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Abstract

Computer vision software is complex involving
many tens of thousands of lines of code. Coding mis-
takes are not uncommon. When the vision algorithms
are run on controlled data which meet all the algo-
rithm assumptions, the results are often statistically
predictable. This renders it possible to statistically
validate the computer vision software and its associ-
ated theoretical derivations. In this paper we review
the general theory for some relevant kinds of statistical
testing and then illustrate this experimental method-
" ology to validate our building parameter estimation
software. This software estimates the 3D positions of
buildings vertices based on the input data obtained
from multi-image photogrammetric resection calcula-
tions and 3D geometric information relating some of
the points, lines and planes of the buildings to each
other.

KEYWORDS: Statistical analysis, multivariate hy-
pothesis testing, 3D parameter estimation, error prop-
agation, software validation.

1 Introduction

Many computer vision problems can be posed as
either parameter estimation problems (for example,
estimate the pose of the object), or hypothesis testing
problems (for example, which of the N objects in a
database occurs on a given image.) Since the input
data (such as, images, or feature points) to these al-
gorithms is noisy, the estimates produced by the algo-
rithm are noisy. In other words, there is an inherent
uncertainty associated with the results produced by
any computer vision algorithm. These uncertainties
are best expressed in terms of statistical distributions,
and the distributions’ means and covariances. Details
of the theory and application of covariance propaga-
ti?n can be found in [6] [9], and the references cited in
[91.
Usually, implementations of vision algorithms run
into thousands of lines of code. Furthermore, the al-
gorithms are based on many approximations, and nu-
merous mathematical calculations. One way to check
whether the software implementation and the theoret-
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ical calculations are correct is by providing the algo-
rithm input data with known (controlled) statistical
characteristics, which is possible since the input data
can be artificially generated, and then checking if the
estimated output is actually distributed as what was
predicted by theoretical calculations.

Since many of the estimation problems are multidi-
mensional, testing whether the means and covariances
of the empirical distribution and predicted distribu-
tion are same is easier than testing whether or not the
shapes of the two distributions are same. In this pa-
per, we summarize statistical tests for the case when
the random estimates can be assumed to be multi-
variate Gaussian. We also describe the function inter-
faces to software we have implemented for conducting
these tests. Although the software libraries and envi-
ronments (e.g. Splus, numerical recipes) are available
for conducting the tests for one-dimensional samples,
we are un-aware of similar software libraries for mul-
tivariate case. In fact, most of the statistics books
do not give all the five tests we have give ge.g. Koch
[13] does not address the fifth testing problem). The
hypothesis testing theory and software are described
in [12] and the software can be obtained at no cost
from Kanungo (tapas@george.ee.washington.edu). A
description of how the software and the theory was
tested using statistical techniques is also included.

2 The Kinds of Statistical Hypotheses

Let z1,29,...,2, be a sample from a multivari-
ate Gaussian distribution with population mean pu
and population covariance X. That is, z; € RP and
z; ~ N(u, L), where p is the dimension of the vectors
;.

We can make various hypotheses regarding the pop-
ulation mean and covariance depending on what is
known and what is unknown. The data z; are then
used to test whether or not the hypothesis is false.
Notice that each population parameter (here we have
two — p and T) can be either (i) tested, or (ii) un-
known and untested, (iii) or known. If a parameter is
being tested, then a claim regarding its value is being
made. If a parameter is unknown and untested, no
claim is being made about the value of that param-
eter; its value is not known and therefore we cannot
use 1t in any computation. If the value of a parameter



assumed to be known, then its value is known without
error and cannot be questioned or tested, just like the
normality assumption is not questioned. Furthermore,
when a parameter value is known, the value itself can
be used in computation of test statistics for other pa-
rameters.

In general, if the distribution has ¢ parameters,
then there can be 37 — 2¢ tests. The reasoning is as
follows. Since each parameter can be either tested, or
unknown and untested, or known, the number of pos-
sibilities are 3%. But, of these the number of combina-
tions in which none of the parameters are tested (that
is, they are either known, or unknown and untested —
and so do not represent a test) is 22. Thus, the total
number of distinct hypotheses that can be made about
a sample from a g-parameter distribution is 37 — 29.

In the case when the data comes from multivariate
normal distribution, N (g, £), we have ¢ = 2 and thus
can have 32 — 2? = 5 possible hypotheses. Now we
describe each of the five tests when the data comes
from a multivariate normal population.

Hi: p=po, (2=ZX; known.) In this test, the
question is whether or not the sample is from a
Gaussian population whose mean is ug. The pop-
ulation covariance ¥ is assumed to be known and
equal to ;.

Hz: p= po, (£ unknown, untested.) In this
test, the question is whether or not the sample
is from a Gaussian population whose mean is ug.
No statement is made regarding the population
covariance X.

Hy: £ =%, (p = p1 known.) In this test, the
question is whether or not the sample is from a
Gaussian population whose covariance is £g. The
population mean u is assumed to be known equal
to u;.

Hs: £ =7%,, (4 unknown, untested.) In this
test, the question is whether or not the sample
is from a Gaussian population whose covariance
is ¥y. No statement is made regarding the mean

B

Hg: p=pg, =29 In this test, the question is
whether or not the sample is from a Gaussian
population whose mean is ug and covariance is
0. It is this test that is the principal test we use
for the software validation.

3 Definitions

In this section we briefly describe the terms used
in the rest of the paper. If the reader is familiar with
statistics, he/she should skip this section. For a lucid
explanation of the basic univariate concepts please see
[4]. A slightly more rigorous treatment of the univari-
ate and multivariate test is given in [2]. Multivariate
tests are treated in great detail in [13]. The most au-
thoritative reference on multivariate statistics is [1].
Although this book has most of the results, it is not
very readable, and the results are scattered all over
the book.

A statistic of the data z;,..., 2, is any function of
the data. For example, sample mean, z, is a statistic,
and so is the sample covariance matrix, S. The statis-
tic need not be one-dimensional - (Z, S’)1 together form
another statistic of the same data. A sufficient statis-
ticis a statistic that contains all the information about
the data; any inference regarding the underlying pop-
ulation can be made using just the sufficient statis-
tic - the individual data points do not add any more
information to the inference process. For example,
the vector of original data (z1,...,2z,)* is a sufficient
statistic - it contains all the information retga,rding the
data. Another sufficient statistic is (, S)*. Sufficient
statistic is not unique. A minimal sufficient statistic
is a sufficient statistic that has smallest number of en-
tries. For example, for Gaussian data, (z,5) is the
minimal sufficient statistic.

A hypothesis is any statement about a population
parameter that is either true or false. The null hy-
pothesis, Ho, and the alternate hypothesis, H,, form
the two complementary hypothesis in a statistical hy-
pothesis testing problem.

A test statistic is just another statistic of the data
that is used for testing a hypothesis. The null distri-
bution is the distribution of the test statistic when the
null hypothesis is true. The alterncte distribution is
the distribution of the test statistic when the alternate
hypothesis is true.

There are two types of errors - mis-detection and
false alarm. If the null hypothesis is true but the test
procedure decides the null hypothesis to be false, it
18 called a misdetection. When the alternate hypoth-
esis is true but the test procedure accepts the null
hypothesis, it is called a false alarm. The misdetec-
tion probability of a test procedure is usually fixed by
the user also referred to as the significance level, a, of
the test. Typical value for o is 0.05.

The power function of a hypothesis test is a function
of the population parameter 6, and value of the func-
tion @(f) is equal to 1 minus the probability of false
alarm. Ideally, the power function should be zero for
8 where the null hypothesis is true and one for all 8
where the alternate hypothesis is true. For most realis-
tic testing problems one cannot create a test procedure
with such an ideal power function. Power functions
are very useful for evaluating hypothesis testing pro-
cedures. For an example where it is used for computer
vision problems, see[11]. A uniformly most powerful
test is a test procedure whose power function is higher
than all other test procedures.

There are many methods for creating tests and cor-
responding test statistics. The test statistics given in
this paper were derived by maximizing the likelihood
ratio. Please refer to the cited literature for the deriva-
tion.

4 Test statistics

In this section we define the test statistic and their
distribution under the true null hypothesis [1]. We use
the following definitions of Z and S.

1 ki3
:E:EZ:D.;

i=1
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and
1 n
S= —— Z(Z{ — E)(z; - i)t,
-1
where we have assumed that the data vectors z; are

p-dimensional and the sample size is n.

4.1 Test 1: = po with known T =1
Test statistic:

T = n(Z — po)'T1 " (£ — po)- 1)

Distribution under null hypothesis is Chi-squared (An-
derson, page 73):

T~ x:.
The alternate hypothesis is Ha : p # po; the distri-

bution under the alternate hypothesis is non-central
Chi-squared (Anderson, page 77):

T~ x?,a

where d = n{(p— po)tET Y (4 — o) is the non-centrality
parameter.
Reference: Anderson, pages 73, 77.

4.2 Test 2: = fo with unknown &
Hotelling’s Test statistic:

R L T D

Distribution under null hypothesis (F):
T ~ Fpn—p-

The alternate hypothesis is Hy : p # po; the distri-
bution under the alternate hypothesis is non-central
F:

T~ Fp,n—p,d
where d = n(u—;.m)tE_l(,u.—po) is the non-centrality
parameter.
Reference: Anderson page 163.

4.3 Test 8: ¥ = Lo with known p = iy
Let

0= Y (@i—p)(@i—p)t = (n=1)S+E—p1) (@) -

and
A= (e/n)P“NIC’EEl{"/z exp(—tr(CZ51)/2) -

Test statistic:

T = —2logA. (3)
Distribution under null hypothesis is Chi-squared:
T ~ Xp(p+1)/2-

The alternate hypothesis is Hy : T # To; the distri-
bution under the alternate hypothesis is unknown.
Reference: Anderson page 249, 434, 436.

4.4 Test 4: £ = Lo with unknown p
Let
B =(n-1)5,

and
A = (e/(n—1))P»~ V3| BE5 }(*~ V2 exp(~tr(BE5 1) /2)

Test statistic:
T = —2log A (4)

Distribution under null hypothesis is Chi-squared:

T ~ Xp(p+1)/3°

The alternate hypothesis is Hq : ¥ # o; the distri-
bution under the alternate hypothesis is unknown.
Reference: Anderson page 249, 434, 436.

4.5 Test 5: ¥ =X and p = o
Define
B=(n—-1)S

and
A = (e/n)p™?BEM?
exp (~[tr(BS5 1) +n(E — po)' T (2 — 1o)l/2)

Test statistic:
T =—2logA (5)

Distribution under true null hypothesis is Chi-
squared:

2
T ~ Xp(p+1)/3+p

The alternate hypothesis is Ha : £ # Xo, and p #
Lo; the distribution under the alternate hypothesis is
unknown.

Reference: Anderson page 442.

5 Validating theory and software

To validate computer vision software two checks
have to be performed. The first check is that the
theory is correct: the theoretically derived null distri-
butions of the test statistics are actually correct. The
second check is that the software 1s correct: the imple-
mentation is exactly what the theory dictates. Both
the checks can be done by computing the empirical
distributions and comparing them with the theoreti-
cally derived distributions. In the next subsection we
describe how we empirically compute the null distri-
butions of the five test statistics, and in the follow-
ing section we describe how we use the Kolmogorov-
Smirnov test to check if the empirical distribution and
the theoretically-derived distributions are same.

5.1 Empirical null distributions
In order to generate the empirical null distributions
we proceed as follows.

1. Choose some values for the multivariate Gaussian
population parameters p, and %.

2. Generate n samples from the population.
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3. Compute the value of the statistic, T, for the test
you are verifying.

4. Repeat steps 2 and 3 M times to get Tj, 1 =

5. The empirical distribution T can be computed by
computing the histogram of T;.

5.2 Kolmogorov-Smirnov tests

The Kolmogorov-Smirnov (KS) test tests whether
two distributions are alike. The KS test uses the fact
that the maximum absolute difference between the
empirical cumulative distribution (the KS test statis-
tic) and the theoretical cumulative distribution has a
known distribution (the null distribution). For a more
detailed discussion on the KS test see [16].

The Kolmogorov-Smirnov test was performed to
check if the empirical distributions and the theoretical
distributions were close enough. All the empirically
computed null distributions passed the KS test. Thus
we have confirmed that the theoretical derivations of
the null distributions is correct and the software im-
plementing the theory is also correct.

6 Application: 3D Parameter Estima-
tion
We applied the hypothesis testing methodology to
validate the 3D parameter estimation software used
for constructing the ground truth model from the RA-
DIUS model board data set. In this section we de-
scribe the problem and the optimization approach.

6.1 Site Model Construction

The task is to construct 3D object models from the
detected 2D image features and the known geometric
constraints of the observed perspective projections of
the 3D objects. The data set consists of the 78 im-
ages from the two RADIUS model boards and the 3D
coordinates of some building vertices. Since the pur-
pose of this site model construction was to establish
ground truth for automatic site model construction
algorithms, the corresponding points of the building
vertices that were observable on the images were iden-
tified and located manually. Also 3D positions of a
few of the building vertices are known. A simultane-
ous estimation of the interior parameters and exterior
orientation parameters of the cameras was done by
setting up and solving a very large photogrammetric
resection problem. Then using these camera parame-
ters a multi-image triangulation was performed. This
yielded the noisy estimates for the building vertices
that was the input to the site model construction soft-
ware whose testing we describe.

The geometric constraint procedure takes the pho-
togrammetrically estimated 3D point positions and
their covariance matrices as observations. It use the
partial models of the buildings to generate constraints
on the building parameters. To estimate the optimal
3D parameters that satisfy the relations in the partial
models, a constrained optimization model is solved.
By error propagation we derived the covariance ma-
trix of the estimated building vertices which are now
guaranteed to satisfy the given constraints. See the

paper Site Model Construction Using Geometric Con-
strained Optimizaiion in this IUW proceedings for de-
tails on this problem.

6.2 Constrained Optimization

The observed 3D points and the associated covari-
ance matrix ¥ are obtained from triangulation. Hav-
ing the partial object model and the perturbation
model, we can define the estimation problem. Let
© € IR™ denote the parameters, X' € IR™ denote
the observations, and p(X’ | ©) denote the likelihood
function. In the building estimation problem, the pa-
rameters are the coordinates of the points, the normal
vectors and distance constants of the planes, and the
direction cosines and reference points of the lines.

Assume that the given optimality criterion is the
maximum posterior probability, a Bayesian approach
can be used to transform the problem into a max-
imum likelihood problem with constraints. Let the
constraints be denoted by © € Co C IR™. The prob-
lem can be expressed as a constrained optimization
problem.

min{~-p(X' | ©) | © € Co}

The problem can be reformulated by taking logarithm
of the probability function. Under the assumption of
Gaussian noise, we obtain a least squares model. The
objective function is the sum of squared errors between
the estimated point positions and the observed points.

min  {f(6) := (X' - X)TE}(X' - X))

subject to @ e€Ces

where X denotes the unknown 3D points, and the fea-

sible set Cg is determined by the partial model and

the unit length constraint for the directional vectors.
If the noise effecting different 3D points are inde-

pendent, the objective function can be rewritten as

£(©) =Y (xt — %) T8 — i)

i=1

where T; is the covariance matrix of the ith point, and
K is the number of observed points.

7 Error Propagation

Once the constrained optimization produces a re-
sult, we use the error propagation approach [10] [14]
to transform the input error covariance matrix to the
output covariance matrix. In the building estimation

problem, we have the optimization model

min  f(©)
subject to h(®)=10
where f is the sum of squared errors between the es-

timated 3D points and the observed 3D points.
The Lagrangian function is

L(X',©,A) = f(X',0)+ ATh(©)
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Suppose that éi', ®, A) is a optimal point. From the
necessary conditions of a local minimum point, the

linearized model at the optimal point can be obtained
by solving [7] [15]

Q HT A\ _( -Bax (7)
H 0 AA 0
The Lagrangian matrix at the point of (ff ,©,A) can
be approximated by the Lagrangian matrix at the min-

imum if the error is small. Hence the linear model can
be approximated by

(% &57)(82)- ()

where
Q" = V3L(X',8,A)
= VIF(X',0)+ ) A V?hi(8)
j=1
B* = VEXE(X',C:),A) = Vgxf(X’,é))
H* = Vh(8)

Assume that the constraints are linearly indepen-
dent. Then the row vectors in matrix H* are linearly
independent. We can use the null space method to
compute the error propagation matrix J [7] [15].

Once the error propagation matrix is obtained, we
can propagate the covariance matrix of the observa-
tions ¥ to the output. The covariance matrix of the
estimated parameters, g, can be approximated by

Se = JEJT (8)

8 Experimental Methodology

To validate the optimization algorithm and the er-
ror propagation model, an experiment is needed. This
section describes the experimental methodology for
this validation.

8.1 Ideal Data Generators and Noise

Model

Three building types, the cubic box, the peak roof
house and the hip roof house, appear frequently in the
given sites. They are chosen as our prototype models
with unknown length, location and orientation param-
eters.

In the experiment, ideal data generators randomly
generate the ideal parameters for the prototype mod-
els and produce the ideal 3D points.

Assume that a 3D coordinate system z-y-z is used.
To simulate the site model situation, the ground is
assigned as the plane z = 0. Without losing general-
ity we assume that the ideal model parameters de-
termining the 3D positions of the building vertices
have uniform distributions. The center of the bot-
tom plane of a basic model is in a region defined by
[~2Zo, Zo0), [—¥o0, Yo); [— 20, z0). The basic model is ro-
tated on the ground with a random angle ¢ € [¢o, @1).

The three length parameters for the cubic box
model are denoted by a,b, ¢, with ag < a < a3,bo <
b<by,and g <c<ecy.

In this experiment the ranges of the parameters for
the cubic model are set as follows.

Zo Yo 20 Qo P1 G a3 by b1 co ¢

50 50 0 0 2x 30 60 30 60 30 &0

The peak roof model uses four length parameters,
a, b, ¢, d, where a, b, c are same as those in cubic model
and their ranges are the same. The height of the peak
roof has parameter d, with 10 < d < 20. The hip roof
model requires one more parameter e than the peak
roof model. The length of the roof edge is a — 2e, with
5<e<10.

For each building type, K ideal buildings are ran-
domly generated. Each one of these K buildings will
be associated with n experiments where Gaussian ran-
dom noise is added to each of the 3D coordinates of
the building and the constrained optimization is used
to estimate the building vertices that satisfy the var-
ious geometric constraints. As a result of these n ex-
periments, n estimates of the building parameters are
produced. It is these n estimates on which the hy-
pothesis test statistics will be computed. We call the
procedure to determine these n test statistics a trial.
Since there are K ideal buildings for each ideal build-
ing type, we can compute K test statistics. These K
statistics can then be used to test the hypothesis that-
their distribution is as the statistical theory of the test
says it should be.

The noise values are independently sampled from a
Gaussian distribution A(0,0%I), where o is the stan-
dard deviations of the random variables é§z, 6y, 6z. We
repeated each experiment o set to 1.0, 2.0 or 3.0. The
validation results for all three different standard devi-
ations is similar. So here we just discuss the validation
for the standard deviation begin equal to 3.0. K is set
at 100. n is set at 500 for cubic model and 700 for
other models.

8.2 Statistic Test

At each trial a sample of model parameters and
corresponding ideal 3D points are produced by the
ideal data generator. Let the ideal parameters be
denoted by ©. For each ideal building instance

having parameters ©, n independent perturbations
{AX;, i=1,...,n}are generated from the noise model
with distribution A'(0,X). By adding the pertur-
bations to the ideal points, the perturbed data set
{X!,X},...,X.} is generated. For each of the per-
turbed data {X}, X},..., X;}, an optimal solution ©;
is computed by solving

min  f(X1,6:)
h((':'),') =0

1 =1 aun
subject to

Thus, we have n estimates {6, i=1,..,n}
Using equation (8), we can transform the input co-
variance matrix through the error propagation matrix
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to the output. If the linear model is valid, the esti-
mated parameters {©, i = 1,...,n} should be approx-
imately distributed as A(©, JZJT).

Let AS; denote &; — 6,4 =1,...,n Let yg =
0 and £y = JEJT. Under the linearized model,
{A®©;, i=1,...,n} have distribution A(ug, Zo). Con-
sider {A®;, i = 1,..,n} as a random sample from
a Gaussian distribution A'(u, X), we can perform any
one of the five hypothesis test.” Here we just discuss
our results on hypothesis Hs: u = yg and £ = &j.
Results on the other hypothesis tests are similar.

The significance level o is selected to be 0.05. Un-
der the null hypothesis, the computed statistics of the
mean and covariance tests have the null distributions.
This can be verified by using Kolmogorov-Smirnov
test (K-S test) on the K test statistics generated from
the K trials.

8.3 Range Space Analysis

The standard hypothesis test methods require that
the covariance matrix be positive definite. However
the output covariance of a constrained optimization
is generally semi-positive definite, precisely because of
the constraints.

Theorem 1 Suppose thai not all of the derivatives of
the constraint equations are equal to zero at the local
minimum point, then the propagated error covariance

JBJIT is singular.

Proof : From the given condition we know that the
derivative matrix H is not a zero matrix, i.e.,

Bhy
1]

H = ) #0

Bhp
8@

Left multiply equation A® = JAX with H.
HAOG =HJAX

Because both (X, ©*,A*) and (X + AX,0* 4+ A, A* +
AA) are local minimum points of the optimization,
the following equation is satisfied,

HAO = 0.
Hence
0=HJAX
Since the formula holds for any AX, it implies that
0=HJ (9)

Now we use this result to prove that JXJ7 is singular.
Left multiply JEJ7T with H and right multiply it with
HT. From (9) we have

HJIZJTHT = 020

Since H is not a zero matrix, JE£J7 must be singular.
ad

To utilize the standard hypothesis technology, we
project a semi-positive definite matrix onto its range
space. Suppose that a nxn covariance matrix Yo hask
nonzero eigenvalues wy, ..., w and the associated unit
eigenvectors vy, ...,v;. A basis of the range space of
Zp can be composed by

B = (UI: '“1'”71)

Using B to perform matrix transform as follows.

‘ un 0 .

0 wa 0

BTSB=%p = . s
0 : : “ Wg

Let BL be a basis matrix of the null space of matrix
Yo. It is obvious that (B, B') is orthonormal. In
the experiment, we check whether (B+)T A® has very
small variances (caused by round off errors and non-
linear items). If it is true, we conduct the hypothesis
test on variables BT A® with covariance matrix ¥ B-

Due to the round-off error and nonlinear items, the
zero eigenvalues of matrix ¥o may not be exactly zero.
We use a small threshold to distinguish the zero eigen-
values and the and nonzero eigenvalues. In all our ex-
periments the threshold is set to 106 times the max-
imum eigenvalue.

For the cubic model, the range space of the output
error covariance matrix has 7 dimensions. This can be
understand as follows. Consider a cubic house whose
faces are all at right angles to each other. Count the
number of degrees of freedom. The size of a cubic
model is defined by 3 independent parameters. The
location of the model is specified by 3 translation pa-
rameters in 3D space. In the experiments, the normal
vector of the cube roof is fix to the vertical direction.
The only possible rotation is around the vertical axis of
the model. Thus the total number of independent pa-
rameters is seven. For the peak roof model the above
analysis is similar, except that two more parameters
are need to determine the roof height and the ridge
position. (In the partial model we do not fix the hor-
izontal position of the roof ridge to the center of the
building.) Thus the range space of the output covari-
ance matrix for the peak roof model has 9 dimensions.
The hip roof model inherits all the parameters of the
peak roof model. It requires two more parameters to
determine how much of the ridge being cut from each
of the two ends (they are assumed to be independent).
These parameters can be thought of as the relative
starting and ending points for the the ridge. Thus the
range space of the output covariance matrix for the
hip roof model has 11 dimensions.

9 Experimental Results

In this section we will show the experimental results
on the cubic model, the peak roof model and the hip
roof model.
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sample | signif. | reject null sample | sigmf. | K-S
test method trials | size level | rate test method distribution size level | test
test u, known X 100 500 0.0b 0.06 test u, known X XZ 100 0.391 | pass
test u, unknown ¥ | 100 500 0.05 0.05 test p, unk. £ :_ 100 0.217 | pass
test X, known p 100 500 0.056 0.07 - 2’ _ xzp' J 100 0.866
test %, unknown p | 100 | 500 | 0.05 | 0.06 ’ Bl Xeer)/2 : RS
test p and & 100 | 500 | 0.05 | 0.05 test I, unk. 4| Xppi1)2 100 | 0.881. | pass

test 4 and Xp(p+1)/2+p 100 0.700 | pass

9.1 Test of Cubic Model with ¢ = 3.0 i T

The experimental results for the cubic model are Yast wdibicd trﬁls sa.ﬁn;lz ¢ sllgml. rejid
summaryized in the table below. The null hypothesis e 100 700 ; ‘665 Eaﬂg
is not rejected at a .05 significance level. t::t B un.];wrill 100 700 0.05 0.03

The experimental results of hypothesis test for cu- test %’ Eooms 100 700 0.05 0.04
bic model with o = 3.0 is shown in figure 1, the = axis bast B unk H 100 700 0.05 0.04
is the statistic used in the test and the y axisis 1 — , test y,a.nd ;-,3”' 100 700 0:05 0:02

where « is the significance level.
Figure 1 shows the result of test mean and covari-
ance simultaneously.

1.0 — r .

1 - alpha

0.8 | i
o6t} p sample density e
—— sample distribution
- --- null distribution function
— —- null density function
04 -
0.2 4
0.0 T et e ) A
10.0 0.0 30.0 40.0 50.0 60.0 70.0 80.0
statistic
Figure 1: Test mean and covariance : cubic model,
o=3

9.1.1 K-S test

For the K-S test result the value of pis 7. All statis-
tics pass the K-S test at a significance level of greater
than .2. Thus, the optimization model and the error
propagation model are validated.

9.2 Test of Peak Roof Model with ¢ = 3.0

The table below summarizes the results for the peak
roof model. The null hypothesis is not rejected at the
.05 significance level.

The experimental results of hypothesis test for the
peak roof model with o = 3.0 is shown in figure 2, the

z axis is the statistic used in the test and the y axis
is 1 — e, where « is the significance level.

Figure 2 shows the result of test mean and covari-
ance simultaneously.

9.2.1 K-S test

1 - alpha

For the K-S test result, the value of p is 9. Using
significance level All statistics pass the K-S test at a
significance level of greater than .2. Thus, the opti-
mization model and the error propagation model for
the peak roof model are validated.

1.0 T T p— -
08+ 4
Ber — sample density 1
sample distribution
- - -~ null distribution function
— — - null density function
04
02 r ]
0.0 -
20.0 100.0
statistic
Figure 2: Test mean and covariance : peak roof model,
o=3
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9.3 Test of Hip Roof Model with ¢ = 3.0
9.3.1 Statistic distribution

The experimental result of hypothesis test for hip roof
model with o = 3.0 is shown in figure 3,where the =
axis represents the statistic used in the test and the y
axis represents 1 — ex, where « is the significance level.

Figure 3 shows the result of test mean and covari-
ance simultaneously.

9.3.2 K-S test

The value of p for the K-S test is 11. All statistics pass
the K-S test at a significance level of greater than .09.
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Figure 3: Test mean and covariance : hip roof model,
=3
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