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Abstract

This paper discusses a structural pattern
recognition methecdology which combines some
ideas about relation 'homomorphisms and theory
of covers. We take as a basic pattern a
labeled N-ary relation which we call an
arrangement. Features from any arrangement
are determined by calculating to which basis
arrangements the given arrangement is a homo-
morphism and calculating which basis arrange-
ments are isomorphic to some part of the given
arrangement. A decision rule then decides
which class the given arrangement is assigned
using the theory of covers. The methodology
suggested in the paper provides an alter-
native to syntactic pattern recognition.

I. Introduction

Statistical pattérn recognition uses the
n-tuple for its basic data structure. Each
pattern must be an ordered list of the same
length. Syntactic pattern recognition uses a
grammar to describe the relationships within
a string which tell whether the string be-
longs to a particular category. The
length of the pattern string can be
arbitrary and if a parser for the grammar at
each step finds the string legal, then the
string belongs to the category associated
with the grammar.

Much work has been done to generalize
the classical concept of grammar and the
string on which its parser operates. We now
have web grammars, tree grammars, fuzzy
grammars and stochastic grammars (Fu, 1974;
Pfaltz and Rosenfeld, 1969). However,
the power of the grammar, which is its re-
cursiveness, all too often is its weakness.
The structural pattern recognition methodology
discussed in this paper is one approach to
generalizing the basic pattern data structure
in a way which seems to permit flexibility
without the necessity of recursiveness.

The data structure we suggest for a
pattern is a labeled N-ary relation which we
call an arrangement. An arrangement is quite
rich in structural variety. To use an
arrangement as a pattern, we must discover
the natural mathematical operations on
arrangements. For the n-tuple in a vector
space the natural opeation is to compare it
to some other prototype vector by a distance
function and convert the distance measurement
to a probability or density. The arrangement,
however, has no meaningful and convenient
metric space in which it is a point so we
must lock elsewhere.

The N-ary relation is basically an
algebraic structure and the natural mathema-
tics or algebraic structures involves homo-
morphisms. Thus, features are arrangements,
patterns are arrangements and the value of a
feature for a given pattern tells whether the
pattern is homomorphic to the feature,
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whether the pattern has a copy of the feature,
or whether the feature is a homomorphic image
of the pattern. The feature extraction
mechanism then converts the arrangement
pattern to an n-tuple which is classified by
a decision rule using a covering methodology.
The theory of covers shows how a collection
of sets can be constructed so that the sets
in the collection cover the training subset
Sg and do not cover any measurement in a

subset S which is contained in S, complement.

0
The sets in the collection have a simple de-
scription so that a decision rule using the
description of the sets in the cover have an
easily implementable and simple form.

Section II of the paper describes the
concept of the arrangement and arrangement homo-
morphisms Section III describes a feature
extractor which uses these concepts to trans-
late an arrangement to an n-tuple. Sections
IV and V of the paper review how decision
rules can be constructed using the covering
methodology.

ITI. The Arrangement

Let A be the set of elements whose
arrangement is being described. Each group
of related elements from A is given a label
from the label set L. Let R be the labeled
N-ary relation which consists of labeled N-
tuples of elements from A.

Definition 1. A simple order-N arrangement

is a triple (R, A, L) where R £ a¥ x 1.

Definition 2. A general arrangement is a set
of simple arrangements, each simple arrange-
ment being of different order, being defined
on the same set, and having the same label
set. If there are K simple arrangements in
the arrangement A, then we write

A = {Rl,Rz,...,RK: A, L} where
Nk
R, & A ¥ily BE Lpess il

k

Definition 3. Let A = {Rl,...,RK; A, L} be

an arrangement and H & A x B. The composi=-
tion of arrangement A with H results in an
arrangement B which we define as

Ao H=28-= {Sl,S ess8 B, L}, where

K;
,m){(al,...,a

2

s, = {(bl,b

K L) 8 R

reeerb .
2 Ny k

(anrbn) e H, n= 1;...,Nk}

Ny

Definition 4. An arrangement A = {Rl,...R ;

K'
A, L} is contained in an arrangement
0 = {Tl,...,TK; A, L} if and only if

R € Ty, k=1,...,K. 1In this case we write



A c?D.
Definition 5. Two arrangements
A = {Rl,...,RK; A, L} and B = {Sl,...,SN, B,M}

are comparable if the number of relations in
each arrangement is the same (K=N) the label
sets are the same (M=L), and the relation Rk

has the same order as the relation Sk:

N N
(R, = A k = BF

x L and S x L).

k

Definition 6.
B = {sl,...,s

let A = {Rl,...,RK; A,L} and
B,L} be two comparable

arrangements. Let H: A + B. The function H
is a homomorphism from arrangement A to
arrangement B if and only if A ° H < B.

K

III. An Arrangenent Feature

Extractor Example

In this section we give a structural
pattern recognition method using the arrange-
ment concept and theory of covers. Given are
the arrangement features, one training
pattern from class 0 and one training pattern
from class 1. The first problem will be to
determine a decision rule and the second prob-
lem will be to assign a class to a new test
pattern.

The arrangement features and the training
arrangements are shown in Figure 1. To keep

the example simple, only simple order 2 arrang-

There are five arrangement

ments are used.
features: Al’Az'AB’A4' and AS. Arrangement
0 and

T is the training arrangement for class
I

0
T
set

1
Each training arrangement uses the label
L = {0, 1} and is defined on the set
S = {a,b,c,d,e,f}.

Thus, TO S S xS xL and Tl € 8 x S x L.
The feature arrangements use the label set L
but are defined on different sets B {v,w},

C {XIle}r D = {@rBrd]’; E = {p,q,l‘.‘}, and
{s,t,u} for feature arrangements Ay through.Ag

is the training arrangement for class

We will use a feature extractor which
asks only two kinds of questions: 1is there a
copy of the feature arrangement in the train-
ing arrangement and is the feature arrange-
ment a homomorphic image of the training
arrangement. The first question asks about
the existence of a one-to-one homomorphism from
the feature arrangement onto its range in the
training relation. The second question asks
about the existence of a homomorphism from
the training relation onto the feature
arrangement.

Our example feature extractor asks the
first guestion for feature arrangements Al,
AZ and A4 and asks the second gquestion for
3 and AS.
rithms for determining whether a homomorphism
(question 1) or partial isomorphism (question
2) exist 1is given in (Haralick, 1976) and we
do not discuss it here. Tables 2 and 3 give
the results. From Table 2 we see that class
0 can be distinguished from class 1 simply by

feature arrangements A The algo-
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whether the arrangement has a copy of feature

arrangement A3 or A5. From Table 3, we see

that the test arrangement has a copy of
feature arrangement A3 so that we would

assign it to class 0.

In the next section we discuss in a sys-
tematic way a method of constructing decision

rules like the one used in this example.

IV. Pattern Discrimination From The

Perspective of Covers

The pattern discrimination problem is
concerned with how to construct a decision
rule which assigns a unit to a particular
category class on the basis of the measure-
ment patterns in the training set. The de-
cision rule which makes the assignment is a
function from measurement space E to the set
of classes. Each and every element in E is
assigned by the decision rule to one and only
one class. When such a decision rule is
deterministic it determines a partition of E.

Assume that we are given disjoint train-
ing subsets S0 and Sl of measurements from

the set E. Our main concern will be how to
find a cover for SO which does not include

1 will

not be statistical. We will not assume any
probability distributions. Rather, we will
concentrate on the simplest way of distin-
guishing elements of one set from another.
This problem is a frequent one in Boolean
Switching theory and the algorithms due to
Quine and McCluskey are well know (Quine,
1955; McCluskey, 1956; Hill and Peterson,
1968; Rhyne, 1973).

We discuss the natural generalization of
the Quine-McCluskey method to the general
non-Boolean case where each variable can have
K possible values. There is also a natural
generalization of the Quine-McCluskey method
to take care of don't-care conditions for
Boolean variables (Hill and Peterson, 1968).
Extension of this case to non-Boolean vari-
ables is possible, and we work one such ex-
ample. We are particularly interested in the
case where the variables are not Boolean,
where there are perhaps more don't-care con-
ditions than specified conditions, and where
there are so many variables that working the
problem bottom up via Quine-McCluskey re-
quires too many operations. Following
Michalski (1969; 1971; 1973; 1974) we will
work the problem top down.

any of § Our point of view, however,

We begin our discussion with Cartesian
products and projection operators.
Definition 7. Let J = [jl,jz,...,jN} be a

linearly ordered finite set whose elements

satisfy ]n< Jpe1r B = LyweesayN=Le Thern,
¥ D, =D. x D, =x...x D. where X denotes
jed 3 1 J2 In

the Cartesian product.

Definition 8. Let S ¢ ¥ D, and J « I. The

iel



projection of S into ¥ D. is defined by

jed

A48 = {(xj: jed) € x D.| for some

jed

(Yly'--ryn) £ S, ¥y = %y jed}

Definition 9. Let T & x D, and J € I. The
jed
inverse projection of T into ¥ D, is defined
ieTI
by
-1, _ . '
AT = {(y,;: ieI) € x D,| for some
i : 3
ierI
o8 JET) E Ty Vo = suy JET
( ji 3 Y5 xq0 J

The set A 7'T is called a cylinder

set having T for its base. The order of the
cylinder set is #J. Figure 2 illustrates a
couple of order 1 cylinder sets.

Ashby (1964) uses the intersection of the
inverse projection of cylinder sets to deter-
mine simpler descriptions of complex sets.

We modify Ashby's intersection method to a
union method and use this with Michalski's
idea of set covers (Michalski, 1969, 1971,
1973, 1974) to generate a decision rule which
distinguishes one set from another.

V. Covers

A cover of SO

any set C of cylinder sets satisfying
s

Definition 10. against Sl is

S UL s SC, where S means the complement
0 1 1
LeC
of set Sl.
The definition implies that if a collec-

tion of cylinder sets is to be a cover, its
set theoretic union must completly cover

the set SO and it must not cover any of the

set Sl'

Definition 1l. An order n cover of S0 against
Sl is any collection C of cylinder sets satis-
fying

L UL =2 S

LeC 0

o]

2z UL < Sl

LeC

3. LeC implies the order of L is less

than or equal to n.

Theorem 1. Let C = {L|L is a cylinder set of
order =n, L ﬂsl =g and L N 8, # g}
TE SO € U L then C_ is a cover of SO
LeC n
n
against 5q-
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Proof: By hypothesis, U L ¢ S. and order of
0
LeC
L£Cn is less than or egual to n. Since LeC
n

implies Lflsl = g, we must have L ESE. But

this is true for all LeCn. Hence U 1 = g°

1-
LECn

Therefore, Cn is a cover of Sy against 5.

The theorem enables us henceforth to
confine our attention to the cylinder sets
which satisfy conditions L ﬂSl =g and

LN 5y # @ in selecting a cover.

Example 1. (Michalski, 1972)

S0 are disjoint.
tinguishing patterns of the first set from
the patterns of the second where measurement
space E = DlxszD3xD4 and the domains are

Assume Sl and

Find a simple rule for dis-

D, = {x, v, z}

D, = {1, 2, 3}

2
Dy = {A, B, C, D}
D, = {a¢, B, v}

and SO and 5, are defined by

So {z3Ca, ¥3Dy, z3CB, y3B8}
S1 =

The problem is that of finding a cover of S

{2z3Da, 2z3By, z3DR, 2z3AR}

0
against $;, i.e., to find B, = {L|L is a

cylinder set of order = n,
LNs; =¢ and L N Sy # at
The order 1 cylinder sets for Sq are*

-1

Al AlSO = {Z***, y***}
Asta,s = {*3%x%)

2 0

AEIABSO = {k*Ck **xD* **kpx}
AZlA4SO = [*hHg, kwkg  dwky]
The order 1 cylinder sets for S1 are
a7l s. = {zHaw}

17171

pIta. s, = {*3%%}

ol e

=, = [#*%D* k*kR*k Khpk
Ay7b48, {*¥D*; B*, A}
A;1A451 = {*kkg, kkkR  kkky)

*means any value of that component is allowed.



By theorem 1 we find that

Cl = {y***} [*%C%}
and
Sg & U L = {y***}y{*scx}
LECl

The decision rule is: assign (xl, Koy Xqr

= C.

x4) to class 0 when Xi,= ¥ of ¥

3
The set of all 4 tuples assigned to

class 0 can be easily illustrated with the use

of the Karnaugh map as shown in Figure 3.

If the relationship between the sets S0

and Sl were more complex so that we could not

tell the difference between them frem cylin-
der sets of order 1, then we would have to
distinguish them using cylinder sets of
higher order.

A minimal cylinder set covering is a
difficult problem. In the remainder of this
section we define what g'minimal cover is and
give a procedure to find a suboptimal cover.

Definition 12. A minimal order n cover of SO
against 51 is any collection C of cylinder

sets satisfying

1. C is an order n cover of SO against
Sl ‘
2. C' is an order n cover of 8 against

Sl and C' =2 C implies

¢t =2¢

To determine a minimal set of cylinders,
a cylinder set table must be constructed.
The table lists all the measurements that be-
long to training set SO across its top and

lists the candidate cylinder sets in C down
its left side. An X is placed at the inter-
section of each row and column if the cylin-
der contains the measurement patterns. For
example 1, the complete cylinder table for
training set S is shown in Figure 4.

The selection process begins with the
identification of all cylinder sets which are
the only ones to cover a particular measure-
ment pattern. The corresponding X's in the
table can then be circled. The cylinder sets
having any circled X's in their cover must be
included in any cover C of SO against S;- All

the measurements that are now covered by the
initial selection of cylinders can then be re-
moved from the table. If there are no
measurement patterns left then the cover is
complete. For the given cylinder set table,
the cylinder sets y*** and **C* constitute a
minimal cover.

In many cases, however, the removal of
the initially selected cylinders leaves a re-
duced cylinder set table that has two or more
X's in every column. This indicates that
there will be more than one set of cylinder
sets that will cqver the remaining measure-
ment pattern. The decision regarding which

cylinder

criterion other than necessity.
is to choose one cylinder set covering the
most measurement patterns and reduce the
table and iterate until all events have been

covered.

We will now give one example of the

applicati

recognition.
Example 2. Consider two sets of 4-tuples
shown below.
S0 S1
0001 GL.2 2
0111 112 0
1021 1010
1121 1011
2011 2121
2211 2 2 € 2 2
The problem is that of finding a cover
C_ of 8, against S,. To find C_ = {L|L is a
n 0 i B n
cylinder set of order =n, L N Sl = ¢ and
L Ns_ # @l
0
The order 1 cylinder sets for training
set S, are
0
A_l A S = {OF*k, Lkk, 2ikk}
1 1o
-1 = {%Qk%, *1%%
by 8,8 {#0xk, #1%*x]}
-1 = {®%1%  *%2%
A" A8 (%1%, }
-1 = {®&% kEA] | k%%2}
b, 8,8, {#*%0, i

The order of 1 cylinder sets for training set

to choose must be based on some
One algorithm

on of cylinder set covers to pattern

s, are
Ail 5181 = {0&%%, 1xkx, 2%%x)
-1
= ESet ER T
b," B8y {#0%%, *]1#%}
=1
= [®k1k, *k2%
A3 ASSI {#x1%, 2%}
~1
= kkk *kk Fekk
A, A451 {#%x0, 1, 2}

It is obvious that any order 1 cylinder
set of S0 includes patterns from set Sl and
vice versa. Thus we must look at order 2
cylinder sets.

The order 2 cylinder sets for training l
set 5, are
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~1

A12 AlZSo = {00%%, Ql%*, 10%%, 11%*,6 20%%, 21%%}
B3 815, = 0%1%, 1#2%, 2414}

Aii By,S, = (0F%0, O%¥1, Tx*1, 2%k1, 2#%2}

A;; 8,48, = {#%01%, *11%, *02%, *12%}

A;i AZASD = {%0%Q, *1x1, *0%1, *1%2}

A;i A3ASD = {%%10, #*11, #%*2], *%x12}

The order 2 cylinder sets for training

set Sl are
A;% by By = LOLRNE, 114+, 10%%, 21%%)
Aié BypSq = (OK2%, 1x2%, 131%, 232%)
Azi A1, Sq = (0%%2, 18%0, 1%%1, 2%%1}
A;é Koq8y = feLEn, *01%}
A;i boySy = {#1%2, #1%0, *0%0, *0%1, *1%1}
A;; Bq,8q = {#%22, *%20, **10, **11, #%21}

The cylinders which
and L 0 S0 # @ are

satisfy L N Sl =g

{Q0k*, 20%%, QL% 2%1%, 00, Ok*1, *11% 6 #02% **12}

To pick up the minimal set of cylinder sets
to cover the training set SO’ we construct the

cover table (Figure 5). Here we f£ind out
that the pattern (1121) is not covered by any
one of the order 2 cylinder sets (the con-

dition S. & U L is not satisfied). We will
0
LeC
n
solve and discuss this problem later. Now,

we will just neglect the event (1121) and
consider the rest of evehts only.

One minimal order 2 set of cylinders is
{o*1#*, 2%1%,6 *02*}, They cover all patterns
in set 5, except the event (1121).

We still cannot tell the difference be-
tween measurement pattern (1121) and the
training set §,- So we must look at order 3

cylinders.
The order 3 cylinder sets for the

pattern (1121) are

-1 = {112%}
B 548793¢1120)

-1 = {11%1}
Al p40194(1121) = 1

=1, = {1%21}
D] 5,0134(1121) = {

-1 = {*121}
A234A234(1121) {

The order 3 cylinder sets for the train-

ing set Sl are

~1

Al5381935y = 1012%, 112%, 101%, 2124}

Aléaﬂlzasl = {01*2, 11%0, 10%0, 10%1, 21*1, 21%2}
B13,81345) = (0%22, 1%20, 1x10, 1%11, 2%21, 2422)
A;;4A23481 = {122, 120, %010, *011, #121, *122}

An order 3 cover of the
against S; is LLA*E, Tx2},

one of them, say 11*1 and we
1

pattern (1121)
Picking either

have , by Theorem

4 =0 OXL* , 2%1% | #02% | 1131
S,E U L= {0*¥1*}U {2%1%} U {#02%}U {1151}

LeC
n

from S
assign (xl,xz,x3,x4} to category 0 if

A decision rule for discriminating S

1
thus:

(xl=0,x3=l)V(x1=2,x3=l)V(x2=0,x3=2)V(x1=1,
x2=l,x4=l).
shown in Figure 6.

The example 2 Karnaugh map is

The rule thus found represents a gen-
eralization of the set SD and S1 in the sense

that patterns not in S0 and Sl will be

assigned respective categories 0 and 1 by the
rule. The rule is only one of very many
possible generalizations of the original
sets.

IV. Conclusion

We have

illustrated how a labeled N-ary
relation can

be a pattern andhow feature ex-
traction can be done to transform the arrange-
ment pattern to an n-tuple pattern on the
basis of whether homomorphisms exist to or
from a given set of arrangement features. We
then showed how given even a few arrangement
patterns a decision rule, using the theory of
coverss can be constructed which assign a new
test arrangement to a class. The entire pro-
cedure from beginning to end is structural in
nature and offers an alternative approach to
syntactic pattern recognition.

A basic theoretical problem which needs
to be solved and which was not discussed in
this paper is given training arrangements for
different classes, what is the procedure for
determining the best basis arrangement
features. We will discuss solutions to this
problem in a forthcoming paper.
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Feature Arrangement
Feature Arrangements

Aq g
Al S BxBxL A2 S CxCxL A3 & DxDxL
Training TO o>+d no
Arrangement §+a
vv0 xx0 aal RB+c
wv0 yz0 BSO
vwl zv0 Bal Tl no S +a
wwl xyl 8§80 t+d
vyl Sal u+f
zx1l .
Table 2 indicates whether the training re-
lation has a copy of the feature arrangement.
A4 S EXExL A5 S FxFxL If it does, then the partial isomorphism is
given.
pp0 ss0
pgl stl
gr0 ttl Test Arrangement
qgl us?
rpo utl T
rql
aao
; bal
Training Arrangements cel
4 de0
ecO
TO < S5xSxL Tl S 5xS5xL fco
adl
aal aal bdl
bal bal cdl
cal cel ddl
da0 de0 ebl
adl eal fhl
bdl fal
cdl adl A A A A A
dal bdl L = A 3 4
cdl a,c,e>rv a,b x a+d
. ddl P b,d, f>w c,d»y no T B=+b no
edl e,f»z §+a
fdl
Arrangement a homomorphic Arrangement have
image? a copy of the
Figure 1 lists the 5 feature arrangements feature
Al' Az, A3, A4 and A5 and the training arrangement?
arrangements TO and Tl for class 0 and class
1, respectively. Table 3 indicates the relationship between

the test arrangement and the five feature
arrangements.

Feature Arrangement

By 5 B
Training T0 z,g:; "6 no
Arrange- f
ment
T a,c,erv a,b+p
. b,d,f+w ne c,d+q
e, f+r

Table 1 indicates whether the feature
arrangement is a homomorphic image of the
training relation. If it is, the homomorphism
is given.
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Figure 2 illustrates the projection and in-
verse projection operators. Assume two sub-
sets 8, and S0 of E where E = D; x Dz.
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%
54

1
5
3 Y
W0 00 700 7 2 00 0
v 2N A
3 /57////4%//////?/,/;//////%
- 75
z 2 ALY
3 79747
a yjao B yvylae B v |oO Y X

A B

Figure 3 illustrates the sets S0 and Sl

whose members are labeled 0 and 1, respec-
tively and the set of 4 tuples in the order 1

cover for SO: (x1 = y)v(x3 = ¢) shown as
striped.
e |
%% |
! 43§% 3| =] @ | @
| ¥§§‘¢ : vl Ao |m
‘ il Y BRLR T
- ST TN I
i X, X5 X X4 E
1 v *  x ¥ @ X
|« % ¢ = D |x
| " i |
| Viviv v

wv
)

o {z3Ca, ¥3Dy, z3CB, y3BR}"

w
]

1 {z3Da, z3DB, z3By, z3ABR}

Figure 4 shows a table of candidate order 1
cylinder sets and events in 50. The checks

in the last row indicate that the two cylin-
der sets cover the four measurements.
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{a L,

2, {% oldale]|m |H |x
«S\% G
@\z olAdA]lo|Hd |o|H

olo|A|H | |a
X X, X3 X
o o0 * * |x
2 * * X
0 1 * | XX
2 x 1 % X| X
0 * * 0 |x
0 & * 1 X
* 1 1 X X
* 0 2 = X
x 1 2 X
A EAR vV

Figure 5 shows the cover table for example 2.

Xl X2
0 /,7
bz ) |
A7
< Aé/
0 11 8
1 08 0 11 O 1 A
2
WA
2 = NN [T [L
2 NN
NN
012012012 «x
0 1 2 x3

Figure 6 shows the Karnaugh map of the sets
SO' Sl and a minimal order 3 cover for ex-
ample. The cover Sy is striped.
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