional edges in intensity. This is followed by reasoning at higher
levels using explicit, domain-specific knowledge, which enables the measurements process.

Most edge detection techniques apply a smoothing process before the extraction of intensity changes. It
has been realized that the amount of smoothing can be adjusted by choosing a proper size for the smoothing
operator. In many applications, no single scale of smoothing is sufficient.



Multiscale edge detection is accomplished by applying different sizes of smoothing operators to an image
before the extraction of the edges, so that we can get a description of the image gray level changes at different
scales, eliminate fine scale noise and also separate events at different scales arising from distinct physical
processes.

Over the last 20 years, several types of edges detectors have been developed.

A related operation, the “gradient,” |g(¢,5) —g(i + 1,7+ 1)|+ |g(s,5 + 1) — g(i + 1, j)| was proposed by
Roberts [3]. It detects either a horizontal or vertical edge when g(t, 7) is the gray level at point (i, j). This
operator involves only four points and is therfore extremely sensitive to noise and surface irregularities. A
simple extension of this approach is to compute the difference of the average gray levels of the two one
dimensional neighborhoods on opposite sides of a point.

A
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Averaging over many points reduces the effect of noise to a great extent. Sensitivity to noise requires the
inclusion of a smoothing step before differentiation.

A more rigorous approach based on the ideal model of an edge led to the Hueckel operator with the first
claim of optimality. Hueckel’s approach to edge detection was asking what edge element will best fit the
intensities in a given region. Hueckel’s model [3] of an edge is a step function F in a circular disc. Let

b ifez+sy<p
F(m,y,c,s,p,b,d) - { b+d otherwise

where the x-y coordinate system has its origin at the center of the circular region. Clearly, there is a 1-1
corespondance between ideal edges F' and the quintuples (e, s, p, b,d). Let E(x,y) be an obtained intensity
function in the circular disc. Then, we approximate the empirical edge element E with the ideal edge F’,
that minimizes the distance between E and F”, i.e., we minimize [ [ [E(z,y) — F(z,y,¢, s,p,b,d)]zdwdy.

Hueckel’s operator is an efficient solution to the minimization problem. The technique used is series
expansion and truncation in the frequency domain. Specifically, the functions that are used as a basis
are separable into a product of an angular and radial component, i.e it applies Fourier analysis in polar
coordinates. Let H;;—, be the basis. Then define

a; = [ Hi(z,y)E(z,y)dzdy

Sz' = f H‘i(m: y)F(m, y,c,8,p, b'l d)da:dy

Notice that the a; are constants and the S; are variables. The previous minimization is equivalent to
minimizing

YR (@ —5:)?

However, only the first eight coefficients are used because real edges are blurred; blurring removes high
spatial frequencies and noise predominates in the high spatial frequencies.

The minimization procedure returns both the best edge and a measure of the goodness of the edge.
Possible criticisms of Hueckel’s approach are that he offers no analytical model for the relationship between
the noise process and noise level and the performance of the operator. Therefore, one cannot qualititatively
determine a priori the error rates of the operator, or any other measures of its sensitivity.

More claims of optimality have been made by Marr and Hildreth [8], extending the initial work of Marr
and Poggio, and the edges from this detection scheme have become a standard gauge against which all
other methods are compared. The basic approach is to convolve the image with a rotationally symmetric
Laplacian of Gaussian and to locate zero crossings of the convolution. In other words, they propose using
zero crossings of the operator D2G(z,y) on the given image, where G(x,y) is a 2-D Gaussian distribution



and D? is the second derivative operator for detecting intensity changes in the image . For the sake of
reducing computations, the operator D?G is replaced by the rotation invariant operator 72G, where 2 is
the Laplacian. By using 2G with different widths, zero crossings of 72G are obtained at different scales,
and methods to combine these edge outputs for feature extraction were suggested.

The Nevatia-Bavu [9] technique consists of determining the edge magnitude and direction by convolving
the image with a number of masks and thinning and thresholding these edge magnitudes. Torre and Poggio
[11] judiciously points out that better results may be obtained by using two directional filters with directional
derivatives especially in the neighborhood of corners. Other approaches have made claim of optimality or
shown results subjectively comparable or superior to the Marr-Hildreth zero crossing detector. Several of
these approaches are listed below.

(1) Haralick [4] locates edges at zero crossings of the second directional derivative in the direction of the
gradient. Derivatives are computed by interpolation of the sampled intensity values. The occurrence of a
digital step edge is detected if the zero crossings of the second directional derivative in the direction of the
estimated gradient is negatively sloped. On some images, the resulting edges are visually better than the
ones from the Marr-Hildreth detector.

(2) Canny [2] defines certain desirable criteria for edge detection. These include good localization,
good detection and a single response to a single edge. He shows that in 1-D, the optimal filter is a linear
combination of four exponentials well approximated by a first derivative of a Gaussian. In 2-D images, he
proposes to use a combination of such filters with varying length, width and orientation . Since it is a first
derivative operator, it requires further thinning and thresholding.

(3) Shen and Castan [10] proposed a linear filter, in which images are convolved with the smoothing
function f(z) = —1 In(8)b/°! prior to differentiation. They claim better localization than Marr-Hildreth zero
crossings detector. On real images, edges are obtained after a few extra filtering steps tuned by the user.

Kwabwe et al. performed edge detection on hand radiographs as a step toward the recognition and mea-
surements of the various bones. Their technique involved global thresholding on the bone-to-flesh transition
to produce a binary image of the bone structure, followed by a gradient operation in a 3#3 pixel region. Chain
codes, generated from the edge detected image were then used to form a polygonal approximation of the
bone structure. Strong a priori knowledge of the bones of the hand was used to classify the approximations
according to the various bone types.

The maxima of gradient or zeros of the second directional derivative along the gradient are a natural way
of characterizing and localizing intensity edges. This is the basis for two differents methods implemented
on the Khoros computer system [7]. The first one, called the GEF method (First Derivative Operator for
Symmetric Exponential Filter), uses the first directional derivative operator and approximates the gradient
vector for every point in the image. The second one, called the SDEF method (Second Derivative Operator
for Symmetric Exponential Filter), detects edges from the zero crossings of the second directional derivative
along the gradient direction.

The following three figures were obtained by the KHOROS computer system. Figure 1 is a radiograph
of a lower-back human vertebrae, scanned at 240 DPI. Figure 2 is the same radiograph after enhancement
by histogram stretching. Figure 3 is the result of the SDEF method applied to the image shown in Figure 2.

3 A pattern-recognition approach to edge detection

Edges in radiographs present a more complicated problem than identifying a step function. Figure 3 demon-
strates that even applying the most advanced techniques still does not yield results that enable us to advance
to the level of higher imgae understanding. We therefore propose here a basis for a model for detection of
bone edges.



Figure 1: Radiograph of a lower-back human vertebrae scanned at 240 dpi
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Figure 3: Figure 2 after application of SDEF edge detection method
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Figure 4: Radiation intensity through a schematic section of a bone

We model the edges of interest analytically as the linear combination of a number of basis functions,
Bl(ﬂ‘}l), Bz(ﬂ’,‘z), Ba(ﬁs) arite Bn(wn). As follows.

Bi(z1)
- Bj(z2)

I(z) = 3 biBi(z:) = (bi,basbs .- ba) { = bB(x) )
i=1 Bn(wn)

The problem of edge detection is then presented as a supervised pattern recognition problem in which
the parameters of the basis functions are learned during the training phase, and the recognition phase uses
these learned parameters to locate pixels that belong to edges. Since edges may appear in any direction, in
the next section we develop the mathematical tools to determine the gradient direction of the edge.

Figure 4 depicts the edge model in 3D space, where (7, ¢) is the image plane (rows and columns of pixels)
and the third dimension is the image intensity for each pixel. In figure 4, the edge is parallel to the c axis,
therefore it can be modeled using equation 1 with 2 = r. Here, the gradient direction ¢ is zero.

However, either the normal curve in the wall of the vertebrae or curvature in the spine may result in an
alteration in the orientation, making an angle § with the r axis, as shown in Figure 5.

4 Determining the bone edge direction

By substituting z = rcos(#) + csin(f) in equation 1 we generate a 3D surface that is a sweeping of the edge
curve perpendicular to the gradient direction of 8.



I(r,e) =Y biBi(rcos(8) + csin(6)) (2)
i=1

The partial derivatives of I with respect to r and ¢ are therefore:

Mg;f D = cos(9) ; b;By/(rcos(8) + csin(6)) (3)
and
afg;’ 2) = sin(0) ; bs By (rcos(8) + csin(6)) )
A unit vector is:
8l(r,c
(B)]  mscom(z]

. _ = [ cos(f)
T VD + (DY) T S, biBe(reos(0) + csin(0) (cos(0)? + sin(6)?) {sm(fﬂ }(5)

where the denominator was taken to be positive because the gradient direction is set to go upwards.

To estimate the edge direction, we assume that the neighborhood of a pixel can be approximated as a
plane described in equation 6.

I(r,e) = ar+ e+ v+ e(r,e) (6)

Here, ¢(r, c) is the error function, the difference between the observed intensity values I(r,¢) and the
expected ones, so we wish to minimize it. To this end, we convert equation 6 into a least-square problem:

e= 3 3 Urno)—(ar+fety+ero) ()

rT=—mc=—m

where (—m,—m) and (m, m) are the coordinates of the lower left and upper right corners of the (2m +
1) # (2m + 1) mask used as an approximation for the plane patch of the pixel under consideration, located
at (0,0). We are looking for «, § and v which minimize ¢? . To find « that minimizes €2 we take the partial
derivative of €? with respect to @ and equate it to zero.

= X 3 29— er et () =0 (®)

rE=—mc=—m

Opening the parentheses in equation 8 we get:

—Zl(r,c)r+2ar2+25rc+2fyr:0 9)
r.c r,c r,.c r,c

where ) _ is shorthand notation for 3 ;- _ 5™ .



f(r) is an odd function, because f(r) = —f(—r). Since f(r) = r is taken from —m to m, it is a function
taken over even limits (i.e., limits of the same size m).

72 is an even function since it is constant. }, ,yr is an odd function taken over even limits because it is

a product of an odd and even function, both taken over even limits. Since the summation of an odd function
taken over even limits is identically zero, >~ yr=0.

Equation 9 then can be written as follows:

ZI(r, e)r = Zarg—l—z,@rc (10)

The last term can be written as 8(3— . 7)(3 - _,, ¢) where both of the last two elements are identically
ZETO.

Hence, we get:

Yo I(r,0)r
T

where the denominator is a fixed number 2(2m + 1) 1., k? for a given m. For example, if m = 2, we
have:

(11)

3 m m
B S > I(ro)r (12)

=—mc=—m

A similar development for 2 yields:

R (19)

or

3 m m
8= il & D L P Z Z I(r,e)e (14)

r=—mc=—m

v? is the elevation of the plane, therefore it may be taken as zero without loss of generality. To determine
the relations between «, 8, r, and ¢ in the plane f(r,c) = ar+ Bc+7, we find (r,c) such that r24+¢2 =1 (a
unit vector) which maximizes f(r,¢) . The direction of the vector will be the gradient direction, as depicted
in figure 5.

Using Lagrange multipliers, we get:
e(re)=ar+fe+y—Ari+c2-1)

¢ — -2 A=0>r=2

ar 2X
=f-2cA=0=c=£&
%:1‘24-(:2—1:0

Substituting » and c¢in 72 4 ¢ = 1, we get
(&) + (-2%)2 = 1 which yields
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Figure 5: Inclination and gradient directions of unit vector

Substituting r and ¢ in the plane f(r,c¢) = ar + fc + v and taking v = 0 we get:
o® Y . vy )
Ve?+p? + Jaripr YV *
which is the amount we rise by taking a unit step in the gradient direction, as can be seen in figure 5.
The actual way we traverse is v/1 + a2 + 32 and the gradient direction @ is found as:

Zr,c I(T‘, C)C

— -1
S Tmor

§ = tan~!

RI=

(15)

while the angle of the plane of inclination is:

¢ =tan"!\/a? + 52 = tan~! \/(z I(r,c)r)? + (Z I(r,c)c)? (16)

e

Having found @, the adjustment of our edge model is done by using equation 2 rather than 1.
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5 Modeling the edge detection as a supervised pattern recogni-
tion problems: future work

Research must be done in order to select the set of basis functions which will most closely represent the
observed edges of interest. We are currently working on a linear combination of a shifted gaussian and
hyperbolic tangent, which seem to be adequte. Another problem will be to determine the parameters of
these functions. We represent the problem as a supervised pattern recognition problem, where during the
learning phase the system is shown a number of pixels that are edges, and the parameters are calibrated
accordingly. Then, in the recognition phase, these parameters are substituted in the basis function and are
used to determine for each pixel whether or not it is an edge.

The pixels thus identified constitute the contour of the cortical bone and any orthopaedic implants. These
points may serve many functions. First, they may as anchors for traditional orthopaedic measurements. The
angle of curvature of the spine is one such measurement. Alternately, objective measurements such as cortical
area may made where previously subjective interpretation was thought to be adequate. In both cases, great
precision is brought to bear upon the decision process. The numbers obtained from the computer radiograph
may be at odds with those determined by the physician by hand. Hence, inter-observer variation will still
exist. However, the issue of intra-observer variation is essentially eliminated.

As the computer can be taught to recognize landmarks, there are two additional benefits that may accrue.
First, standard measurements will require less of the physicians time. Additionally, new measurements may
be tested for their clinical utility. In this sense, we hope that our measure of cortical area will largely replace
the subjective measure of bone quality. Ultimately, the quality of medical care will be improved.
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