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ABSTRACT

A complete mathematical treatment is given
for describing the topographic primal sketch of
the vnderlying grey tome intenmsity surface of a
digital image. Each picture element is
independently olsssified and assigned a unique
dosoriptive label and possibly an orientation
direction, both of which are invarisnt nunder
monotonically incressimg gray tome tramsformations

from the set (peak, pit, ridge, ravime, saddle,
flat, and hillside), with hillside having
subcatogories (infleotion point, slope, convex
hill, oconcave hill, and saddle hill), The

topographio olassification is based on the first
and  second directionmal derivatives of the
estimated image intemsity surface. A local, facet
model, two~dimensional, oubic polynomial fit is
done to estimate the image intemsity surface.
Zero-crossings of the first or second directional
derivative are identified as locatioms of interest
in the image.

1. INITRODUCTION

fundamental structure of a

Representing the

digital image in a rich and robust way is a
primary problem encountered in any general
robotics computer-vision system that has to

''understand’’ an image. The richness is needed
80 that shading, highlighting, sad shadow
information, which are usually present in real
manufacturing assembly line situationms, are
encoded, Richness permits unambiguous object
mstching to be acoomplished. Robustness is needed
80 that the representation is invariant with
respect to momotomically inmoreasing gray tone
transformations. Current representations
involving edges or the primsl sketoh as desoribed
by Marr (1976; 1980) are impoverished im the sense
that they are insufficient for uasmbiguouns
matching. They also do mot have the required
iavariance, Basic research is needed to (1)
define an appropriate represeatation, (2) develop
a theory that establishes its relationship to
properties that three-dimensional objects manifest
on the image, sad (3) prove its wutility in
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practice. Until this is dome, computer—vision
research must inevitably be more ad hoc

sophistication than science.

The basis of the topographic primal sketch
consists of the classification and grouping of the
underlying image intensity surface patches
sccording to the categories defined by momotonic,

gray tonme, invariant functioms of directionmal
derivatives, Exsmples of such categories are
pesk, pit, ridge, ravine, saddle, flat, and
hillside. Associated with the hillside category
is the gradiemt direction. Associated with the
ridge and valley category is the direction
extremizing curvature, Ve call this
sepresontation the topographic primsl sketch.

Vhy do we believe that this topographiec
primal sketoch ocanm be the basis for computer

" vision? We believe it because the light-intensity

variations om an image are caused by an object’s
surface oriemtation, its reflectance, and
oharscteristics of its lighting source. If any of
the three—dimensional intrinsic surface
oharacteristics are to be detected, they will be
dotected owing to the nature of light-intensity
veriations. Thus, the first step is to discover a
zobust representation that can emcode the nature
of these light-intensity variations, s
representation that does not change with strength
of lighting or with gein settings on the semsing

oamera. The topographic classification does just
that. The basic research issue is to define a2 set
of ocategories sufficiently ocomplete to form
groupings and struotures that have stromg
relationships to the refleotances, surface
orientations, snd  surface positions of the

three~dimensional objeots viewed in the image .

Ihe Invaziance Requirement

A digital image ocam be obtained with a
variety of semsing-camera gain settings. It can be
visuslly enhsnced by an appropriate adjustment of
the camera’s dymamic range. The gain setting or
the eahancing poimt operator changes the image by
some monotomically increasing fumetion that is not
nocessarily linmear. For example, noalimear
onhanoing point operators of this type inelude
histogrem mnommalization and equal probability
euaatisation

..

1.41.

In visual perception, exsotly the same visual
interpretation and uhg-tnﬂq of a pictured
Scone ocopurs whether the camera’s gain setting is




low or high and whether the image is omhanced or
unonhanced. The only difference is that the
enhanced image has more conmtrast, is aicer to look
at, and is ounderstood more quickly by the human
visual system,

This fact is important because it suggests
that many of the curreat, low-level
computer~vision techniques, which are based on
edges, camnnot ever hope to have the robustness
sssociated with human visual perception. They

camnot have the robustness, because they are
isherently incapable of invarisnce under momotonic
transformations. For example, edges based om
rero-crossings of second derivatives will change
in  position as the monotonic gray  tonme
transformation changes because convexity of a gray
tone intensity snrface is not preserved under such
transformations, However, the topographic
categories peak, pit, ridge, valley, saddle, flat,
aad hillside with their associated directions do
have the required invariance.

1.2. Faget Model

The facet model states that all processing of
digital image data has its final authoritative
isterpretation relative to what the processing
does to the underlying gray tone intensity
surface. The digital image's pixel values are
moisy sampled observations of the underlying
surface. Thus, in order to do any processing, we
at least have to estimate at each pixel positiom
what this underlying surface is. This requires a
model that describes what the general form of the
surface would be in the neighborhood of any pixel
if there were no noise. To estimate the surface
from the meighborhood around a pixel then amounts
to estimating the free parameters of the general
form. It is important to note that if s different
gomeral form is assumed, then a differenmt estimate
of the surface is produced. Thus the assumption of
8 particular general form is necessary and has
consequences,

The goneral form we use is a bivariate oubic,
We assume that the neighborhood around each pixel
is suitably fit by a bivariate oubic (Haralick
1981;1982) . Having estimated this surface around
each pixel, the first and second directional
derivatives are easily computed by analytic means,
The topographic classification of the surfsce
facet is based totally on the first and second
directional derivatives, We classify each surface
point as peak, pit, ridge, ravine, saddle, flat,
or hillside, with hillside being broken down
further into the suboategories infleotion point,
convex hill, comcave hill, saddle hill, and slope.
Our set of topographic labels is complete in the
sonse that every ocombinstiom of values of the
first and second directionsal derivative s
uniquely assigned to one of the classes.

1.3. Sumeery

Our classification approach is based on the

-

estimation of the first—and second-order
directional derivatives. Thus, we rogard the
digital-picture function as a sampling of the
underlying function f, where some kind of random
noise is added to the true functiom values. To
estimate the first and second partials, we must
assume some kind of parametric form for the
underlying function f. The classifier must use
the sampled brightness valunes of the

digital-picture fuaction to estimate the
parameters and then make decisions regarding the
locations of relative extrema of partial
derivatives based on the estimated values of the
parameters,

In Section 2, we will discuss the
mathematiocal properties of the topographic
structures in terms of the directional derivatives
in the continuous surface domain. Because a
digital image is a sampled surface and each-pixel
has an area associated with it, characteristic
topographic structures may occur anywhere within a
pixel’s area. Thus, the implementation of the
mathematical topographic definitions is not
entirely trivial.

In Section 3, we will discuss the local cubic
estimation scheme. In Section 4, we will show
the results of the classifier on several test
images,
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In this section, we formulate our notiom of
topographic structures on continuous surfaces and
show their invariance under monotonically
increasing gray tome transformations. In order to
understand the mathematical properties used to
define our topographic structures, one must
understand the idea of the dizectionsl
discussed in most advanced calculus books. For
completeness, we first give the definitiom of the
directional derivative, then the definitions of
the topographic labels. Finally, we show the
invariance under monotonically increasing gray
tone transformations.

2.1. The Directional Derivative

In two dimensions, the rate of change of a
function f depends on direction. We denote the
directional derivatiye of f at the point (r,¢) in
the direction B by fﬁ(r.c). It is defined as

, f(r+h*sinp,c+h®cosp) - f(r,c)

ﬂ(r,e) = lim
h->0 h

f

The direction angle B is the clockwise angle
from the column axis. It follows directly from
this definition that
’
fp(r.c) = 3f(r,c) * sinp + 3£(r,c) ® cosf.
ar de
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We denote the second derivative,,of f at the point

(r,0) in the direction B by fﬁ (r,¢) and it
follows that

., e s a%s a%¢
l‘ - “‘E‘lin p + 28—-%5inp®cosp + -—E‘co: g.
ar drde dc
The gradjent of f is a vector whose magnitunde,

1

ar 2 a3

— -

ar dc

at &« given point (r,c) is the maximum rate of
change of f at that point, and whose direction,

ar
tan I

af
de

is the direction in which the surface has the
greatest rate of change.

2.2. The Mathemsticoal Properties

We will use the following notation to describe the
mathematical properties of our various topographic
categories for continuous surfaces. Let

vf = gradient vector of a fumction f;

llvfll = gradient magnitude;

n(l) = unit vector in direction in which
second directional derivative has
greatest magnitude;

u(Z) = unit veotor orthogonal to u(l);

Al = value of second dlreotiynul derivative
in the direction of w " ';

Az = value of seocond dlrootiynnl derivative
in the direction of w '}
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= value of first dlroet*g,a] derivative
in the direction of w =~ '; and

vl'n‘z) = value of first diroot*a,‘l derivative
in the direction of w

Vithout loss of generality, we assume llll )= llzl.

Each type of topographic structure im our
classificetion scheme 1is defined in terms of the
sbove guantities. In orxder to calculste these
values, the—first and secoond-order partials with
respect to r and ¢ need to be approximated.

These five partials are as follows:

at ot 2% a2 o2
_— i P P P ¥

ar 30 32 80l arde

2f, 2f
The gradient vector is simply dr 30 . The second
directional

derivatives may be oalculated by forming the
Hessian where the Hessian is @& 22 matrix defined

as
| 0% a%¢ |
| -5 |
: ar”  drac ,
H= .
| 8¢ % |
| — =3 |
| acdr 3°fac |

Hossian matrices are used extensively in
nonlinear programming. Only three parameters are
required to determine the Hessian matrix H, since
the order of differentiation of the cross partials
may be interchanged. Tth is 2

af a’f

drde dcdr

The eigenvalues of the Hessian are the values
of the extrema of the second directional
derivative, and their associated eigenvectors are
the directions in which the second directiomal
derivative is extremized. This can easily be seen
by rewriting lé' as the quadratic form

f;' = ( sinp cosp ) * H * | sinp |.
| cosp |

Thus,
ﬂu(l) = lln(l) and He

(2) _ 12“(2)_
Furthermore, the two directions represented by the
eigenvectors are orthogonal to ome another. Since
H is s 2°2 symmetric matrix, calculation of the
ecigenvalues and eigenvectors can  be done
officiently and accurately using the method of
Rutishauser (1971). We may obtain the values of
the first directional derivative in the direction
of either extrema of the second directional
derivative by simply taking the dot product of the
gradient with the appropriate eigenvector:

. (1)
vf ' w
vt * .(2)

There is a direct reletionship between the

eigenvalues %l)nnd 12 t!’ ourvature in the
® s

directions and “w "7 (’,hel the first
llrootlon;l(‘?oillngivo e = 0, then
A /(1+(v!'u(1)) )¢ curvature in the

direction w ', i = 1 or 2,

Having the gradient magnitude and direction
and the eigenvalues and eigenvectors of the
Hossian, we cam describe the topographic
classification scheme.




2.2.1. Peak

A peak (knob) occurs where there is a local
maxima in all directions. In other words, we are
on a peak if, no matter what direction we look in,
we see no point that is as high as the ome we are
on (Fig. 1). The curvature is downward in all
directions, At a peak the gradient is zero, and
the second directional derivative is negative in
all directions, To test whether the second
directional derivative is negative in  all
directions, we just have to examine the value of
the second directional derivative in  the
directions that make it smallest and largest. A
point is therefore classified as a peak if it
satisfies the following conditions:

lHetll = o, A €0, 0, <O,

2.2.2. Pit

A pit (sink, bowl) is identical to a peak
excopt that it is a local minima in all directions
rather than a local maxima. At a pit the gradienat
is zero, and the second directional derivative is
positive in all directions. A point is classified
sas a pit if it satisfies the following conditions:

llvtll = o, Ay >0, 4,0 0.

2.2.3. Ridge

A ridge ocours on a ridge-line, a curve
consisting of a series of ridge points. As we walk
along the ridge-line, the points to the right and
left of us are lower tham the omes we are on,
Furthermore, the ridge—line may be flat, slope
upward, slope downward, ourve upward, or curve

downward. A ridge occurs where there is a loocal
maximum in ome direction, as illustrated in Fig.
2. Therefore, it must have negative

second—directional derivative in the direction
across the ridge and also a zero first-directional
derivative in that same direction. The direction
in which the local maximum ocours masy correspond
to either of the directions in which the curvature
is ''extremized'’, since the ridge itself may be
curved. For nonflat ridges, this leads to the
first two cases below for ridge characterization.
If the ridge is flat, then the ridge-line is
horizontal and the gradient is zero alomg it.
This corresponds to the third case. The defining
characteristic is that the second directional
derivative in the direction of the ridge—1line is
zero, vhile the second directional derivative
scross the ridge-line is negative. A point is
therefore classified as a ridge if it satisfies
any one of the following three sets of conditions:

Heell # 0, 2, <o, verw™ 2o
of (2)

letll # o, Ay <O, vf'w " =0
or

livtll = 0, A <02y =0,

A geometric way of thinking about the
definition ior(ifldlo is to realize that the
condition vf'w ~'=0 means that the gradient
direction (which is defined for nonzero(!ildlontl)
is orthogonal to the direction @ of
extremized curvature.

2.2.4. Ravine

A ravine (valley) is identical to a ridge
except that it is a looal minimem rather thanm
maximum in one direction. As we walk alonmg the
ravine-line, the points to the right and left of
us are higher than the one we are on (see Fig. 2).
A point is classified as & ravine if it satisfies
any one of the following three sets of conditions:

ay _

llvgll # o, 11 >0, vf'e 0
or 2
Meell #0, 2,5 0, ve'u®® = o
or
llvtll = o, A >0, A, =0,
2,2.5. Saddle

A saddle occurs where there is a local
maximum in one direoction and a local minimum in s
perpendicular direction, as illustrated in Fig. 2.
A saddle must therefore have positive curvature in
one direction and negative curvature in a
perpendicular direction, At & saddle, the
gradient magnitude must be zero and the extrema of
the second directional derivative must have
opposite signs. A point is classified as a saddle
if it satisifies the following conditions:

llvtll = o, A%, <0,

2
2.2.6. Flat

A flat (plain) is a simple, horizontal
surface, as illustrated in Fig, 3. It, therefore,
must have zero gradient and no curvature. A point
is classified as a flat if it satisfies the
following conditions:

lletll = o, A =0, 4, =0.

2

Given that the above conditionms are true, a
flat may be further classified as a foot or
shoulder. A foot occurs at that point where the
flat just begins to tura up into a hill, At this
point, the third directional derivative in the
direction toward the hill will be nonzero, snd the
surface increases in this direction. The shoulder
is an analogous case and occurs where the flat is
ending and turning down into s hill. At this
point, the maximum magnitude of the third
directional derivative is nonzero, and the surface
decroases in the direction towsrd the hill., If
the third directional derivative is zero im all
directions, them we are om a flat, not near a
hill. Thus & flat may be further qualified as
being a foot or shouwlder, or mot qualified at all.




2.2.7. Hillside

A hillside point is anything not covered by
the previous categories. It. has a nonzero
gradient and no strict extrems in the directions
of maximum and minimum second directional

derivative. If the hill is simply a tilted flat
(i.e., has constant gradient), we call it a slope.

If its curvature is positive (upward), we call it
a gonvex hill. If its curvature is negative
(downward), we call it a gonmcave hill. If the

curvature is up in one direction and down in a
perpendicular direction, we call it a saddle hill.
A saddle hill is illustrated in Fig. 2, and the
slope, convex hill, and concave hill are
illustrated in Fig, 3.

A point on s hillside is an inflection point
if it Thas a zero—orossing of the second
directional derivative taken in the direction of
the gradient. The infleotion-point oclass is the
same as the step edge defined by Haralick (1982),
who classifies a pixel as a step edge if there is
some point inm the pixel's area having a
zero-orossing of the second directional derivative
taken in the direction of the gradient,

To determine whether a point is a hillside,
ve just take the complement of the disjunction of
the conditions given for all the previous classes.
Thus if there is no curvature, then the gradient
must be nom zero. If there is curvature, thenm the

point must not be a relative extremum. Therefore,
8 point is oclassified as a hillside if all three
sets of the following conditions nre true (')’

represents the operation of logical implication):

A=, =0 lletll 40,

and
ll $0-) vf'u(l) $0,
and (2)
12# 0~ vf'e ¢ 0.
Rewritten as a disjunction of clauses rather
than a conjunction of clauses, a point is

classified as a hillside
if any ome of the
conditions are true:

following four sets of

vl'n“) 0, v!'u(z) $0

or

ve'e 40,2, =0
or

vl'n(“ ¢ 0, ).1 =0
or

lHvell 4 o0, Ay = 0,1, =0,

Wo can differentiate between diffecent classes of
hillsides by the values of the second directional
dorivative. The distinction cam be made as
follows:

SLOPE it A, =2, =0

CONVEX A = =00 0
0 1
gONCAVE if ).1 (= 1.2 <=0, 11 ¢
SADDLE HILL if ).1‘).2 <o

A slope, convex, concave, or saddle hill is

classified as an inflection point if there 1is a
zero—crossing of the second directional derivative
in the direction of maximum first directional
derivative (i.e., the gradient).

2.2.8. Summary of the Topographic Categories
A summary of the mathematical properties of

our topographic structures on continuous surfaces
can be found in Table 1, The table exhaustively
dofines the topographic classes by their gradient
magnitude, second directional derivative extrems
values, and the first directional derivatives
taken in the directions which extremize second
directional derivatives. Each entry in the table
is either O, +, -, or *, The O means not
significantly different from zero; + means
significantly different from zero on the positive
sido; - means significantly different from zero on
the negative side, and '*’ means it does not
matter. The label '’Cannot Occur’’ means that it
is impossible for the gradient to be nonzero and
the first directional derivative to be zero im two
‘orthogonal directions.

From the table, one can see that owur
classification scheme is complete. All possible
combinations of first and second directional
derivatives have a corresponding entry im the
table. Bach topographic category has a set of
mathematical properties that uniquely determines
it,

(Note: Special attention is to%ﬂrod for the
dt!,nnto case 11 = X, # 0, where « and
. can be any two %ttho.oul directions, Inm
this oase, there galways oxists an extreme
direction w which is orthogonal to vf, and thus
the first directional derivative vf'w is always
zero in an extreme direction. To lvoid(!’ltiOIl
z“y directional d.tu’t!vu. we chooltzr aad
o such that vf'w # 0 and vf'w “'40,
unless the gradient is zero,)




3.0 SURFACE ESTIMATION

In this section we discuss the estimation of
the parameters required by the topographic
classification scheme of Section 2 using the locel
cubio facet model (Harslick 1981), It is
important to note that the classification scheme
of Seotion 2 and the algorithm of Section 3 are
independent of the method used to estimate the
first-and second-order partisls of the underlying
digital image-intensity surface at each sampled
point, Although we are curremtly using the cubic
model and discuss it here, we expect that a
spline-based estimation scheme or [
discrete—cosines estimation scheme may, in fact,
provide botter estimates.

4.1. Local Cmbic Facet Model

In order to estimate the required partial
derivatives, we perform a least~squares fit with s
two-dimensional surface, f, to a meighborhood of
ench pizel. It is required that the functiom f be
continuous and have continvous first—and
second~order partial derivatives with respect to r
and ¢ in a meighborhood around each pixel in the
rc plane.

We choose f to be a cubic polynomial in r and
c expressed as a combination of discrete
orthogonal polynomials. The function f is the
best discrete least—squares polynomial
spproximation to the image data in each pixel’s
neighborhood. More deteils can be found inm
Haralick's paper (1981), in which each coefficient
of the cubic polynomial is eveluated as s linear
combination of the pixels im the fitting
neighborkood.

To express the procedure precisely and
without reference to a particular set of
polynomials tied to neighborhood size, we will

canoniocally write the fitted bicubic surface for

each fitting meighborhood as

f(r,0) = k_ +,k,r
R
+ k‘r’ + k 03

7 10"’
where the center of the fitting neighborhood is
taken as the origim. It quickly follows that the
needed partials evaluated at local coordinates
(r,c) are

k,c
ria+ k 2

+
¢

3 2

gt © + {9rc + k

85 2 2
- =k, + 2k, r + ke + 3k, r" + 2k rc + k9c

8
or 2 4 5 7
o 2 2
_— = k3 + ksr + 2k6c + kar + 2k9rc + 3k10c
dc
a%¢

" Zk4 + 617r + 2kac
ar
a%s
= 2!6 + 2k9r + 6kloc
dc
Ozf

=k, + 2k_r + 2k_c

drdo.. s . s

It is easy to see that if the above
quantities are evalusted at the center of the
pixel where local coordinates (r,c) = (0,0), only
the constant terms will be of significance. If
the partials need to be evaluated at an arbitrary
point in a pixel’s area, then a linear or
quadratic polynomial value must be computed.

4. Iest Examples

In this section, we show the results of the
classifier on three images. The results for a
chair are shown in figures 4,5,6,7. For a set of
screws, it is shown in figures 8,9,10, and 11.

For some machine parts in figures 12,13, and 14.
Notice how the highlighting can occur depending on
the positioning of the parts. The ridge labels
are quite useful for determining where the
highlighting occurs.
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Table 1. Mathematical Properties of Topographic

Structures

Hetll "1 ).2 v!'n“) vl'uu) Label

0 - 0 0 Peak
0 0 0 0 Ridge
0 + 0 0 Saddle
0 [1] [ 0 0 Flat
0 - 0 0 Saddle
0 0 0 0 Ravine
0 + 0 0 Pit
-+ -t Hillside
0 . Ridge
+ - i 0 Ridge
+ - 0 =t . Hillside
- =t -4+ Hillside
+ 0 0 . b4 Hillside
+ - =t =t Hillside
* 0 "y # . Hillside
® 0 [e | Ravine
. 0 i Ravine
- Hillside

] 0 l Cannot Occmr

Figure 1: Right Circular Cone
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Figure 3 : Hillgide
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Figure 4 Chair Figure 6 Ridges (black) ravines (white)

_ Figure 7 Hillside (white)

Figure 5 Upper left corner of chair

Figure 8. Screw
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Ridges (black)

Figure 9

Figure 12 Machine parts

Figure 10  Convex Hillside (white)

e

Figure 13 Upper left corner subimage ridges (black)

e e ravines (white)

‘igure 11 Concave Hillside (black)

Figure 14 Center subimage ridges (black) ravines (white)
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