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Abstract

A complete mathematical treatment is given for
describing the topographic classification for the
underlying grey tone intensity surface of a digital
image. Each picture element is independently
classified into a unique descriptive label from the
set [ peak, pit, ridge, ravine, saddle, flat,
slope, convex hill, concave hill, and saddle hill }

based on the first and second directional
derivatives of the estimated image intensity
surface. A local facet model two—dimensional cubic
polynomial fit is dome to estimate the image
intensity surface.
1.0 Introduction
Describing the fundamental structure of a

digital image is a primary problem encountered in
any computer vision system. Information in an image
is captured in the form of its light intensity
variations. These light intensity variations must
be used to explain the orientation and reflectance
of the surfaces on the objects being imaged. We
believe that the classification the image
intensity surface into a set of
topographic types will be a in this
regard,

of
complete
definite aid

The facet model states that all processing of
digital image data has its final authoritative
interpretation relative to what the processing does

to the underlying grey tone intensity surface, The
digital image pixel values are noisy sampled
observations of the underlying surface. Thus, in
order to do any processing, we at least have to
estimate at each pixel position what this
underlying surface is. This requires a model which
describes what the general form of the surface

would be in the neighborhood of any pixel if there
were no noise. To estimate the surface from the
neighborhood around a pixel then amounts to
estimating the free parameters of the general form.
It is important to note that if a different general
form is assumed, then a different estimato of the
surface 1is produced. Thus the assumption of a
particular gemeral form is necessary and has
consequences.
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The general form we use is a bivariate cubic.
We assume that the neighborhood around each pixel
is suitably fit by a bivariate cubic. Having
estimated this surface around each pixel, the first
and second directional derivatives are easily
computed by analytical means. The topographic
classification of the surface facet is totally
based on the first and second directional
derivatives. We classify each surface point as
peak, pit, ridge, ravine, saddle, flat, slope,
convex hill, concave hill, or saddle hill. Our set
of ten topographic labels is complete in the sense
that they are able to describe any topographic
structure which may ocecur on a digital image
intensity surface.

1.1 Previous Work
Detection of topographic structures in a
digital image is not a new idea. There have been a

wide variety of techniques described to detect
pits, peaks, ridges, ravines, and the like.

Lee and Fu (1981) define a
templates which they comvolve over
give each class, except plain,
plain. Their set of

set of 3X3

the image to
a figure of merit.
labels include {none, plain,
slope, ridge, valley, foot, shoulder}. Thresholds
are used to determine into which class the pixel
will fall. In their scheme a pixel may satisfy the
definition of zero, one, or more than one class.
Ambiguity is resolved by choosing the class with
the highest figure of merit.

Toriwaki and Fukumura (1978) take a totally
different approach from all the others. They use
two local features of grey—level pictures,

connectivity number and coefficient

for classification of the pixel into
ridge, ravine, hillside, pass].
how to extract structural information from the
jmage once the labelings have been made . This
structural information consists of ridge-lines,
ravine—lines, and the like.

of curvature,
{peak, pit,
They then describe

Grender's (1976) anlgorithm compares the grey
level elevation of a central point with surrounding
elevations at a given distance around the perimeter
of & circular window and the radius of the window
may be increased in successive passes through the
image . His topographic labeling set consists of
{slope, ridge, valley, knob, sink, saddle}.

Paton (1975) uses a six term quadratic
expansion in Legendre polynomials fitted to a small



disk around each pixel. The most significant
coefficients of the second order polynomial yield a
descriptive label chosen from the set [constant,
ridge, valley, peak, bowl, saddle, ambiguous}. He
uses the continuous least squares fit formulation
in setting up the surface fit equations as opposed
to the discrete least squares fit used in the facet
model, The continuous fit is a more expensive
computation than the discrete fit and results in a
step-like approximatiomn.

Johnston and Resenfeld (1975)
peaks by finding all points P such that no points
in an n-by-n neighborhood surrounding P Thave
greater elevation than that of P. Pits are found in
an analagous manner. To find ridges, they identify
points that are either east-west or north—south
elevation maxima. This is done using a ’smoothed’
array in which which each point is given the
highest elevation in a 2X2 square containing it,
and on this array also, east—-west and north-south
maxima are found. Ravines are found in a similar
manner.,

attempt to find

Peuker and Johnston (1972) take a similar
approach and characterize the surface shape by the
sequence of positive and negative differences as
successive surrounding points are compared to the
central point. Peuker and Douglas (1975) describe
several variations of this method for detecting one

of the shapes (pit, peak, pass, ridge, ravine,
break, slope, flat). They start with the most
frequent feature (slope) and proceed to the less
frequent, thus making it an order—dependent
algorithm.

1.3 A Mathematical Approach

From the previous discussion one can see that
a wide variety of methods and labels were proposed
to describe the topographical structure in a
digital image. Some of the methods require multiple
passes through the image while others may give
ambiguous labels to a pixel. All these methods are
heuristic in nature.
describe a local, parallel,
which each pixel is given a
unique label from the set [ peak, pit, ridge,
ravine, saddle, flat, slope, convex hill, concave
hill, and saddle hill } based on the first and
second directional derivatives of the estimated
grey tone intensity surface.

In this paper we
one—-pass method in

2.0 The Directional Derivative Pixcl Classifier

Our classification approach is based on the
¢stimation of the [first and second ordoer
directional derivatives at each sampled point. We
regard tho digital picture function as o sampling
of the underlying function f, where somc kind of
random noise is added to the true function values,

To do this, our classifier must assume some kind of

parametric form for the underlying function £, use
the sampled brightness values of the digital
picture function to estimate the parameters, and

finally make decisions regarding the locations of
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relative extrema of partial derivatives based on
the estimated values of the parameters. In Section
2.1 we discuss the directional derivative. In
Section 2.2 we define the basis of the topographic
classification in terms of the directional
derivative. In Section 3 we give the details of the
implementation of the classifier.

2.1 The Directional Derivative

of a
the
in

In two dimensions, the rate of change
function f depends on direction, We denote
directional derivative of f at the point (r,c)
the direction B by fé(r,c). It is defined as

f(r+h*sinf,c+h*cosP)

fé(r.C) = lim
h=->0 h

The direction angle P is the clockwise angle from
the column axis. It follows directly from this
definition that

fé{r.c) = 38f(r,c) * sinp + 8f(r,c) * cosP
or dc

We denote the second derivative of f at the point
(r,¢) in the direction B by fé‘(r,c) and it
follows that

8%t 8%t a2t

fé’= ~~£*sin B + 2%¥———*sinfi*cosp + ——E*coszﬁ
or drdc dc

The gradient of f is a vector whose magnitude,

¢ (af/am)? + (af/ac)? )12,

at a given point (r,c) is the maximum rate of

change of f at that point, and whose direction,
tan”1( (3f/ar) / (3E/ac) ),

is the direction in which the surface has the

greatest rate of change.

2.2 The Classification Scheme

We will use the following notation to describe the

classification scheme. Let

vi = Gradient vector of a function f
llv£]l| = Gradient magnitude
(1) o " . . ; :
w = direction in which second directional
derivative has greatest magnitude
(2) _ s 3 2 ’
w = direcction in which socond dircctional
derivative has least magnitude
li = value of second dirccsi?nal derivative
in the dircction of w
kz = value of second direc{i?nal derivative

in the direction of w



(1)

¥f'w = value of first direct%iTal derivative

in the direction of w

(2)

vi'w = value of first ditect%gyal derivative

in the direction of

Without loss of generality, we assume Ikll y= ]kzl,
Each type of topographic structure in our
classification scheme is defined in terms of the
above quantities. In order to calculate these
values, the first and second order partials with
respect to r and ¢ need to be approximated. These
five partials are listed below:
af/ar, af/dec, ﬁzf/arz,
a2/0c2, a%t/ordc
The gradient vector is simply
(af/ar,af/dc). The second directional
derivatives may be calculated by forming the

Hessian where the Hessian is a 2X2 matrix defined

as:
| 8%¢/ar a%¢/arac |
s | 8%¢/arac  8%t/ac” }

The eigenvalues of the Hessian are the values

of the extrema of the second directional

derivative, and their associated eigenvectors are
the directions of the extrema. Thus,

(1) (2) (2)
(]

Hm(lJ = ll and Ho = Azw i

Since H is a 2X2 symmetric matrix, calculation of
the eigenvalues and eigenvectors can be done
efficiently using the method of Rutihauser (1971).
We may obtain the values of the first directional
derivative in the direction of either extrema of

the second directional derivative by simply taking

the dot product of the gradient with the
appropriate eigenvector:

wi - oD

~vf m(z)

derivative
in detail

Each category in the directional
classification scheme will be discussed
in sectioms 2.2.1 to 2.2.7.

2.2.1 Peak
A peak (knob) occurs where there is a local
maxima in all directions, In other words, we aro

if no matter what diroction
we soo no point  that is-ns high ns tho ono we nro
on illustrated in Figuro L, The curvaturoe is
downward in all directions, At a peak the gradient
is zero and the second directional derivative is
negative in all directions, To test whether the
second second directional derivative is negative in
all directions, we just have to examine the value
of the second directional derivative in the

on n poak we look in,

ns
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directions which make it smallest and largest, A
pixel is therefore classified as a peak if the
following conditions are true:

[lvell =0, &, ¢ 0, &, ¢ 0.

1 2

Figure 1:

Peak Surface

2,2.2 Pit

A pit (sink, bowl) 1is identical to a peak
except it is a local minima in all directions
rather than a local maxima, At a pit the gradient
is zero and the second directional derivative is
positive in all directions. A pixel is classified
as a pit if the following conditions are true:

[lvell =0, &, > o, A, > 0.

1
2.2.3 Ridge

A ridge occurs on a ridge-line, a
consisting of a series of ridge points.
along the ridge-line the pixels to the
left of us are lower than the ones
Furthermore, the ridge—line may be
upward, sloped downward, curving upward, or curving
downward. A ridge occurs where there is a local
maximum in one direction as illustrated in Figure
2. It, thereofore, must have negative curvature in
that diroction and also N rero directionnl

curve
As we walk
right and
we are on,
flat, sloped



derivative in that same direction. A pixel is 2.2.5 Saddle
classified as a ridge if any ome of the following

three sets of conditions are true: A saddle occurs where there is a local maximum
in one direction and a local minimum in a
llvell =0, ll <0, Lz =0 perpendicular direction as jllustrated in Figure 3.
It, therefore, must have positive curvature in one
or direction and negative curvature in a perpendicular
i direction. At a saddle the gradient magnitude must
l1v£l1 # 0, ll <0, vif'w =0 be zero and the extremas of the second directional
derivative must have opposite signs. A pixel is
or classified as a saddle if the following conditions

are true:

Hvell # 0, %, <O, rrol? =0
vt =0, a2, < 0.

"hﬁﬁ%ﬂﬂnzmr
7
¥ p‘"l‘fffﬁ

L7
e

i

Figure 2: Ridge-Line

2.2.4 Ravine Figure 3: Saddle Surface
A ravine (valley) is identical to a ridge
except it is a local minimum in one direction
rather thean maximum. As we walk along the ravine— 2.2.6 Flat
line, the pixels to the right and left of us are
higher than the one we are oOn. A pixel is A flat (plain) is a simple, horizontal surface
classified as a ravine if any one of the following as illustrated in Figure 4. It, therefore, must
three sets of conditions are true: have zero gradient and no curvature. A pixel is
classified as a flat if the following conditions
[lvell =0, A, >0, 4y =0 are trbe?
ox vgll =0, A, =0, &, =0
T O §
Hvell # 0, l1 > e xk m( ’ - 0 Given that the above conditions are true, a
. flat may be further classified as a foot or =8
o shoulder. A foot occurs at that point where the
flat just begins to turnm up into a hill, At this
lvell # 0, 12 > 0, vf'm(?') =0 point, the third directional derivative in the

direction towards the hill will be nonzero and the
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surface increases in this direction. The shoulder
is an analagous case and occurs where the flat is
ending and turning down into a hill. At this point,
the maximum magnitude of the third directional
derivative is nonzero, and the surface decreases in
the direction towards the hill. If the third
directional derivative 1is zero in all directions
then we are on a flat, not near a hill. Thus a flat
may be further qualified as being a foot or
shoulder, or not gualified at all.

Sloped Surface

Figure 4:

2.2.7 Hillside

A hillside is
previous categories,

anything not covered by the

It has a non—zero gradient
and no strict extrema in the directions of maximum
and minimum second directional derivative. If the
hill is simply a tilted flat (i.e, has constant
gradient), we call it a slope. If its curvature is
upward, we call it a convex hill. If its curvature
is down, we «call it a conmcave hill. If the
curvature 1is up in one direction and down in a
porpondicular direction, wo canll It a saddle hill.
A snddle hill is illustrnted in Flgure 3, and tho
slopo, convex hill, and concave hill aro
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illustrated in Figure 4, A pixel is classified as
a hillside if all the following conditions are true
(it represents the operation  of logical
implication):

A=, =0 lleell #0
and
ll £ 0 —)-vf'w(l) #F0
and
(2) £0

12 0 ->vf'w

We can differentiate between the different types of
hillsides by the wvalues of of the
second directional derivative. The distinction can
be made as follows:

the extrema

SLOPE  if ll =i, =0,

2

CONVEX if ll Y= A, 2=

2 0, ll #0,

CONCAVE if 11 (=1, <=0, kl £ 0,

2

SADDLE if A_*x, ¢ 0.
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A slope may occur where the curvature is
changing from positive to negative or vice-versa.
This is also known as an inflection point. A slope
may also occur where the gradient is constant, just
a plain tilted at some angle. A slope is different
from the step edge defined by Haralick (1982).
Haralick classifies a pixel as a step edge if there
is some point in the pixel's area having a zero-
crossing of the second directional derivative taken
in the direction of the gradient. The set of pixels
called step edges has a non—empty intersection with
the set we «call slope, but mneither set is
completety contained in the other.

2.2.8 Summary of Classifier

A summary of the classification criteria can
be found in Table 1. The first column in the table
is the gradient magnitude and it must be
negative since we are taking the positive square
root. The next two columns represent the values of
the extrema of the second directional derivative,
The fourth and fifth columns represent the values
of the first directional derivative in the
direction of the extrema of the second directional
derivative. The '+', '0', and '=' represent that
the wvalue is positive, Z€ro, or negative,
repectively. The '*' means it does not manner, it
may take on any value. 'The [inal column is Lhe
classifleation tho plixol s given il all tho

non—



preceding conditions are met.

Pixel Classification Scheme

[ Ivell kl l2 vf'm(l) vf'mcz] Label

0 e = 0 0 Peak

0 - 0 0 0 Ridge

0 = + 0 0 Saddle

0 0 0 0 0 Flat

0 + = 0 0 Saddle

0 + 0 0 0 Ravine

0 + + 0 0 Pit

+ - -+ =¥ Concave Hill

+ - * 0 * Ridge

+ * - » 0 Ridge

+ = 0 .+ * Concave Hill

+ - + iy =yt Saddle Hill

+ 0 0 * * Slope

+ & - =t =t Saddle Hill

+ + 0 i * Convex Hill

+ + * 0 * Ravine

+ * + * 0 Ravine

* * * =t -,+ Convex Hill

Table 1
From the table, one can see that our

classification scheme is complete. All possilble
combinations of first and second directional
derivatives have a corresponding entry in the

table, Each pixel is given a unique label from the
set of topographic labels.

3.0 Implementation

In this section we discuss the implementation
of the classification scheme wusing the local facet
model (Haralick,1981). It is important to mnote
that this scheme is general enough that any method
which can approximate the first and second order
partials of the underlying digital image intensity
surface at each sampled point may be wused to
implement the classifier.

3.1 Local Cubic Facet Model

In order to estimate the required partial
derivatives we perform a least squares fit with a
two dimensional surface, f, to a neighborhood of
each pixel. It is required that the function f be

continuous and have continuous first and second
order partial derivatives with respect to'r and ¢
in a neighborhood around ecach pixel in the rc=
plane.

We choose f to be a cubic polynomial in r and
¢ expressed as a combination of discrete orthogonal
polynomials. The function f is the best discrete
least squares polynomial approximation to the image
data in a neighborhood of each pixel. More details
can be found in Haralick (1980). For a pixel with
local coordinates (r,c¢) = (0,0), let
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flr,c) =k, + k.r + k_c

1 2 3
2 2
+ k4r + ksrc + kﬁc
3 2 2 3
+ + +
k?r ksr c kgrc + kloc

It quickly follows that the needed partials
evaluated at the center of the neighborhood, (0,0),
are:

at/or =k,
af/ac = k3
atisaz? 2,
O Y
6
2
d“f/drdec = k5

Using the cubic facet we have:

vf=(%k , k, )

2’ 3
_ 2 2 .1/2
Ivel]l = ( kG #'kg )
H = | 2k ko |
4
| kg zﬁﬁ |

Once the two eigenvalues and two eigenvectors

of the Hessian are calculated, a pizel is
classified by finding the appropriate entry in
Table 1. Thresholds are wused to determine if a

value is negative, positive, or zero.

3.2 Summary of Implementation

In Section 3.2 we described a local, parallel
process for pizel classfication which can be done
in one pass through the image. At each pixel of
the dimage the followinpg three steps need to be
performed:

(1) Calculate the coefficients of a two—
dimensional cubic polynomial in an n-by-

n neighborhood around the pixel. Only
coefficients k,_, through k_ are needed
and they are <calculated by convolving

the appropriate masks over the image.
Use the coefficients calculated in step
1 to find the gradient, gradient
magnitude, and the eigenvalues and
eigenvectors of the Hessian.
Classify the pizxel by finding
appropriate entry in Table 1.

(2)

(3) the

4.0 Conclusions

Tn this paper
mathematical description
topographical structures which occur in
Our complecte of
categories consists of {peak, pit, ridge, ravine,
saddle, flat, slope, convex hill, concave hill, and
saddle hilll. We have shown that a pixel may be
classified based on its first and second order
directional derivatives, The directional derivative
classifier assigns a unique label to each pixel. We

we  hove given o

of the

precise
various
a digital
topographical

image. set



cubic polynomial fit based
model to estimate the
of the underlying grey tone
It found that the
extrema of the second
directional derivative can be done efficiently by
forming the Hessian matrix and calculating
eigenvalues and their associated eigenvectors.
classification scheme was found to give
satisfying results on a number of test images.

use a two—dimensional
on the 1local facet
directional derivatives
intensity surface,
calculation of the

was

its
The
very

Much further work needs to be done in this
area. Different types of surface fitting need to be
attempted, including polynomials of higher order.
The fitting error needs to be taken into account
when trying to decide into which class a pixel
falls. Global knowledge of how these type of
structures fit together could be used te undo the
misclassification error due to noise. How the
neighborhood size affects the surface fit and the
classification scheme needs to be investigated., It
is in these areas that future work will be
directed.
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