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ABSTRACT

A complete mathematical treatment is given for
describing the topographic primal sketch of the
underlying grey tone intensity surface of a digital
image. Each picture element is independently
classified and assigned a unique descriptive label,
invariant under monotonically increasing gray tone
transformations from the set (peak, pit, ridge,
ravine, saddle, flat, and hillside), with hillside
having subcategories (inflection point, slope,
convex hill, concave hill, and saddle hill). The
topographic classification is based on the first
and second directional derivatives of the estimated

image intensity surface. A local, facet model,
two-dimensional, cubic polynomial fit is done to
estimate the image intensity surface. Zero—

crossings of the first directional derivative are
identified as 1locations of interest in the image.
Results of the technique applied to digital terrain
data and aerial photographs used in the Passive
Image Navigation study are presented
1. INTRODUCTION

Representing the fundamental structure of a
digital image in a rich and robust way is a primary
problem encountered in  any general robotics
computer—vision system that has to '’‘understand’’
an image. The richness is needed so that shading,
highlighting, and shadow information, which are
usually present in real manufacturing assembly line
situations, are encoded. Richness permits
unambiguous object matching to be accomplished.
Robustness is needed so that the representation is
invariant with respect to monotonically increasing
gray tone transformations. Current representations
involving edges or the primal sketch as described
by Marr (1976; 1980) are impoverished in the sense
that they are insufficient for unambiguous
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matching. They also do mnot have the required
invariance. Basic research is mneeded to (1)

define an appropriate representation, (2) develop a
theory that establishes its relationship to
properties that three—dimensional objects manifest
on the image, and (3) prove its utility in
practice. Until this is done, computer—vision
research must inevitably be more ad  hoc
sophistication than science.

The ©basis of the topographic primal sketch
consists of the classification and grouping of the
underlying image intensity surface patches
according to the categories defined by momnotonic,
gray tomne, invariant functions of directional
derivatives., Examples of such categories are peak,
pit, ridge, ravine, saddle, flat, and hillside.
From this initial classification, we can group
categories to obtain a rich, hierarchical, and
structurally complete representation  of the
fundamental image structure. We call this
representation the topographic primal sketch.

Why do we believe that this topographic primal
sketch can be the basis for computer vision? Ve
believe it because the light-intensity variations

on an image are caused by an object's surface
orientation, its reflectance, and characteristics
of its 1lighting source. If any of the three-

dimensional intrinsic surface characteristics are
to be detected, they will be detected owing to the
nature of light—intensity variatioms. Thus, the
first step is to discover a robust representation
that can encode the nature of these light-intensity
variations, a representation that does not change
with strength of lighting or with gain settings on
the sensing camera. The topographic classification
does just that. The basic research issue is to
define a set of categories sufficiently complete to

form groupings and structures that have strong
relationships to the reflectances, surface
crientations, and surface positions of the three-

dimensional objects viewed in the image.



1.1. The Invariance Requirement

A digital image can be obtained with a variety
of sensing-camera gain settings. It can be visually
enhanced by an appropriate adjustment of the
camnera's dynamic range. The gain setting or the
enhancing point operator changes the image by some
monotonically increasing function that is not
necessarily linear. For example, nonlinear
enhancing point operators of this type include
Lhistogram normalization and equal probability
quantization.

In visual perception, exactly the same visual
interpretation and understanding of a pictured
scene occurs whether the camera’s gain setting is
low or high and whether the image is enhanced or
unenhanced. The only difference is that the
enkanced image has more contrast, is nicer to look

at, and is understood more gquickly by the human
visual system.
This fact is important because it suggests

that many of the current, low-level computer—vision
techniques, which are based on edges, cannot ever
hope to have the robustness associated with human
visual perception,. They cannot have the
robustness, because they are inherently incapable
ot invariance under monotonic transfermations., For
example, edges based on zero-crossings of second
derivatives will change in position as the
monotonic gray tone transformation changes because
convexity of a gray tone intemsity surface is not
preserved under such transformations. However, the
topographic categories peak, pit, ridge, valley,
saddle, flat, and hillside do have the required
invariance.

1.2. Rackground

Marr (1976) argues that the first level of
visual processing is the computation of a rich
description of gray level changes present in an
image, and that all subsequent computations are
done in terms of this description, which he calls
the primal sketch. Cray—level changes are usually
associated with edges, and Marr's primal sketch
has, for each area of gray level change, a
description that includes type, position,
orientation, and fuzziness of edge. Marr (1980)
illustrates that from this information it is
sometimes possible to reconstruct the image to a
reasonable degree. Unfortunately, as mentioned
earlier, edge is not invariant with respect to
monotonic image transformations; besides, it is not
a rich enough structure. Difficulty, for example,
has been experienced in using edges to accomplish
unambiguous stereo matching.

The topographic primal sketch we are
discussing as a basis for a representation has the
required richness and invariance properties and is
very much in the spirit of Marr’'s primal sketch and

the thinking behind Ehrich's relational trees
(Ehrich and Foith 1978). Instead of concentrating
or on

on gray level changes as edges as Marr does,
one—dimensional extrema as Ehrich and Foith do, we
concentrate on all types of two-dimensional gray

variations, We consider each area on an
image to be a spatial distribution of gray levels
that constitutes a surface or facet of gray tomne
intensities having a specific surface shape. It is
likely that, if we could describe the shape of the
gray tome intensity surface for each pixel, then by
assembling all the shape fragments we could
reconstruct, in a relative way, the entire surface
of the 1image's gray tone intensity values. The
shapes that we already know about that have the
invariance property are peak, pit, ridge, ravine,
saddle, flat, and hillside, with hillside having
noninvariant subcategories of slope, inflection,
saddle hillside, convex hillside, and concave
hillside.

level

Knowing that a pixel's surface has the shape
of a peak does not tell us precisely where in the
pixel the peak occurs; nor does it tell us the
height of the peak or the magnitude of the slope
around the peak. The topographic labeling,
however, does satisfy Marr’'s (1976) primal sketch
requirement in that it contains a symbolic
description of the gray tone intensity changes.
Futhermore, upon computing and binding to each
topographic label numerical descriptors such as
gradient magnitude and direction, directions of the
extrema of the second directional derivative along
with their values, a reasonable absolute
description of each surface shape can be obtained.

1.3. Facet Model

The facet model states that all processing of
digital image data has its final authoritative
interpretation relative to what the processing does
to the underlying gray tone intensity surface. The
digital image's pixel values are noisy sampled
observations of the underlying surface. Thus, in
order to do any processing, we at least have to
estimate at each pixel position what this
underlying surface is. This requires a model that
describes what the general form of the surface
would be in the neighborhood of any pixel if there
were no noise. To estimate the surface from the
neighborhood around a pixel then amounts to
estimating the free parameters of the general form.
It is important to note that if a different general
form is assumed, then a different estimate of the
surface is produced. Thus the assumption of a
particular general form is necessary and has
conseguences.

The general form we use is a bivariate cubic.
Ve assume that the neighborhood around each pixel
is suitably fit by a bivariate cubic (Haralick
1981;1982). Having estimated this surface around
each pixel, the first and second directional
derivatives are easily computed by analytic means.
The topographic classification of the surface facet
is based totally on the first and second
directional derivatives. We classify each surface
point as peak, pit, ridge, ravine, saddle, flat, or
hillside, with hillside being broken down further
into the subcategories inflection point, convex
hill, concave hill, saddle hill, and slope. Our
set of topographic labels is complete in the sense
that every combination of values of the first and




second directional derivative is uniquely assigned

to one of the classes.
1.4. Previous Work

structures in a
There has been a

Detection of topographic
digital image is not a new idea.
wide variety of techmiques to detect (a) peaks and
pits (spots), (b) ridges and ravines (linmes,
streaks), (c) hillsides (edges), and other local
features. Some of this work includes Fischler
(1982), Lee and Fu (1981), Hsu, Mundy, and Beaudet
(19178), Toriwaki and Fukurma (1978), Grender
(1976), Paton (1975), Johnston and Rosenfeld
(1976), Rosenfeld and Kak (1976) and Peuker and
Douglas (1975). Detailed discussion of these
methods are beyond the scope of this paper. For an
excellent discussion of these works the reader is
referred to Laffey (1983).

1.5. A Mathematical Approach

From the investigation of previous work, one
can see that a wide variety of methods and labels
have been proposed to describe the topographic
structure in a digital image. Some of the methods
require multiple passes through the image, while
others may give ambiguous labels to a pixel. Many
of the methods are heuristic in nature. The Hsu,
Mundy, and Beudet (1978) approach is the most
similar to the one discussed here.

based on the
second-order
Thus, we regard the

approach is
first—-and

Our classification
estimation of the
directional derivatives.
digital-picture function as a sampling of the
underlying function £, where some kind of random
noise is added to the true function values. To
estimate the first and second partials, we must
assume some kind of parametric form for the
underlying function f. The classifier must use the
sampled brightness values of the digital-picture

function to estimate the parameters and then make
decisions regarding the locations of relative
extrema of partial derivatives based on the

estimated values of the parameters.

In Section 2, we will discuss the mathematical
properties of the topographic structures in terms
of the directional derivatives in the continuous
surface domain, Because a digital image is a
sampled surface and each pixel has an area
associated with it, characteristic topographic
structures may occur anywhere within a pixel’s
area, Thus, the implementation of the mathematical
topographic definitions is not entirely trivial.

In Section 3 we will discuss the
implementation of the classification scheme on a
digital image. To identify categories that are
local one-dimensional extrema, such as peak, pit,
ridge, ravine, and saddle, we search inside the
pixel's area for a zero-crossing of the first
directional derivative. The directions in which we
seek the zero-crossing are along the lines of
extreme curvature.

we will discuss the local cubic
In Section 5, we will summarize
the algorithm for topographic classification using
the local facet model. In Section 6, we will show
the results of the classifier on digital terrain
data and aerial photographs.

In Section 4,
estimation scheme.

2. THE MATHEMATICAL CLASSIFICATION OF TOPOGRAPHIC

STRUCTURES
In this section, we formulate our mnotion of
topographic structures on continuous surfaces and
show their invariance under monotonically
increasing gray tone transformationms. In order to
understand the mathematical properties wused to
define our topographic structures, one must

understand the idea of the directional derivative
discussed in most advanced calculus books. For
completeness, we first give the definition of the
directional derivative, then the definitions of the
topographic labels. Finally, we show the
invariance under monotonically increasing gray tone

transformations.

2.1. The Directional Derivative
In two dimensions, the rate of change of a
function f depends on direction. We denote the

directional derivatiye of f at the point (r,c¢) in
the direction B by fB(r,c). It is defined as
s f(r+h*sinf,c+h*cosp) - f(r,c)
f (r,c) = lim .

P h=->0 h

The direction angle P is the clockwise angle from
the column axis. It follows directly from this
definition that

’
fB(r,c) = 9f(r,c) * sinf + 3f(r,c) * cospP.
ar dc
We denote the

second derivativg,of f at the point

(r,c) in the direction B by fB (r,c) and it
follows that
., 8%t a%s o’
fB = —-E*sin B + 2*¥———%*sinf*cosp + -—E*cos B.
or drdc dc

The gradient of f is a vector whose magnitude,

1
ar\2  faf\*\2
—— + ——
ar, dc
at a given point (r,c) is the maximum rate of
change of f at that point, and whose direction,
i
ar 1\
tan L |-—— }
af !
dc /
is the direction in which the surface has the

greatest rate of change.



2.2. The Mathematical Properties

We will use the following notation to describe
the mathematical properties of our various
topographic categories for continuous surfaces. Let

gradient vector of a function f;

vE .

Ilv£ll = gradient magnitude;

m(l) = unit vector in direction in which
second directional derivative has
greatest magnitude;

1
w(Z) = unit vector orthogonal to w( );
A = value of second d1rectigna1 derivative
1 in the direction of ®

kz = value of second d1recti?na1 derivative

in the direction of w
vf’w(l) = value of first d1rect%i?al derivative
in the direction of w and

vf’w(Z) = value of first- d1rectzgya1 derivative

in the direction of ®

Without loss of gemnerality, we assume Ikll >= Ikzl.

of topographic structure in our
is defined in terms of the
above quantities. In order to calculate these
values, the—first and second-order partials with
respect to r and ¢ need to be approximated. These

five partials are as follows:

Each type
classification scheme

of ot o’f 8%t a’f
or dc 3r2 802 drdc
af, of
The gradient vector is simply dr &éc. The second
directional derivatives may be calculated by
forming the Hessian where the Hessian is a 2%2
matrix defined as
| o2t a%t |
[
| 8r2 drdc |
H= | |
| 828 a%¢ |
| = 5=, |
| acor a“fac” |
Hessian matrices are used extensively in

nonlinear programming. Only three parameters are
required to determine the Hessian matrix H, since
the order of differentiation of the cross partials

may be interchanged. That is
a%f 8%
drdc dcodr
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The eigenvalues of the Hessian are the values
of the extrema of the second directional
derivative, and their associated eigenvectors are
the directions in which the second directional
derivative is extremized. This can easily be seen
by rewriting fé' as the quadratic form

e
f, = ( sinp cosp ) * H * | sinp |.
B
| cosp |
Thus,
Hw(l) = A m(l) and Hw(Z) = A w(Z).
1 2
Furthermore, the two directions represented by the
eigenvectors are orthogonal to one another. Since
H is a 2*2 symmetric matrix, calculation of the
eigenvalues and eigenvectors can  be done
efficiently and accurately using the method of

Rutishauser (1971). We may obtain the values of the
first directional derivative in the direction of
either extrema of the second directional derivative
by simply taking the dot product of the gradient
with the appropriate eigenvector:

. (1)
vf w(z)

vf " o

relationship between the
a?g) curvature in the

Yhen the first

0, then

There is a direct
eigenvalues A nd X
directions 1(1? and
directional ifivatlve
X./(1+(vf°vfl) is the curvature in  the
direction o N i=1 or 2. For further
discussion on the relationship of surface curvature
to directional derivative, see Laffey (1983).

vf m

Having the gradient magnitude and direction
and the eigenvalues and eigenvectors of the
Hessian, we can describe the topographic
classification scheme.

2.2.1. Peak

A peak (knob) occurs where there is a local

maxima in all directions. In other words, we are

no matter what direction we look in,
that is as high as the one we are
downward in all directions.

on a peak if,
we see no point
The curvature is

on.
At a peak the gradient is zero, and the second
directional derivative is negative in all

directions. To test whether the second directiomal
derivative is negative in all directions, we just
have to examine the value of the second directional
derivative in the directions that make it smallest
and largest. A point is therefore classified as a
peak if it satisfies the following conditions:

< 0.

I~tll = o, A <0, R,

Pit

2.2.2.

bowl) is identical to a peak
except that it is a local minima in all directions
rather than a local maxima. At a pit the gradient
is zero, and the second directional derivative is
positive in all directions, A point is classified
as a pit if it satisfies the following conditions:

A pit (sink,



vell =0, &, >0, &, > 0.
2.2.3. Ridge
A ridge occurs on a ridge—line, a curve

consisting of a series of ridge points. As we walk
along the ridge—lime, the points to the right and
left of us are lower than the ones we are on.
Furthermore, the ridge—line may be flat, slope
upward, slope downward, curve upward, or curve
downward. A ridge occurs where there is a local
maximum in one direction. Therefore, it must have
negative second-directional derivative in the
direction across the ridge and also a zero first-
directional derivative in that same direction. The
direction in which the local maximum occurs may
correspond to either of the directions in which the
curvature is ''extremized'’, since the ridge itself
may be curved. For nonflat ridges, this leads to
the first two cases below for ridge
characterization, If the ridge is flat, then the
ridge—line is horizontal and the gradient is zero
along it. This corresponds to the third case. The
defining characteristic is that the second
directional derivative in the direction of the
ridge—line is =zero, while the second directional
derivative across the ridge—line is mnegative. A
point is therefore classified as a ridge if it
satisfies any one of the following three sets of
conditions:

(1)

Ietll # 0, <0, vf'o

(2)

li=£ll # 0, <0, vf'o

livell = o0, <0, A, =0.

2

A geometric way of thinking about the
definition for(.fidge is to realize that the
condition wvf'e 20 means that the gradient
direction (which is defined for(n?nzero gradients)
is orthogonal to the direction o ) of extremized

curvature.

2.2.4. Ravine

A ravine (valley) is identical to a ridge
except that it is a local minimum rather than
maximum in one direction. As we walk along the

ravine-line, the points to the right and left of us
are higher than the one we are on (see Fig. 2). A
point is classified as a ravine if it satisfies any

one of the following three sets of conditions:
lvell # 0, Ay >0, vt =0
or
livell # 0, 2, 5 0, ve'0® =0
or
lvell =0, 4 >0, 2, = 0.

2.2.5. Saddle

A saddle occurs where there is a local maximum
in one direction and a local minimum in a
perpendicular direction A saddle must therefore
have positive curvature in one direction and
negative curvature in a perpendicular direction.
At a saddle, the gradient magnitude must be zero
and the extrema of the second directional
derivative must have opposite signs. A point is
classified as a saddle if it satisifies the
following conditions:

Hetll =0, A *

1" ¢

0.

A flat (plain) is a
surface, as illustrated in Fig. 3.

horizontal
therefore,

simple,
It,

must have zero gradient and no curvature. A point
is classified as a flat if it satisfies the
following conditions:
Hvell =0, 2 =0, &, = 0.
Given that the above conditions are true, a
flat may be further classified as a foot or
shoulder. A foot occurs at that point where the

flat just begins to turn up into a hill., At this
point, the third directional derivative in the
direction toward the hill will be nonzero, and the
surface increases in this direction. The shoulder
is an analogous case and occurs where the flat is
ending and turning down into a hill. At this point,

the maximum magnitude of the third directional
derivative is nonzero, and the surface decreases in
the direction toward the hill. If the third

directional derivative is zero in all directioms,
then we are on a flat, not near a hill. Thus a flat

may be further qualified as being a foot or
shoulder, or not qualified at all.
2.2.7. Hillside

A hillside point is anything not covered by

It has a nonzero gradient
and no strict extrema in the directions of maximum
and minimum second directional derivative. If the
hill is simply a tilted flat (i.e., has constant
gradient), we call it a slopg. If its curvature is
positive (upward), we call it a convex hill. If
its curvature is negative (downward), we call it a
concave hill. If the curvature is up in one
direction and down in a perpendicular direction, we
call it a saddle hill.

the previous categories.

A point on a hillside is an inflection point
if it has a zero—crossing of the second directional
derivative taken in the direction of the gradient.
The inflection—point class is the same as the step
edge defined by Haralick (1982), who classifies a
pixel as a step edge if there is some point in the
pixel's area having a zero-crossing of the second
directional derivative taken in the direction of
the gradient.

To determine whether a point is a hillside, we
just take the complement of the disjunction of the



conditions given for all the previous classes.
Thus if there is no curvature, then the gradient
must be non zero. If there is curvature, then the
point must not be a relative extremum. Therefore,
a point is classified as a hillside if all three
sets of the following conditions are true ('-)'
represents the operation of logical implication):

A o=y, =0 llvell £ 0,
and (1)

xl #0 -> vf'o #0,
and (2)

Az #0 -> vf'o # 0.

Rewritten as a disjunction of clauses rather
than a conjunction of clauses, a point is
classified as a hillside if any one of the
following four sets of conditions are true:

vf'w(l) #0, vf'w(Z) #0

or

vi'o) 20, A, =0
or

vio'?) 4o, A =0
or

livell # o, Ay =0, A, = 0.

We can differentiate between different classes of
hillsides by the values of the second directional
gerivative. The distinction can be made as follows:

SLOPE if 11 = Kz =0
CONVEX if Al >= Az >=0, Al #0
CONCAVE if hl (= hz (=0, kl F0

SADDLE HILL if Al*xz <0

A slope, convex, concave, or saddle hill is
classified as an inflection point if there is a
zero—crossing of the second directional derivative
in the direction of maximum first directional
derivative (i.e., the gradient).

2.2.8. Summary of the Topographic Categories

A summary of the mathematical properties of
our topographic structures on continuous surfaces
can be found in Table 1. The table exhaustively
defines the topographic classes by their gradient
magnitude, second directional derivative extrema
values, and the first directional derivatives taken

in the directions which extremize second
directional derivatives. Each entry in the table
is either O, +, -, or ¥, The O means mnot
significantly different from zZero; + means

significantly different from zero on the positive
side; - means significantly different from zero on
the negative side, and '*' means it does not
matter. The label ’’Cannot Occur’’ means that it is
impossible for the gradient to be nonzero and the
first directional derivative to be =zero in two
orthogonal directions.

From the table, one can see that our
classification scheme is complete. All possible
combinations of first and second directional
derivatives have a corresponding entry in the
table. Each topographic category has a set of
mathematical properties that uniquely determines

it.

(Note: Special attention is re?E}red for the
dii?nerate case A, = A, # 0, where o and
© can be any two Grthogonal directions. In
this case, there always exists an extreme direction
o which is orthogonal to wvf, and thus the first
directional derivative vf'w is always zero in an
extreme  directiomn. To avoid spur{f?s zero
d%ifctional derivatiyff, we choose ?2) and
© such that vf'oe #0 and vf'o “'#0,
unless the gradient is zero.)

Table 1. Mathematical Properties of Topographic

Structures

sl 11 Xz vf'w(l) vfﬂm(Z) Label
(¢ - - [ (] Peak
0 - 0 0 0 Ridge
0 - + 0 0 Saddle
0 0 0 0 0 Flat
0 + - c 0 Saddle
0 + 0 0 0 Ravine
0 + + 0 0 Pit
+ - =,+ =+ Hillside
+ - * 0 * Ridge
+ * - . 0 Ridge
+ - 0 -+ * Eillside
+ - + -, + -,+ Hillside
+ 0 0 * ® Hillside
+ + - -,+ -,+ Hillside
+ + 0 -, + * Hillside
+ + * 0 * Ravine
+ ® o * 0 Ravine
+ + + -,+ -,+ Hillside
+ * * 0 0 Cannot Occur

2.3. The Invariance of the Topographic Categories

For a proof on the invariance of the
topographic categories {peak, pit, ridge, ravine,
saddle, flat, and hillside}, see Haralick, Watson,
and Laffey (1983), or Laffey (1983).

2.4 Ridge and Ravine Continuums

The definitions for ridge and ravine can lead
to possibly some unexpected results. For example,
all points on a right circular cone, except the
vertex, will be labeled ridge. Whether one wishes
to call these points ridge points or something else
is a matter of taste. These points are classified
as ridge points because as one walks up the cone
toward the vertex the points to the left and right
are lower than the one you are on, The continuum



of ridges may or may mnot be acceptable depending
upon your viewpoint. Further work by Haralick
(forthcoming) has partially solved this problem.

3.0 THE TOPOGRAPHIC CLASSIFICATION ALGORITHM

The definitions of Section 2 cannot be used
directly since there is a problem of where in a
pixel's area to apply the classification. If the
classification were only applied to the point at
the center of each pixel, then a. pixel having a

peak near one of its corners, for example, would
get classified as a concave hill rather than as a
peak. The problem is that the topographic

classification we are interested in must be a
sampling of the actual topographic surface classes.
Most likely, the interesting categories of peak,
pit, ridge, ravine, and saddle will never occur
precisely at a pixel’s center, and if they do occur
in a pixel's area, then the pixel must carry that
label rather than the class label of the pixzel's
center point. Thus one problem we must solve is to
determine the dominant label for a pixel given the
topographic class 1label of every point in the
pixel. The next problem we must solve is to
determine, in effect, the set of all topographic
classes occurring within a pixels's area without
having to do the impossible brute—force
computation.

For the purpose of solving these problems, we
divide the set of topographic labels into two
subsets: (1) those that indicate that a strict,
local, one-dimensional extremum has occurred (peak,
pit, ridge, ravine, and saddle) and (2) those that
do not indicate that a strict, local, one-
dimensional extremum has occurred (flat and
hillside). By one-dimensional, we mean along a
line (in a particular direction). A strict, local,
one-dimensional extremum can be located by finding

those points within a pixel's area where a zero—
crossing of the first directional derivative
occurs.

So that we do not search the pixel’s entire

area for the zero—crossing, we only search in the
directions 0{1) extreme (2)second directional
derivative, ) and o . Since these
directions are well aligned with curvature
properties, the chance of overlooking an important
topographic structure is minimized, and, more
importantly, the computational cost is small.
_ . : (1)

YE?n A=A, # 0, the directions o
and © are not uniquely defined. We handle this
case by searching for a =zero—crossing in the
direction given by H “*vf, This is the Newton
direction, and it points directly toward the
extremum of a quadratic surface.

For inflection—point location (first

derivative extremum), we search
direction for a zero-crossing of
derivative. For one—-dimensional
four cases to consider: (1) no zero-crossing, (2)
one zero—crossing, (3) two zero—crossings, and (4)
more than two zero-crossings. The next four
sections discuss these cases.

along the gradient
second directional
extrema, there are

o

<

3.1. Case One: No Zero-Crossing

If no zero-crossing is found along either of
the two extreme directions within the pixel's area,

then the pixel cannot be a local extremum and
therefore must be assigned a label from the set
(flat or hillside). If the gradient is zero, we

have a flat, If it is nonzero, we have a hillside.
If the pixel is a hillside, we classify it further
into (inflection point, slope, convex hill, concave
hill, or saddle hill). If there is a zero—crossing
of the second directional derivative in the
direction of the gradient within the pixel'’s area,
the pixel is classified as an inflection point. If
no such zero-crossing occurs, the label assigned to
the pixel is based on the gradient magnitude and
Hessian eigenvalues calculated at the center of the

pixel, local coordinates (0,0), as in Table 2.
3.2. Case Two: One Zero-Crossing
If a zero—crossing of the first directional

derivative is found within
the pixel is a strict,
extremum and must be assigned a label from the set
(peak, pit, ridge, ravine, or saddle). At the
location of the zero—crossing, the Hessian and
gradient are recomputed, and if the gradient
magnitude at the zero—crossing is zero, Table 3 is
used.

the pixel’'s area, then
local, one—dimensional

If the gradient magnitude is nonzero, then the
choice is either ridge or ravine. If the second
directional derivative in the direction of the
zero—crossing is negative, we have a ridge. If it
is positive, we have a ravine. If it is zero, we
compare the function value at the center of the

pixel, £(0,0), with the function value at the zero-
crossing, f(r,c). If f(r,c) is greater than
£(0,0), we call it a ridge, otherwise we call it a
ravine.

3.3. Case Three: Two Zero—Crossings

two zero—crossings of the first
one in each direction of
extreme curvature, then the Hessian and gradient
must be recomputed at each zero—crossing. Using
the procedure decribed in Section 3.2, we assign a
label to each zero—crossing. We call these labels
LABEL1 and LABEL2. The final classification given
the pixel is based on these two labels and is given
in Table 4.

If we have
directional derivative,

If both 1labels
given that label.

are identical, the pixel is
In the case of both labels being

ridge, the pixel may actually be a peak, but
experiments have shown that this case is rare. An
analogous argument can be made for both 1labels

being ravine. If one label is ridge and the other
ravine, this indicates we are at or very close to a
saddle point, and thus the pixel is classified as a
saddle. If one label is peak and the other ridge,
we choose the category giving wus the ’'’'most
information,’’ which in this case is peak. The
peak is a local maximum in all directiomns, while
the ridge is a local maximum in only one direction.
Thus, peak conveys more information about the image



An analogous argument can be made if the

pit and ravine. Similarly, a saddle
gives us more information than a ridge or valley.
Thus, a pixel is assigned saddle if its zero-—
crossings have been labeled ridge and saddle or
ravine and saddle.

surface.
labels are

It is apparent from Table 4 that mnot all

possible label combinations are accounted for. Some
are omitted

combinations, such as peak and pit,
because of the assumption that the underlying
surface is smooth and sampled frequently enough

that a peak and pit will not both occur within the
same pixel'’s area. If such a case occurs, our
convention is to choose arbitrarily one of LABEL1
or LABEL2 as the resulting label for the pixel.

Table 2. Pixel Label Calculation for Case Cne:
No Zero-Crossing
livell Ay A, Label
0 0 0 Flat
+ - - Concave Hill
+ - c Concave Hill
+ - + Saddle Hill
+ 0 0 Slope
+ + - Saddle Hill
+ + 0 Convex Hill
+ + + Convex Hill
Table 3. Pixel Lable Calculation for Case Two:
One Zero—Crossing
Hvell Ay Ay Label
0 - - Peak
0 - 0 Ridge
0 - + Saddle
0 + - Saddle
0 + 0 Ravine
0 + + Pit
Table 4. Final Pixel Classification, Case Three:
Two Zero—Crossings
Resulting
LABEL1 LABEL2 Label,
Peak Peak Peak
Peak Ridge Peak
Pit Pit Pit
Pit Ravine Pit
Saddle Saddle Saddle
Ridge Ridge Ridge
Ridge Ravine Saddle
Ridge Saddle Saddle
Ravine Ravine Ravine
Ravine Saddle - Saddle
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3.4. Case Four: More than Two Zero—-Crossings

If more than two zero-crossings occur within a
pixel's area, then in at 1least one of the extrema
directions there are two zero-crossings. If this
happens, we choose the zero-crossing closest to the
pixel's center and ignore the other. If we ignore
the further =zero-crossings, then this case is
identical to case 3. This situation has yet to
occur in our experiments,

4.0 SURFACE ESTIMATION

In this section we discuss the estimation of
the parameters required by the topographic
classification scheme of Section 2 using the local
cubic facet model (Haralick 1981). It is important
to note that the classification scheme of Section 2
and the algorithm of Section.3 are independent of
the method used to estimate the first—and second—
order partials of the underlying digital image-
intensity surface at each sampled point. Results
from using basis functions other than the bi-cubic
polynomial are presented in (Laffey 1983). In
these experiments the cubic model performed best.

4.1. Local Cubic Facet Model

to estimate the required partial
derivatives, we perform a least—squares fit with a
two-dimensional surface, f, to a neighborhood of
each pixel. It is required that the function f be

In order

continuous and have continuous first—and second-
order partial derivatives with respect to r and ¢
in a neighborhood around each pixel in the rc
plane.

We choose f to be a cubic polynomial in r and
¢ expressed as a combination of discrete orthogonal
polynomials, The function f is the best discrete
least-squares polynomial approximation to the image

data in each pixel’s neighborhood. More details
can be found in Haralick’s paper (1981), in which
each coefficient of the cubic polynomial is

evaluated as a linear combination of the pixels in

the fitting neighborhood.

To express the procedure precisely and without
reference to a particular set of polynomials tied
to neighborhood size, we will canonically write the

fitted bicubic surface for each fitting
neighborhood as
f(r,c) = k1 + k2r + k3°
2 2
+ k4r + ksrc + ch
3 2 2 3
+ k7r + ksr c + kgrc + kloc B

where the center of the fitting neighborhood is
taken as the origin. It quickly follows that the
needed partials evaluated at 1local coordinates

(r,c) are



2 2
—_— = kz + 2k4r + k5° + 3k7r + 2k8rc + kgc
or
ke 2 2
—_— = k3 + ksr + 2k6c + ksr + 2k9rc + 3k10°
dc
a%t
—r = 2k4 + 6k7t + 2k80
or
a%t
——— = 2k6 + 2k9r + 6kloc
dc
a%t
———= =k, + 2k, r + 2k cC
drdc d 8 ¢

It is easy to see that if the above quantities
are evaluated at the center of the pixel where
local coordinates (r,c) = (0,0), only the constant
terms will be of significance. If the partials
need to be evaluated at an arbitrary point in a
pixel's area, then a linear or quadratic polynomial
value must be computed.

5. SUMMARY OF THE TOPOGRAPHIC CLASSIFICATION
SCHEME
The scheme is a parallel process for

topographic classification of every pixel which can
be done in one pass through the image. At each
pixel of the image, the following four steps need
to be performed

Calculate the
through k. ., of

. }0_.
polynomia in an

1. fitting coefficients, k
a two—dimensional cubic

n-by-n neighborhood
around the pixel. These coefficients are
easily computed by convolving the

appropriate masks over the image.

Use the coefficients calculated in step 1
to find the gradient, gradient magnitude,
and the eigenvalues and eigenvectors of
the Hessian at the center of the pixel's
neighborhood, (0,0).

direction of the
eigenvectors calculated in step 2 for a
zerocrossing of the first directional
derivative within the pixel'’s area. (If
the eigenvalues of the Hessian are equal
and non-zero, then search in the Newton
direction.)

Search in the

the gradient, gradient

and values of second
derivative extrema at each
Then apply the labeling

described in Sections

Recompute
magnitude,
directional
zero—crossing.
scheme as
3.1——-3.4.
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6. RESULTS

In this section, we show the results
topographic classification on
imagery and aerial photographs
Image Navigation Study.

of the
some digital terrain
used in the Passive

6.1 Results on Digtial Terrain Data

In Figure 1 we show the results of the
topographic classification algorithm on digitial
terrain data which represents a roughly 4x17 mile
strip of land and ocean just east of Monterey,
California. The actual image resolution is 121x512
pixels. In Figure 1 we show the results of the
labeling for several of the categories. The top-

most shows the ravines in white, the next shows the
riges, and then the peaks are shown. On the bottom
the original grey—level picture is shown.

The algorithm shows excellent results on the
digital terrain data. The ridges and ravines
appear to be robust enough for use in a reference
topographic landmark database. Sensed topography
would be matched against the reference database for
navigation purposes.

6.2 Results on Aerial Photographs

In figure 2 and 3 we show the
classifier on a set of aerial photographs. it
seems evident that ravines, ridges, and hillsides
(slopes) could serve as reference data in an
intensity landmark database. Exactly  which
topographic categraphic are reliable and how they
should be linked together and pruned remains a
topic of future research.

results of the

7. CONCLUSIONS

In this paper, we have given a precise
mathematical description of the various topographic
structures that which occur in a digital image and

have called the classified image the topographic
primal sketch. Our set of topographic categories
is invariant under gray  tome, monotonically
increasing transformations and consists of (peak,
pit, ridge, ravine, saddle, flat, and hillside),
with hillside being broken down further into the

subcategories inflection point, slope, convex hill,
concave hill, and saddle hill,. The hillside
subcategories are not invariant under the monotonic
transformations.

label assigned a pixel is
based on the pixel's first—and second—-order
directional derivatives. VWe use a two—dimensional
cubic polynomial fit based on the local facet model
to estimate the directional derivatives of the
underlying gray tone intensity surface. The
calculation of the extrema of the second
directional derivative can be done efficiently and
stably by forming the Hessian matrix and
calculating its eigenvalues and their associated
eigenvectors. Strict, local, one—dimensional
extrema (such as pit, peak, ridge, ravine, and
saddle) are found by searching for a zero—crossing
of the first directional derivative in the
directions of extreme second directional derivative

The topographic



of the Hessian), We have also

direction of interest, the
which points toward the extremum
The classification scheme
results on a number

(the eigenvectors
identified another
Newton direction,
of a quadratic surface.
was found to give satisfactory
of test images.

7.1. Directions for Further Research

on the topographic primal
to (1) develop better basis
functions, (2) make use of fitting error, (3) find
a solution for the ridge (ravine) continuum
problem, and (4) develop techniques for grouping of
the topographic structures. Rasis functions wortk
considering include trigonometric polynomials,
polynomials of higher order, and piecewise
polynomials of lower order than cubic. The basis
functions problem is to find a set of basis
functions and an associated inner product for
least—squares approximation that can correctly
replicate all common image surface features and be
simultaneously computationally efficient and
numerically stable. Fitting error needs to be used
in deciding into which class a pixel falls. Noise
causes the fitting error to increase, and increased
fitting error increases the wuncertainty of the
labeling. Also, global knowledge of how the
topographic structures fit together could be used
to correct the misclassification error caused by
noise. The way the neighborhood size affects the
surface fitting error and the classification scheme
needs to be investigated in detail.

Further research
sketch needs to be done

The ridge (ravine) continuum problem needs to

be solved. It may be that there is mno way to
distinguish between a true ridge and a ridge
continuum wusing only the values of partial
derivatives at a point. The solution may require

complete use of the partial derivatives in a local

area about the pixel.

Most important for the use of the primal
sketch in a general robotics computer vision system
is the development of techniques for grouping and
assembling topographically labeled pixels to form
the primitive structures involved in higher—level
matching and correspondence processes. How well can
stereo correspondence or frame-to—frame time—
varying image correspondence tasks be accomplished
using the primitive structures in the topographic
primal sketch? How effectively can the topographic

sketch be wused in undoing the confounding effects
of shading and shadowing? How well will the
rrimitive structures in the topographic sketch

perform in the two—dimensional to three—dimemnsional
object matching process?
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