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ABSTRACT

This paper discusses the design of a system that can
input a vision task specification and use its knowledge of
the operations of mathematical morphology to automat-
ically construct a procedure that can execute the task.
To do this, we develop a predicate calculus representa-
tion to describe the essence of the states of all the images
that are created during the execution of the morpholog-
ical procedure and the states of the relationships among
them. We translate the English descriptions of morpho-
logical procedures into predicate logic. In so doing we
gain an understanding of the goal of each procedure and
the exact conditions under which a procedure achieves
its goal. With this knowledge of the operations of math-
ematical morphology represented in predicate logic, a
search procedure can be used to automatically produce
vision procedures. The search begins with the desired
image described in predicate logic. If the existence of
the desired image can be proved, then a morphological
processing sequence to produce the desired image exists.
Hence to automatically determine the morphological vi-
sion procedure, a search can be set up to constructively
prove a theorem in predicate logic about the existence
of the desired image. In this way, each step of the proof
is associated with a morphological operation. The exe-
cution of the morphological operation in the order given
in the proof then constitutes the desired morphological
processing sequence.

1. Introduction

Mathematical morphology has been widely used
in machine vision since it was introduced by Serra
and Sternberg [Serra 82, Sternberg 86]. Many useful
image processing procedures have been developed using
basic operators of mathematical morphology. Vision
algorithm developers have spent a lot of time finding
meaningful sequences of basic morphological operators
which can execute the vision tasks they are trying to
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solve. When a vision expert is given a task, he or
she first analyzes the task, makes a plan, produces a
procedure, tries it, evaluates the test results, and refines
or updates the procedure. In doing so, the expert uses
knowledge of the given problem domain and knowledge
of the available morphological operations to determine
a reasonable vision procedure. Their effort has been
successful in producing many morphological procedures
in a variety of application fields [Joo and Haralick, 89].
It is natural for us to ask now how a human vision
expert can develop the morphological procedures that
solve the vision tasks. Is it possible to create a system
that can mimic what a vision expert does? The goal of
our research is to answer this question by designing a
system that can input a vision task specification and
use its knowledge of the operations of mathematical
morphology to automatically construct a procedure that
can execute the vision task. In this paper, we establish
the theoretical groundwork with which to pursue our
research toward the solution of this problem.

In a related philosophical paper, Serra [Serra 86]
discusses a definitive irreversible operation and poses a
question regarding how one can spread out successive
losses among a series made up of dozens of morphological
transformations, so that the series of operations can
produce the desired result. In selecting the series of
transformations, he points out that we need to have a
set of reference properties and perform the assessment
with respect to these properties. Since there is a series of
operations, he advises us to apply the first criteria to the
choice of the comparison between inputs and outputs,
and to direct our interest to the mappings which may
have special concepts such as extensive or anti-extensive,
over— or underpotent, idempotent, and isotropic. In
addition to this, he suggests several rules for organizing
a morphological processing sequence.

A morphological algorithm consists of a sequence of
basic morphological operators and each morphological
operator requires some parameters which are commonly
called structuring elements. Gillies, working on the line
of searching for the right parameters, proposed a learn-
ing system that uses genetic search to generate feature



detectors which cooperate in the classification of image
samples [Gillies 85]. In his hybrid human/machine adap-
tive system, the user provides the logical components of
the feature detector, namely the sequence of morpho-
logical operators, and the machine provides the spatial
component, namely the structuring elements. The sys-
tem generates structuring elements and tests the resul-
tant feature detectors using images from the training set.
The results of the test are used to direct the search for
new structuring elements which will lead to better fea-
ture detectors. The entire adaptive process constitutes
a search in which breadth and depth are balanced ac-
cording to the observed performance of feature detectors
evaluated so far.

Research on finding a best vision algorithm among
a small set of predetermined sequences of operators can
be seen in several papers [Hasegawa et al 86, Ikeuchi
and Kanade 88, Sakaue and Tamura 85, Goad 83,
Matsuyama 88]. Most of the systems proposed in this
category are designed to present the basic framework
for the automatic generation of vision algorithms. Even
with their reported success, their algorithm search space
is limited, the description of the image is not quite
extensive, and their use of knowledge in the selection of
operators and the parameters is limited. However, the
idea of inferencing the expected image in [Hasegawa et
al 86] and the use of an algorithm graph in [Matsuyama
88] are interesting.

A search for both the best morphological sequence
of operators and optimal parameters for each operator
can be found in the work of Vogt [Vogt 88]. Vogt
implemented a system called REM, which is able to
generate some vision algorithms for binary images. In
REM, the basic morphological operators are categorized
in terms of both their form and their properties. Given
accept and reject masks, the system finds a single
algorithm which distinguishes the corresponding accept
pixels from the reject pixels. A blackboard—based
control strategy improves the efficiency of the search.
REM currently solves one— or two-step problems that
have perfect solutions, for a relatively small number
of different band-pass operators. However, the search
performed by REM is guided by the false positive and
false negative error rate that the generated algorithm
achieves, not by the intrinsic morphological properties of
the objects to be detected. The categorization of basic
morphological operators is quite coarse; the knowledge
of what each operator achieves is not well represented in
REM.

We believe that automatic procedure generation re-
quires a careful, concrete formalization of the mechanism
of the algorithm development cycle performed by human
vision experts. We attempt to do this by uncovering and
explicitly representing the knowledge that vision experts
possess and use. We show how morphological knowledge
and vision tasks can be represented in a predicate cal-
culus form and how an algorithm can be created by a
reasoning process which can be implemented in the form
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of a predicate logic theorem prover.
2. Notation and basic definitions

Let E be set of integers. Let upper case letters
A, B, C,--- be finite subsets of E? and let boldface lower
case letters a,b,c,--- denote elements of E2, which
represent the pixel locations in an image.

The following are the definitions for the basic binary
morphological operators used in this paper. For any set
A C E? and x € E?, let A, denote the translation of A
by x which is defined by

Ax = {y|for some a€ A,y = a+ x}.

For any set A € E2, let A denote the reflection of A
about the origin which is defined by

A={x] for some a € A,x = —a}.

The dilation of a set A by a set B is denoted by A ® B
and is defined by

A®B={x|forsomea€c Aandb € B,x=a+ b}.

The erosion of a set A by a set B is denoted by A© B
and is defined by

A6 B={x|foreveryb€e B,x+be€ A}.

Let J and K be two sets satisfying J N K = ¢, then the
hit and miss transform of a set A by a pair of sets (J, K)
is denoted by A ® (J, K) and is defined by

A®(J,K)=(AeJ)n (A 6 K).

where A°® is the complementation of the set A with
respect to E2. The opening of a set A by a set B is
denoted by A o B and is defined by

AoB= (A6 B)®B.

The closing of a set A by a set B is denoted by A e B
and is defined by

AeB=(A®B)oB.

There are many relationships among these basic mor-
phological operators. For a complete discussion on this
topic, readers are referred to [Haralick et al 87].

One of the important properties of a set is its
connectedness. The following are the definitions for
a distance function and a binary relation required to
define the eight—way connectivity relations used in our
discussion.

Definition: The chessboard distance p.(A, B) between
two non-empty sets A and B of E? is defined by

A,B)= min min max{|z—z'|,|ly—vy'
p(AB) = min | min max{le o'} ly~ v/}

The chessboard distance between an empty set and any
other set is defined to be infinity.




Definition: The separation relation I's; is the binary
relation defined by

;= {(A’ B) | Pc(Av B) > 1}

All the connectivity relations discussed in the following
sections are defined with respect to the separation
relation T'y [Haralick and Shapiro, 90].

Definition: Two sets A and B are separated or not
connected to each other if (A,B) € I's. If (A,B) ¢ T,
then A and B are connected to each other.

Definition: A set A is called connected iff every 2-celled
partition 7 = {my, mo} of A satisfying 7y # ¢ and 73 # ¢,
also satisfies (71, 72) & ;.

According to the above definitions, the empty set
is connected but is separated from all other sets. The
separation relation I'y has the following four properties
that are used in some of the proofs of the theorems in
Section 4 [Haralick and Shapiro, 90].

(1) Symmetric: (X,Y) € T, implies (Y, X) € T.

(2) Exclusive: (X,Y) €T, implies X NY = ¢.

(3) Hereditary: (X,Y) € T, implies (X',Y’) € T, for
eachX'CXandY'CY.

(4) Extensive: ({x},{y}) € T, for every x € X and
y € Y implies (X,Y) € Ts.

Having defined the notation needed to describe the
binary morphological algorithms, we start discussing our
representation scheme.

3. Representation Scheme

Given a morphological algorithm and a set of input
images used in the algorithm, vision experts can explain
what the algorithm achieves in plain English. If there
is a difficulty in describing it, they can also point to
the regions in an image that should be detected by
the algorithm. They can describe what each step of
the algorithm does and why each step is necessary.
However, for a machine to perform like a vision expert,
the knowledge used in the algorithm development cycle
must be made explicit. In this section we discuss a
representation scheme that allows us to precisely state
the facts about mathematical morphology. As logic is
the study of reasoning and because of the simplicity
and expressive power of mathematical logic, we choose
to design our representation scheme in a first-order
predicate logic setting.

We begin by defining the symbols of our represen-
tation. We have already defined the symbols used for
subsets and elements of E2. We add to that list the
symbols for binary images and scalar constants. Let cal-
ligraphic capital letters A,B,---,Z,J,-- - represent bi-
nary images. We define the binary image as follows:
Definition: A binary image 7 is a tuple Z = (D, F, B)
where D C E? is the domain of the image Z, F' C D is the
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set of its binary 1 pixels (foreground pixels), and B C D
is the set of its border pixels. The border pixels are the
pixels in D which have, among their eight neighboring
pixels, at least one pixel not belonging to D.

The structuring elements used in morphological opera-
tors are finite non-empty subsets of E? and are written
in upper case letters. To represent scalar quantities such
as the radius of a disk structuring element, the length of
a line, etc, we use lower case letters which are elements
of E.

Throughout this section, we omit the explicit
typing of terms used in logic expressions for reasons
of simplicity. The types of terms should be clear by
the choice of characters used to name them. When
explicit type checking is necessary, we will use the set
of predicates, “image”, “2D-set”, “structuring-element”,
“integer”, and “2D-element”.

Functions are used to represent both the image op-
erators and the structuring elements used in morpho-
logical operators. Each image operator, whether it is
a morphological operator or a set operator, returns an
image which is the output image produced by the op-
erator. The names of functions are written in italics to
distinguish them from predicates. For example, the im-
age complement operator and the morphological erosion
operator are defined as follows.

Definition: I_complement(Z). The complement image
J of a binary image Z = (D, F, B) is defined by J =
(D,D — F, B) and we write J = I_complemeni(Z).
Definition: B_erode(Z,S). The morphological erosion
image J of a binary image 7 (D,F,B) by a
structuring element S is defined by J = (D,(F o S)Nn
D, B) and we write J = B_erode(Z, S).

The structuring elements of special geometric shapes
are defined in terms of functions returning the subsets of
E? corresponding to their shapes. For example, disks of
positive integer radius and boxes (rectangles) of positive
integer widths and heights are defined as follows:

disk(r) = {(2,1) € B? | (2 +9?) < (r +0.5)2)
boz(w, h) = {(z,y) € E* | —(w—1)/2< z < w/2,
—(h=1)/2<y<h/2}

We use predicates to represent concepts and rela-
tions satisfied among terms in our representation. For
example the following three predicates can be used to
test if a set A C E? is one of the three components of
the binary image tuple.

e I-domain(A4,7) is true iff the set A is the domain of

the image 7.

o I-foreground(A4,7) is true iff the set A is the set of

all the binary 1 pixels of the image 7.

e I-border(A,7) is true iff the set A is the set of all

the border pixels of the image 7.

Likewise, we use a predicate “connected-to(A,B)” to
test if two sets A and B are connected to each other



and a predicate “connected(A)” to test if a set A is a
connected set.

The following are some of the simple predicates used
to describe properties of sets in E? and relationships
among them.

Definition: inImage(A4,Z). A set A is in image I =
(D,F,B)iff ACF.

Definition: subset(A4,B). A set A is a subset of B iff
ACB.

Definition: set-equal(A, B). A set A is equalto a set B
iff A= B.

Definition: - empty(A).
A=¢.

Definition: set-diff( 4, B, C). A set A is a set-difference
ofaset Band aset Ciff A= B —C.

If an important property or a relationship corre-
sponds to a rather complicated expression in terms of
simple predicates, it may be desirable to introduce a new
predicate to abbreviate the expression. It will make cer-
tain expressions shorter or more readable. An example
of such a property is maximal-connectedness of a set in
a binary image, which can be defined as follows:

7

A set A is an empty set iff

Figure 3-1 Illustration of the predicate “max-
connected(4,7)”.
Definition:  max-connected(4,7). A set A is

mazimally-connected in image T = (D, F,B) iff A is a
connected set in image 7, and A and (F — A) are sepa-
rated.

With the simple predicates defined so far, we can define
the predicate “max-connected” more precisely as follows:

VA,VI,
max-connected( A, T) <

connected(A), inlmage(A4, ), VX, VY,
(I-foreground(X, Z), set-diff(Y, X, A))

=> —connected-to(Y, A)

Figure 3-1 illustrates the above logic statement. Illus-
tration of some of the properties defined in this section
are shown in figure 3-2.
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inImage(B, 7)
—inlmage(D,T)
—connected(B)
connected(D)
—max-connected(B,T)
—max-connected(D, T)

inImage(A, 7)
inImage(C, T)
connected(A)
connected(C)
max-connected(A, 7)
—max-connected(C, 7)

Figure 3-2 Illustration of sets in a binary image and
the predicates they satisfy.

There are two main kinds of knowledge: (1) knowledge
about the state of an image or relationships among
several images and (2) knowledge about the effects of
both set-theoretic and morphological operators. Both
kinds of knowledge are represented in terms of rules of
inference. For example, it is obvious from the definition
that a set A being maximally connected in an image 7
implies that the set A is in the image Z. We represent
this rule by the following predicate logic statement.

VA, VZ, (max-connected(A, Z) = inImage(A4, 7))

On the other hand, if a set A is maximally connected in
image Z, it is not in the complemented image of Z. This
fact can be represented by the following statement.

)

These rules of inference will enable us to conclude the
existence of an algorithm to achieve the desired task.

In order to better explain the representation scheme
being used to describe binary morphological algorithms,
we give a simple example algorithm in the next section
and show how it can be represented and created in our
representation.

4. Algorithm Creation

max-connected(4,7)
VA, VI, .
= —inlmage( A4, I_.complement(Z))

In this section, we analyze an example morphological
algorithm precisely in terms of the representation scheme
developed in the previous section and show how such
an algorithm can be created. We describe the essence
of the states of all the images that are being created
during the execution of the algorithm and the states
of the relationships among them. The description
needs to be complete enough to explain the whole
process of the algorithm which achieves the required
vision task, i.e., the goal of the algorithm. To do
this we must give predicate calculus definitions for
concepts such as morphological opening, conditional



dilation, disjoint sets, one set being larger than another,
and connectedness. Then we must develop theorems
concerning some relationships between connectedness
and opening, connectedness and dilation, separation
and dilation, maximally connected sets and conditional
dilation. These definitions and theorems are on the
one hand very technical. On the other hand they
uncover and reveal the association between a variety of
spatial and topological concepts and some operations of
mathematical morphology. Although none of what we
do is interesting in and of itself mathematically, it does
constitute the knowledge base of a reasoning system for
the automatic construction of vision procedures. From
this point of view it may be interesting and justify the
effort we have put in to develop it.

We begin by a statement of the goal of the vision
procedure needed in the algorithm design process for the
determination of a vision procedure and then give all the
definitions and theorems. We conclude the section with
the algorithm design.

Let us suppose that we want to develop an algorithm
that removes small objects that cannot contain a
rectangle 5 pixels high and 5 pixels wide in a binary
image. The objects are sets of foreground pixels in the
image. We can achieve this vision task by first marking
the larger objects using a binary opening operator,
and then recovering the original maximally connected
objects using a conditional dilation operator. Figure
4-1 illustrates this algorithm. We begin our explanation
by defining the two morphological operators, binary
opening (B_open) and conditional dilation (cdil).

(b)
Figure 4-1 Illustration of the example morphological
algorithm which removes small objects in an image. (a)
shows the original binary image Zy; (b) shows the result
Z, of the opening of the original image by a rectangle 5
pixels high and 5 pixels wide; (c) shows the result of the
conditional dilation of Z, with respect to Zp.

(c)
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Definition: B_open(Z,S). A morphologically opened
image J of a binary image 7 (D,F,B) by a
structuring element S is defined by J = (D, F o S,B)
and we write J = B_open(Z, S).

Definition: c¢dil(J,Z). A conditionally dilated image
K of J = (D,G, B) with respect to T = (D, F, B) by
a rectangle of width 3 and height 3 pixels is defined
by K = (D, H™, B) where the index m is the smallest
index satisfying H™ = H™ ! when H® = G and H" =
(H™ ! @ boxz(3,3)) N F and we write K = cdil(J,T).
Figure 4-2 illustrates this operator.

Now, we define a set of predicates required to
describe the example morphological algorithm. A set of
simple, easily proved rules are also stated without proof.
Each rule is preceded by the definition of the predicate
to which the rule is related.

Definition: disjoint(4,B). A set A is disjoint from B
iff AnB = ¢.

The following logic statement states that if a set is not
disjoint from a non-empty set, it is also a non-empty set.

VA, VB, ((—empty(A), ~disjoint(A, B)) = —~empty(B))

Definition: isopened-by(4,B,S). Let S be a struc-
turing element and A and B be sets. Then isopened-
by(A,B,S)iff A=BoS.

The following three logic statements state that (1) for
any set there exists its opened set, (2) the opened set
is unique, (3) (Ao S) C A, for any structuring element
S; this is one of the basic relationships satisfied by the
morphological opening operator.

VB,VS, (34, isopened-by(4, B, S))

VA,VB,YC,VS,
isopened-by(4,C, S),
= equal(4, B)

isopened-by(B, C, S)
VA,VB,VS, (isopened-by(A, B, S) = subset(A4, B))

Definition: larger(4,S). Let S be a structuring
element. A set A is larger than S iff Ao S # ¢.

The following logic statement characterizes this predi-

cate.

The following are the set of rules of inference
needed to generate the example algorithm. These
rules constitute the information data base of our
system. They are stated as theorems and the proofs are
provided. Most rules encode the information regarding
the morphological operators which vision experts utilize
when designing algorithms. The first two theorems
describe the morphological opening operator. Theorem
4-1 is used to show that if a set i1s maximally connected
in an input image Zy and is larger than a structuring

larger(4, S) & 3X,

va,vs, |
( (isopened-by(X, 4, S), ~empty(X))



element S, its opening is non—empty and is in the image
Zy opened by S. Theorem 4-2 is needed to show that
the marker of a large object A found by the opening
operation must intersect with Ao S.

Theorem 4-1: If Ais a set in image Z, then its opening
by a structuring element S is in image B_open(Z,S). It
can be stated as the following logic statement.

VA,VI,
(inImage(A, T) = VS,VX, (isopened-by(X, 4, S))

= inlmage(X, B_open(Z, S)))

Proof: Let Z be (D, F, B), then B_open(Z,S) = (D,F o
S,B). Let AC F, then (A0S) C (Fo.S), which implies
that (Ao S) is in image B_open(Z,S). Since (Ao S) is
unique, the second logic statement is also true. m

® N Ao s=X
N
>
’ N\
A
2\ Ky
Q n

Image 7 Image Zo S

Figure 4-3 Illustration of theorem 4-2.

Theorem 4-2: If S is a connected structuring element,
A is a maximally connected set in Z, and B is a set in
image B_open(Z,S) such that A and B are connected to
each other, then BN (A0 S) # ¢. In predicate logic, we
write the following.

VA,VB,VS,VZ,
(connected(S), inlmage(B, B_open(Z, S)), )

max-connected(A, ), connected-to( B, A)
= 3X, (isopened-by(X, 4, S), ~disjoint(B, X))

An illustration of this theorem is given in figure 4-3.
Proof: Let T = (D,F,B) and J = (D,G,B) where
G = FoS. Since A is a maximally connected set in Z,
A and (F — A) are separated. Therefore, G = Fo S =
(Ao S)U((F— A)oS). Since ((F— A)oS) C (F - A),
(A,(F—A)) €T, which implies (4, ((F — A)oS)) €T,.
Thus, A is not connected to ((F — A) o S). Let a non-
empty set X C G and A be connected to each other and
XN(AoS)=¢. Then X C ((F—A)oS) or (AoS) = ¢.
If (Ao S) = ¢, then X C G implies X C ((F — A)o S).
If X C((F— A)oS), X and A are separated, which is
a contradiction. m

The following are a set of rules related to the
connectivity property. We need them to prove theorem
4-5, which encodes an important property of the
morphological conditional dilation operator.
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Theorem 4-3: A set A and a set B are connected to
each other iff there exists a subset X of A such that X
and B are connected to each other. Figure 4-4 illustrates
this theorem.

connected-to( 4, B) < 3X, )

VA,VB,
( (subset(X, A), connected-to(X, B))

Proof: If A and B are connected to each other, there
must exist (£4,y4) € A and (zp,ys) € B such
that max{|za — zB|,lya — yB|} < 1. Therefore,
pc({(z4a,ya)}, B) < 1, which implies that {(z4,y4)} C
A and B are connected to each other. If there exists a
subset X of A such that X and B are connected to each
other, p.(X,B) < 1. But,

pc(A, B) = mi max{la:—:c'l,ly—y’l}

n  min
(z,9)EA(z'y')EB

< min  min max{|z—z'|,|ly—vy
S o {l Lly =y}

<1

Therefore, A and B are connected to each other. m

{

N

Figure 4—4 Illustration of theorem 4-3.

/




Theorem 4—4: A set A and a set B are connected to
each other iff (4 @ box(3,3)) N B # ¢.

Proof: Since an empty set is separated from any subset
of E2, A # ¢ and B # ¢. Suppose ANB # ¢.
Since (0,0) € boz(3,3) implies A C (A & box(3,3)),
(A @ bozx(3,3))NB # ¢. Suppose ANB = ¢ but
(A@boz(3,3))NB = ¢. Since A and B are connected to
each other, there must exist (z4,y4) € Aand (zB,yB) €
B such that max{|z4—zg|,|ya—ys|} < 1. Hence,zp €
{za—1,z4,24+1} and yp € {ya—1,ya,ya+1}, which
implies that (zp,yB) € [{(z4,ya)} ® box(3,3)]. But,
(4,y4) € A implies that (zp,yp) € (4 @ boz(3,3)).
Since (zp,ys) € B, (zB,yB) € [(A ® boz(3,3)) N B],
which is a contradiction to (A4 & boz(3,3)) N B = ¢.
Therefore, (A & boz(3,3)) N B # ¢.

Suppose that (A @ boz(3,3)) N B # ¢. Then, there
must exist (z,y) € (A ® boz(3,3)) and (z,y) € B.
Suppose (z,y) € A, then (z,y) € B implies p.(4, B) =
0. Suppose (z,y) € (A® boz(3,3) — A), then there must
exist (£4,y4) € A such that ¢ € {z4 — 1,24 + 1}
and y € {ya — 1,ya + 1}. Therefore, p.(4,B) =
max{|ts — z|,|lya — y|} = 1. Hence, A and B are
connected to each other. =
Corollary 4-1: A set A and a set B are separated iff
(A& box(3,3)) N B = ¢.

The following theorem encodes the information on

the conditional dilation operator, which states that
if an image J is conditionally dilated by a boz(3,3)
structuring element with respect to an image Z, the
output image consists of all the maximally connected
objects in image Z that are connected to the foreground
pixels of the image J. The proof of this theorem is given
in [Joo, Haralick, and Shapiro, 90].
Theorem 4-5: A set A is a maximally connected set
in image Z and there exists a set B in image J such
that A and B are connected to each other if and only if
A is a non-empty maximally connected set in the image
obtained by J conditionally dilated by a boz(3,3) with
respect to Z.

VAVI, VT,

max-connected(4,7),3X,
<
(inImage(X, J), connected-to( X, A))

(—empty(A), max-connected(A, cdil 7,T)))

The following is a set of additional rules of inference
related to the predicates defined so far and required to
prove the existence of an algorithm for this example.
Each one of them can be easily proved using the
theorems of set theory and mathematical morphology
and the proofs are omitted here.

e A set is non-empty iff there exists a non-empty
subset of it.

VA, (—empty(A) & 31X, (subset(X, A), ~empty(X)))
e The connectivity relation is symmetric.
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VA, VB, (connected-to( A, B) ¢ connected-to(B, A))

e If B# ¢ and B C A, then B and A are connected
to each other.

—empty(B),
VA,VB, empty(5) = connected-to(B, A)
subset(B, A)

e If a set A and a set B are connected to each other,

A# ¢ and B # ¢.

_'empty(A)’
VA,VB, | connected-to(4, B) =
—empty(B)

We have defined all the predicates and functions
and have stated rules of inference sufficient to be able
to describe the example algorithm. We will show in
the next subsection how the example algorithm can be
designed with all the information explicitly stated so far.

Algorithm design

We first define two constants, one for the input
image and the other for the box shaped structuring
element.

e Zy: input binary image.
e Bs = boz(5,5): 5 x 5 box.

Since a box of 5 pixels high and 5 pixels wide is
a connected set, we have connected(Bs) as one of
the initially satisfied logic statements. We want to
express the vision task of this example algorithm in our
representation. When an algorithm executes a vision
task successfully, it should produce an output image
(the goal image) which satisfies the vision task. Thus,
by proving the existence of the goal image, we should
be able to construct an algorithm. The vision task of
this example algorithm can be stated more precisely
as follows: Prove that there exists an image G where
all the maximally connected sets in image Zp larger
than the structuring element boz(5,5) are also maximally
connected sets in G, and every non-empty maximally
connected set in G is also a-maximally connected set in
T, and is larger than the structuring element boz(5,5).
We can represent this vision task by the following logic
statement, called the goal statement.

(max-connected(A4, Zy), larger(A, Bs))

3G,VA,
& (—empty(A), max-connected( A, G))

We will prove the goal statement using the logic
statements initially satisfied and the rules of inference
in the information data base. We approach them in
a constructive manner. To prove that a goal image
with a certain property exists, we will actually construct
such an image, not merely show that the nonexistence
of such an image would lead to a contradiction. Note
that each image operator is defined as a function which
returns an image. Since an algorithm is a sequence
of image operators, it is a concatenation of functions
in our representation and the output image returned
by this concatenation of functions is the output image
produced by the algorithm. Thus, by constructively



proving the existence of the goal image we can create
an algorithm which achieves the vision task. We will
do so for this example in such a way that when the
goal statement is proved, the goal image G should exist
and should be unified with the concatenation of two
functions, “cdil( B_open(Zy, Bs),1p)”.

We first prove the only if, (=), part of the goal state-
ment and construct the goal image. To prove this, we
arbitrarily choose a set which satisfies the left hand side
of “=” and then prove that it also satisfies the right hand
side. Assume that a set A is given which is a maximally
connected set in image Zp and is larger than the struc-
turing element boz(5,5). Then, larger(A, Bs) implies
3X, (isopened-by(X, A, Bs), mempty(X)). Now let B
be a set satisfying (isopened-by(B, A, Bs), ~empty(B)),
then

isopened-by(B, A, Bs) = subset(B, 4),
subset(B, A), connected-to( B, A),
(ﬂempty(B) ) - (ﬁempty(A) ) '
The set A being maximally connected in image Zo
implies inImage( A4, Zp), which implies, by theorem 4-1,
( isopened-by(X, A, Bs) )
= inImage(X, B_open(Zy, Bs))

Since isopened-by(B, A, Bs) is true,
inImage(B, B_open(Zy, Bs)) must be true. Hence:

. connected-to(B, A),

"\ inImage(B, B_open(Zy, Bs))

By theorem 4-5 and the fact that A is a maximally
connected set in image G = cdil( B_open(Zy, Bs),Zo), we
have proved that there exists an image G which satisfies
the (=) part of the goal statement.

To prove the if, (<=), part of the goal statement,
let G be cdil( B_open(Zy, Bs), Zy) and a non-empty set A
be given which satisfies max-connected(4,G). Then, by
theorem 4-5,

(max—connected(A, Tv),3X, )
(connected-to( X, A), inlmage(X, B-open(Zy, Bs))) )
Let B be a set satisfying

(connected-to(B, A), inlmage(B, B-open(Zy, Bs))) ;

then B # ¢. Since connected(Bs) is true, by theorem
4-2, if A and B are sets satisfying the following

max-connected(A4, Zy),
(connected-to(B, A), inlmage(B, B_open(Zy, Bs))) /)’

then
JX, (isopened-by(X, A, Bs), ~disjoint( B, X)) .
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Let C be the set satisfying the above logic statement.
Since CNB # ¢ and B is not empty, we have —empty(C).
Hence, we have proved that

3C, (isopened-by(C, A, Bs), —empty(C)) ,

which is equivalent to larger(A,Bs). Thus, we have
proved the (<) part of the goal statement. Therefore,
we have proved the goal statement and have created the
desired algorithm to produce the goal image G. The goal
image is given by

G = cdil( B_open(Zy, Bs), Ty)

and can be obtained by first applying an opening to
image Zy and then conditionally dilating the result.

5. More Examples

We succesfully used our representation scheme to
analyze the process of creating a set of morphological
algorithms. In this section, we list without proof two
such examples. We will state the goal statement and
the solution which can come out of the theorem proving.
We will also give the definitions of the predicates and
the operators appearing in the goal statement and the
solution.

5.1 Particle marking

This algorithm finds cells with round shaped and
large nucleus from images taken through microscope.
In this example we have a pair of input images. 7o
represents an image of cytoplasms and nuclei while Jy
represents an image of nuclei only. We need definitions
for the following five concepts: sub-body, round, B_close,
B_close_res, and I_diff.

sub-body(C, 4,T):
A set C is a sub-body of A in Image T = (D, F, B)
iffC=AnNF.

round(4, K, L):
A set A is round with respect to a structuring
element pair (K;L) iff ((Ae K) — A)o L = ¢.

B_close(Z, S):
A morphologically closed image [J of a binary image
Z = (D, F, B) by a structuring element S is defined
by J = (D,(F ¢ S)N D, B).

B_close_res(Z, S):

A morphologically closed residue image J of a
binary image Z = (D, F, B) by a structuring element
S is defined by J = (D, ((F e S) N D) — F, B).
Idiff(Z,7):

Let the domains of two images Z and J are same.
Then, a difference image K of the two binary images
I = (D,F,B) and J = (D,G,B) is defined by
K=(D,F-G,B).




Goal Statement:

3G,VA4,

(

max-connected(4, Zp),

o )

VY, (sub-body(Y, A, Jo) = round(Y, Ds, D,))

)

5.2 Finding missing gear tooth space

subset(X, A), inImage(X, Jo),

larger(X, D1g)

& (—empty(A), max-connected( A4, G))

Solution:

c— I.dijf( B_open(B_close_res(Jo, Ds), Dz),

cdil( B_open(Jo, D10), To)

This algorithm finds missing or broken teeth spaces
of watch gears. We need a bunch of definitions.
transof(4, B):

A set A is a translation of a set B iff A = By for

some x € E x E.
holeof(H, S, T):

A set H is a hole of S C F in image T = (D, F, B)

iff H is a maximally connected set of D — S in image

(D,D — S, B) and is disjoint from B.
isa-hole(H, T):

A set H is a hole of image T = (D, F,B) iff H is a

hole of F' in image 7.
isolated-hole(H, S, T):

Let S be a structuring element. A set H is an

isolated hole with respect to S in image Z iff it

is a hole and for some translation x € E x E,

H C Sy, and the translated structuring element

Sx is separated from all the other holes of image

7 disjoint from Sy.
c-union(4, Q):

The collection union A of a collection of sets Q is

the union of all sets in Q and can be characterized

by:a€c A=3CeN,acC,andCe€Q=CC A
filled-hull(Z, S, 7):

The filled-hull Z of a set S in image Z is the union

of S with the collection union of the collection of all

holes of S in image Z.
trans-collection(f2, S, Z):

Let S be a structuring element. The trans-collection

2 of a structuring element S in image Z = (D, F, B)

is the collection of all sets Sy C F for some

translation x € E x E.
trans-body(A4, S, Z):

If Q is a trans-collection of a structuring element S

in image Z, a set A is a trans-body of a structuring
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element S in image Z iff A is the collection union of
Q.
isopen-under( 4, S):
A set A is open under a structuring element S iff
A=AoS.
shape-body(A4, S,7):
Let S be a structuring element. A set A is a shape-
body of S in image Z = (D, F, B) iff A is the maximal
subset of F' whose filled-hull is open under S.
inDomain(A4, 7):
A set A is in the domain of an image 7 = (D, F, B)
iff AC D.
dist-farther(4, d, B):
Let d be a positive integer. A set A is distance
farther than d pixels from a set B iff (B @ disk(d)) N
A=¢.
dist-closer(A4, d, B):
Let d be a positive integer. A set A is distance closer
than d pixels from a set B iff (B @ disk(d))N A = A.
dist-between(A4, a, b, B):
Let a and b be positive integers satisfying a < b. A
set A is distance between a and b pixels from a set
B iff A is distance farther than a pixels from B and
A is distance closer than b pixels from B.
dist-outer-between(A4, a, b, B, I):
Let a and b be positive integers satisfying a < b.
A set A is distance between a and b pixels from the
outer boundary of a set B in image Z iff A is between
a and b pixels from the filled-hull of B in image Z.
gear-body(B, r,T):
Let r be a positive integer. Let X be the set of all
application images in this example. A set B is a
gear body of size r of the image Z € ¥ iff B is the
shape-body of a disk of radius r in image Z.
gear-tooth(T, a, b, ¢, 7):
Let a and b be positive integers satisfying ¢ < b
and c be a positive integer. Let ¥ be the set of all
application images in this example. A set T'is a gear
tooth of the image 7 € ¥ with parameter a, b, and ¢
iff it is in 7 and it is distance between a and b pixels
from the outer boundary of the gear body of size ¢
in 7.
is-missing-tooth-space(4, a, b, ¢, d, 7):
Let a, b, ¢, and d be positive integers and a < b.
Let ¥ be the set of all application images in this
example. A set A is a missing tooth space of the
image Z € ¥ with parameters a,b,c, and d iff it is
in the domain of Z, it is distance between a and b
pixels from the outer boundary all the gear bodies of
size d of Z, and distance farther than ¢ pixels from
all the gear teeth of parameter a, b, and d of 7.

B_dilate(Z, S):
A morphologically dilated image J of a binary image
T = (D, F, B) by a structuring element S is defined



by J = (D,(Fe& S)nD,B).

Land(Z,J):
Let the domains of two images Z and J are same.
Then, an ANDed image K of the two binary images
Z = (D,F,B) and J = (D,G,B) is defined by
K=(D,FnG,B).

ringfill(Z,r):
Let C be the collection union of the collection of
isolated-holes with respect to a disk(r),(r > 0), in a
binary image Z = (D, F, B). Then the output image
J of the ring_fill morphological operator is defined
by J =(D,FUC,B).

Goal Statement:

is-missing-tooth-space(A4, 3,7, 8, 80, Z,
3G, VA, . g pace( 0)
< inlmage(A4,G)

Solution:
G = Iand(Ly,T.)
where
7, = B_open(ring_fill(Z,, 20), Dgo)
I_complement(B_dilate(Z,, D)),
Iy = 1Ian
B_dilate(Z,, D3)

I. = I_complement(B_dz'Iate(I_and(Io, ), Dg))

6. Summary

Our goal is to begin to develop a method by which
machine vision algorithms could be automatically gener-
ated for given tasks. We begin with some binary image
tasks. We designed an algorithm development represen-
tation scheme based on first order predicate logic that
can be used to explicitly represent the information in-
volved in the development of morphological algorithms.
We developed definitions and theorems expressing the re-
lationships between morphological operations and a va-
riety of spatial relationships. We showed that important
spatial properties of a set of pixels in a binary image
can be precisely described in our representation scheme.
We have shown by example how a morphological algo-
rithm can be created by a constructive proof in predicate
logic which proves the existence of an image that satisfies
a vision task specified by a logic statement. We listed
without proof two other example problems. A dozen
other such examples have been worked out. The next
step of our work is to design and implement a computer
program that employs a search procedure to construct
such a proof and that, therefore, can generate computer
vision algorithms.
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