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Abstract

An image is never noise free. Visual inspection of a part
from its image is therefore affected by image errors. Un-
derstanding how image errors affect measurement precision
is therefore critical for accurate inspection. In this paper,
we lay out a statistical framework that allows to explicitly
handle image errors and characterize their impact on mea-
surement precision. A hierarchical model is also proposed
to model manufacturing and measurement errors. Based on
the model, a Bayesian technique is introduced to statisti-
cally infer the geometric tolerances of a manufactured part.

1 Introduction

Geometric tolerancing of machined parts requires first
constructing tolerance zones from the data points and then
inferring the geometric tolerances from the constructed tol-
erance zones. Since an image is never noise free, the noise
associated with the data points affects the precision of the
constructed tolerance zones, which, in turn, affects the pre-
cision of the tolerance measurements. Existing methods as-
sume that the constructed tolerance zones are noise free.
Image errors may arise from different sources. These errors
collectively cause positional inaccuracies to image points.
In this paper, we introduce a framework that allows to sys-
tematically propagate positional errors with image points to
the constructed tolerance zones and then to the computed
tolerance measurements. Given the uncertainty associated
with each tolerance measurement, we present a Bayesian
approach to statistically infer the true tolerance measure-
ment.

2 Estimating Uncertainties of Tolerance
Zones via Covariance Propagation

In this section, we first briefly introduce Haralick’s co-
variance propagation theory and then show how to use it

to estimate uncertainties with constructed tolerance zones.
The tolerance zones considered here are composed of lines
and circles. Understanding how image errors affect the pa-
rameters of lines and circles is important since the final tol-
erance measurements are derived from these parameters.

2.1 Covariance Propagation Theory

Haralick [1] recently proposed an analytic technique
based on linearization for propagation of errors from input
to output. LetX̂N�1 = (X̂1 X̂2 : : : X̂N )

t be the observed
input and�̂K�1 = (�̂1 �̂2 : : : �̂K)t be the calculated output
parameters.̂� is determined by minimizing a scalar func-
tion F (X̂; �̂). Then the input perturbation��X and the
output perturbation��� are related via
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whereg(X;�) = @F (X;�)
@� andX and� are the ideal input

and output parameters.

2.2 Covariance Propagation for Least-
Squares Line Fitting

Let X̂ = (X̂1; : : : ; X̂N) be a vector of coordinates
of image points. We want to fit a line with parameter
� = (�; �) to points in X̂. AssumeX̂n = (x̂n; ŷn),
wheren = 1; : : : ; N , results from perturbing ideal point
Xn = (xn; yn) lying on a line determined by� in the di-
rection perpendicular to the fitted line. The scaler criterion
functionF that needs to be minimized in order to compute
�̂ from X̂ can be defined as

F (�̂; X̂) =

NX
n=1

(x̂ncos�̂ + ŷn sin �̂ � �̂)2



PluggingF into equation 1 leads to the covariance matrix
of the estimated line parameters as
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where�2 is the perturbation associated with each input
point, and

�k =
1

N

NX
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kn S2k =

NX
n=1

(kn � �k)
2

andkn is the distance between point(xn; yn) and a point on
the line closest to the origin. Detailed derivations and geo-
metric interpretation of the above equation may be found in
[2].

2.3 Covariance Propagation in Least-
Squares Circle Fitting

Let X̂ = (X̂1; : : : ; X̂N) be a vector of image points
that we want to fit a circle to. Let̂Xn = (x̂n; ŷn); n =
1 : : :N , be the observed points, the noisy instances of un-
perturbed pointsXn = (xn; yn). Assume(x̂n; ŷn) are per-
turbed by iid Gaussian noise such thatX̂n is distributed as
N(Xn; �

2I).
Given a circle expressed by the equation

f(x; y;�) = (x� a)2 + (y � b)2 �R2 (3)

the least-squares parameter estimate�̂ = (â b̂ R̂)t for � =
(a b R)t is obtained by minimizing

"2 =
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Substituting the above equation into equation 1 leads to
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wheresn = (xn � a) andtn = (yn � b).

3 Impact of Image Errors on Tolerance Mea-
surements

Assume we want to measure the straightness of an edge.
According to ANSI standards [3], the tolerance zone for

measuring the straightness of an edge consists of two par-
allel lines. Using the least-squares fitting method, we can
fit a line to the edge points(x̂n; ŷn), wheren = 1; : : : ; N ,
yielding the best fitted line(�̂; �̂). Assume points(x̂i; ŷi)
and(x̂j ; ŷj) have the maximum and minimum distance to
the best fitted line respectively, then the tolerance measure-
mentm̂ for the straightness is given by

m̂ = (x̂i � x̂j) cos �̂ + (ŷi � ŷj) sin �̂

Linearizing the above equation around�̂ yields

�2m = [(ŷi � ŷj) cos �̂ � (x̂i � x̂j) sin �̂]
2�2� (7)

where�2� is the variance of the estimated line orientation pa-
rameter, which can be obtained from equation 2.�2m char-
acterizes the precision of the straightness tolerance mea-
surement due to image errors.

Assume again we want to measure the circularity or
roundness of a machined circular feature. The tolerance
zone for the measure of circularity of two dimensional
data consists of two concentric circles, one representing
the smallest circumscribing circle and the other represent-
ing the largest inscribed circle. The radius difference of the
two circles measures the roundness of the circular feature.
Using the least-squares fitting method, we can fit a circle to
the edge points(x̂n; ŷn), wheren = 1; : : : ; N , yielding the
best fitted circle(â; b̂; R̂), where(â; b̂) andR̂ are the center
and radius of the best fitted circle. Assume points(x̂i; ŷi)
and(x̂j ; ŷj) have the maximum and minimum distance to
the center of the best fitted circle respectively, then the cir-
cularity tolerance measurementm̂ is

m̂ =

q
(x̂i � â)2 + (ŷi � b̂)2 �

q
(x̂j � â)2 + (ŷj � b̂)2 (8)

Linearizing the above equation around(â; b̂) yields

�2m = (A B)�(a;b)(A B)t (9)

whereA = @m̂
@a

, B = @m̂
@b

, and�(a;b) is the covariance
matrix of the center of the best-fitted circle. It can be ob-
tained from 5. Here�2m characterizes the precision of the
circularity measurement due to image errors.

4 Statistical Tolerance Inference

Given a part geometry, the vision inspection algorithm
outputs a tolerance measurementm̂. m̂ contains two
sources of errors: the manufacturing error� and the mea-
surement error�. These two sources of errors, however, are
indistinguishable from one another when the only informa-
tion is from image. Letm be the unknown tolerance mea-
surement of a part geometry in the absence of measurement
errors. Herem only contains manufacturing error. Let�



be the ideal tolerance measurement obtained in the absence
of both measurement and manufacturing errors, thenm̂, m,
and� may be related by the following hierarchical model:

m = �+ � m̂ = m+ � (10)

where� and� are assumed to be independent Gaussian ran-
dom variables with zero mean and variance of�2t and�2m
respectively, where�2m can be obtained through error prop-
agation as discussed in the last section and�2t may be esti-
mated from the machine specification.

Let t be the required tolerance limit and̂m be a toler-
ance measurement from the vision system, we want to com-
puteP (m < tjm̂) i.e., the probability that the true toler-
ance measurementm is in-spec given the observed toler-
ance measurement̂m.

Using Bayes theorem and hierarchical model in equation
10, we can show that the posterior probability ofm givenm̂
follows a Gaussian distribution with mean of� and variance
of �2, where

� =
��2m + m̂�2t
�2m + �2t

�2 =
�2m�

2
t
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i.e,mjm̂ � N(�; �2). As a result, we have

P (m < tjm̂ < t) = �(
t� �

�
) (11)

where�(x) is the cumulative distribution of a standardized
normal distribution at x.

Define� to be the probability required to declare a tol-
erance measurement in spec. and letm� be such that
�(m�) > �. From the Bayes theorem, we havet��

�
> m�

if P (m < tjm̂) > �. In other words, to ensure a measured
tolerance is in-spec,� < t� �m�.

With this, the theoretical misdetection (�) and false
alarm (�) rates can be defined as follows letm0 = t��m�,
then we have

� = P (� < m0jm > t)

=
P (� < m0)[1� P (m < tj� < m0)]

1� P (m < t)
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Similarly, the false alarm rate can be computed as

� = P (� > m0jm < t) = 1� P (� < m0jm < t)

= 1�
Z t

m=0
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C�m
)dm (12)

whereC =
��2

m

�2
m
+�2

t

andD =
�2
t

�2
m
+�2

t

5 Conclusions

In this paper, we described a framework that allows ex-
plicitly handle positional errors with image pixels and char-
acterize their impact on precision of tolerance measure-
ments. Also presented is a hierarchical model for model-
ing manufacturing errors and measurement errors. Based
on the model, a Bayesian technique is introduced to statisti-
cally infer the geometric tolerances of a machined part and
to theoretically compute the misdetection and false alarm
rates of the inspection system.
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