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ABSTRACT

In this survey we review the image processing
literature on the various approaches and models inves-
tigators have used for textures. These include statis-
tical approaches of autocorrelation function, optical
transforms, digital transforms, textural edgeness,
structural element, gray tomne co-occurrence, run
lengths, and auto-regressive models. We discuss and
generalize some structural approaches to texture based
on more complex primitives than gray tone. We conclude
with some structural-statistical generalizations which
apply the statistical techniques to the structural
primitives.

I. INTRODUCTICN

Texture is an important characteristic for the
analysis of many types of images. It can be seen in
all images from multi-spectral scanner images obtained
from aircraft or satellite platforms (which the remote
sensing community analyzes) to microsccpic images of
cell cultures or tissue samples (which the bio-medical
community analyzes). Despite its importance and ubi-
quity in image data, a precise definition of texture
does not exist. 1In this paper we survey and generalize
some of the extraction techniques and models which
investigators have been using to measure textural
Properties.

The image texture we consider is non-figurative
and cellular. We think of this kind of texture as an
organized area phenomena. When it is decomposable, it
has two basic dimensions on which it may be described.
The first dimension is for describing the primitives
out of which the image texture is composed and the
second dimension is for the degcription of the spatial
quEnﬂence or interaction between the primitives of an
image texture. The first dimension is concerned with
tonal primitives or local properties, and the second
dimension is concerned with the spatial organization
of the tonal primitives. '

Tonal primitives are regions with tonal proper-
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been done attempting to map semantic meaning into pre-
cise properties of tonal primitives and their spatial
distributional properties.

To objectively use the tone and textural pattern
elements, the concepts of tonal and textural feature
must be explicitly defined., With an explicit defini-
tion, we discover that tone and texture are not inde-
pendent concepts. They bear an inextricable relation-
ship to one another very much like the relation
between a particle and a wave. There really is nothing
that is only particle or only wave. Whatever exists
has both particle and wave properties and depending on
the situation, the particle or wave properties may
predominate, Similarly, in the image context, tone
and texture are always there, although at times one
property can dominate the other and we tend to speak
of only tone or only texture. Hence, when we make an
explicit definition of tone and texture, we are not
defining two concepts: we are defining one tone—
texture concept.

The basic inter-relationships in the tone-texture
concept are the following. When a small-area patch of
an image has little variation of tonal primitives, the
dominant property of that area is tone. When a small-
area patch has wide variation of tonal primitives, the
dominant property of that area is texture. Crucial in
this distinction are the size of the small-area patch,
the relative sizes and types of tonal primitives, and
the number and placement or arrangement of the dis-
tinguishable primitives. As the number of distinguish-
able tonal primitives decreases, the tonal properties
will predominate. In fact, when the small-area patch
is only the size of one resclution cell, so that there
is only one discrete feature, the only property pre-
sent is simple gray tone. As the number of distin-
guishable tonal primitives increases within the small-
area patch, the texture property will dominate. When
the spatial pattern in the tonal primitives is random
and the gray tone variation between primitives is
wide, a fine texture results. As the spatial pattern
becomes more definite and the tonal regions involve
more and more resolution cells, a coarser texture

resultssh.

In summary, to characterize texture, we must
characterize the tonal primitive properties as well as
characterize the spatial inter-relationships between
them. This implies that texture-tone is really a two-
layered structure, the first layer having to do with
specifying the local properties which manifest them-
selves in teonal primitives and the second layer having
to do with specifying the organization among the tonal
primitives. We, therefore, would expect that methods
designed to characterize texture would have parts de-
voted to analyzing each of these aspects of texture.
In the review of the work done to date, we will dis-~
cover that each of the existing methods tends to
emphasize one or the other aspect and tends not to
treat each aspect equally.



II. REVIEW OF THE LITERATURE ON TEXTURE MODELS

There have been eight statistical approaches to
the measurement and characterization of image texture:
autocorrelation functions, optical transforms, digital
transforms, textural edgeness, structural elements,
spatial gray tone co-occurrence probabilities, gray
tone run lengths, and auto-regressive models. An early
review of some of these approaches is given by

Hawkins 36- The first three of these approaches are
related in that they all measure spatial frequency
directly or indirectly. Spatial frequency is related
to texture because fine textures are rich in high
spatial frequencies while coarse textures are rich in
low spatial frequencies.

An alternative to viewing texture as spatial fre-
quency distribution is to view texture as amount of
edge per unit area. Coarse textures have a small num-
ber of edges per unit area. Fine textures have a high
number of edges per unit area,
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The structural element approach of Serra and

Matheron49 uses a matching procedure to detect the
spatial regularity of shapes called structural elements
in a binary image. When the structural elements them—
selves are single resolution cells, the information
provided by this approach is the autocorrelation fune-
tion of the binary image. By using larger and more
complex shapes, a more generalized autocorrelation can
be computed.

The gray tone spatial dependence approach charac-
terizes texture by the co-occurrence of its gray tones.
Coarse textures are those for which the distribution
changes only slightly with distance and fine textures
are those for which the distribution changes rapidly
with distance.

The gray level run length approach characterizes
coarse textures as having many pixels in an average
constant gray tone run and fine textures as having few
pixels in an average gray tone run.

The auto~regressive model is a way to use linear
estimates of a pixel's gray tone given the gray tones
in a neighborhood containing it in order to character-
ize texture. For coarse textures, the coefficients
will all be similar. For fine textures, the coeffi-
cients will have wide variation.

The power of the spatial frequency approach to
texture is the familiarity we have with these concepts.,
However, one of the inherent problems is in regard to
gray tone calibration of the image. The procedures are
not invariant under even a linear translation of gray
tone. To compensate for this, probability quantizing
can be employed. But, the price paid for the invar-
iance of the quantized images under monotonic gray tone
transformations is the resulting loss of gray tone
pPrecision in the quantized image. Weszka, Dyer, and

Rosenfeld92 compare the effectiveness of some of these
techniques for terrain classification. They conclude
that spatial frequency approaches perform signifi-
cantly poorer than the other approaches,

The power of the structural element approach is
that it emphasizes the shape aspects of the tonal
pPrimitives. Its weakness is that it can only do so for
binary images.

The power of the co-occurrence approach is that it
characterizes the spatial inter-relationships of the
gray tones in a textural pattern and can do so in a way
that is invariant under monotonic gray tomne

transformations., Its weakness is that it does not cap-
ture the shape aspects of the tonal primitives.

Hence, it is not likely to work well for textures com- f
posed of large-area primitives. .

The power of the auto-regressive linear estimator
approach is that it is easy to use the estimator in a
mode which synthesizes textures from any initially
given linear estimator. In this sense, the auto-
regressive approach is sufficient to capture every-
thing about a texture. TIts weakness is that the tex- E
tures it can characterize are likely to consist mostly
of micro-textures.

II.1 The Autocorrelation Function and Texture

From one point of view, texture relates to the
spatial size of the tonal primitives on an image.
Tonal primitives of larger size are indicative of
coarser textures; tonal primitives of smaller size are
indicative of finer textures. The autocorrelation
function is a feature which tells about the size of
the tonal primitives.

We describe the autocorrelation function with the
help of a thought experiment. Consider two image
transparencies which are exact copies of one another.
Overlay one transparency on top of the other and with
a uniform source of light, measure the average light
transmitted through the double transparency. Now,
translate one transparency relative to the other and
measure only the average light transmitted through the
portion of the image where one transparency overlaps
the other. A graph of these measurements as a func-
tion of the (x,¥) translated positions and normalized
with respect to the (0,0) translation depicts the two-
dimensional autocorrelation function of the image
transparency.

Let I{u,v) denote the transmission of an image
transparency at position (u,v). We assume that out-

side some bounded rectangular region 0 fucx< LX and
0<wv < L& the image transmission is zero. Let (x,y)

denote the x~translation and y-translation, respec-
tively. The autocorrelation function for the image
transparency d is formally defined by:

" &
(Lx_ . )(Ly_ D ij I(u,v) I{utx,v+y)du dv

f_%— ff Iz(u,v)du dv
Xy e

p(x,y) =

rxl < Lx and |y| < Ly

If the tonal primitives on the image are rela-
tively large, then the autocorrelation will drop off
slowly with distance. If the tonal primitives are
small, then the autocorrelation will drop off quickly
with distance. To the extent that the tonal primitives
are spatially periodic, the autocorrelation function
will drop off and rise again in a periodic manner.

The relationship between the autocorrelation function
and the power spectral density function is well known:

they are Fourier Transforms of one another (Yaglomgs).




The tonal primitive in the autocorrelation model
is the gray tone. The spatial organization is charac-
terized by the correlation coefficient which is a
measure of the linear dependence one pixel has on
another.
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An experiment was carried out by Kaizer to see
if the autocorrelation function had any relationship to
the texture which photo-interpreters see in images. He
used a series of seven aerial photographs of an Arctic
region (see Figure 1) and determined the autocorrela-
tion function of the images with a spatial correlator
which worked in a manner similar to the one envisioned
in our thought experiment. Kaizer assumed the auto-
correlation function was circularly symmetric and com-
puted it only as a function of radial distance. Then
for each image, he found the distance d such that the
autocorrelation function p at d took the value

1 1

SHpd] =g

Kaizer then asked 20 subjects to rank the seven
images on a scale from fipe detail to coarse detail.
He correlated the rankings with the distances corre-

sponding to the (%)th value of the autocorrelation

function. He found a correlation coefficient of .99.
This established that at least for his data set, the
autocorrelation function and the subjects were mea-
suring the same kind of textural features.

Kaizer noticed, however, that even though there

was a high degree of correlation between phl(%) and
subject rankings, some subjects put first what
D_l(%) put fifth. Upon further investigation, he dis-

covered that a relatively flat background (indicative
of high frequency or fime texture) can be interpreted
as a fine textured or coarse textured area. This
phenomena is not unusual and actually points out a
fundamental characteristic of texture: it canmot be
analyzed without a reference frame of tonal primitive
being stated or implied. For any smooth gray tone
surface, there exists a scale such that when the sur-
face is examined, it has no texture. Then as resolu-
tion increases, it takes on a fine texture and then a
coarse texture. In Kaizer's situation, the resolution
of his spatial correlator was not good enough to pick
up the fine texture which some of his subjects did in
an area which had a weak but fine texture.

I1.2 Optical Processing Methods and Texture

Edward 0'Neill's article61 on spatial filtering
introduced the engineering community to the fact that
optical systems can perform filtering of the kind used
in communication systems. In the case of the optical
systems, however, the filtering is two-dimensional.
The basis for the filtering capability of optical
systems lies in the fact that the light amplitude dis-
tributions at the front and back focal planes of a lens
are Fourier Transforms of one another. The light dis-
tribution produced by the lens is more commonly known
as the Fraunhofer diffraction pattern. Thus, optical
methods facilitate two-dimensional frequency analysis
of images.

The paper by Cutrona et 31.12 provides a good
review of optical processing methods for the interes-

ted reader. More recent books by Goodmanzz,

Preston66

area,

, and ShulmanBl comprehensively survey the
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In this section we describe the experiments done
by Lendaris and Stanley, and others using optical pro-
cessing methods on aerial or satellite imagery.

Lendaris and Stanleyqs’46 illuminated small circular

sections of low altitude aerial photography and used
the Fraunhofer diffraction pattern as features for
identifying the sections. The circular sections repre-
sented a circular area on the ground of 750 feet. The
major category distinction they were interested in
making was man-made versus non man-made. They further
subdivided the man-made category into roads, road
intersections, buildings, and orchards.

The pattern vectors they used from the diffraction
pattern consisted of 40 components. Twenty components
were averages of the energy in annular regins of the
diffraction pattern md 20 were averages of the energy

in 9° wedges of the diffraction pattern.
over 90 percent identification accuracy.

They obtained

Egbert et al.l7 used an optical processing system
to examine the texture on LANDSAT imagery over Kansas.
They used circular areas corresponding to a ground
diameter of about 23 miles and looked at the diffrac-
tion patterns for the areas when they were snow covered
and when they were not snow covered. They used a
Recognition System diffraction pattern sampling unit
having 23 sector wedges and 32 annular rings to sample
and measure the diffraction patterns. They were able
to interpret the resulting angular orientation graphs
in terms of dominant drainage patterns and roads, but
were not able to interpret the spatial frequency graphs
which all seem to have had the same character: the
higher the spatial frequency, the less the energy in
that frequency band.

Honeywell Systems and Research Division has done
work using optical processing on aerial images to ‘iden-
tify species of trees. Using imagery obtained from
Itasca State Park in northern Minnesota, photo-
interpreters identified five (mixture) species of trees
on the basis of the texture: Upland Hardwecods, Jack
pine overstory/Aspen understory, Aspen overstory/Upland
Hardwoods understory, Red pine overstory/Aspen under-
story, and Aspen. They achieved classification accur-
acy of over 90 percent.

I1.3 Digital Transform Methods and Texture

In the digital transform method of texture analy-
sis, the digital image is typically divided into a set
of non-overlapping small square subimages. Suppose
the size of the subimage is n x n resolution cells,

2
then the n” gray tones in the subimage can be thought

2 2
of as the n” components of an n -dimensional vector.
The set of the subimages then constitutes a set of

nz—dimensional vectors. In the transform technique,
each of these vectors is re-expressed in a new coordi-
nate system. The Fourier Transform uses the sine-
cosine basis set. The Hadamard Transform uses the
Walsh function basis set, etc. The point to the trans-
formation is that the basis vectors of the new coordi-
nate system have an interpretation that relates to
spatial frequency or sequency and since frequency is a
close relative of texture, such transformaticns can be
useful.

The tonal primitive in spatial frequency
(sequency) models is the gray tone. The spatial
organization is characterized by the kind of linear
dependence which measures projection lengths.



Gramenop0u10523 used a transform technique employ-
ing the sine-cosine basis vectors (and implemented it
with the FFT algorithm) on ERTS imagery. He was inter-
ested in the power of texture and spatial pattern to
do terrain type recognition. He used subimages of 32
by 32 resolution cells and found that on a Phoenix,
Arizona LANDSAT image 1049-17324~5, spatial frequencies
larger than 3.5 cycles/km and smaller than 5.9 cycles/
km contain most of the information needed to discrimi-
nate between terrain types. His terrain classes were:
clouds, water, desert, farms, mountains, urban, river-
bed, and cloud shadows. He achieved an overall
identification accuracy of 87 percent.

Horning and Smith37 have done work similar to
Gramenopoulos, but with aerial multispectral scanner
imagery instead of LANDSAT imagery,

Kirvida and Johnsorﬁ3 compared the fast Fourier,
Hadamard, and Slant Transforms for textural features on
LANDSAT imagery over Minnesota., They used 8 x 8 sub-
images and five categories: Hardwoods, Conifers,

Open, City, Water. Using only spectral information,
they obtained 74 percent correct identification
accuracy. When they added textural information, they
increased their identification accuracy to 99 percent.
They found little difference between the different

See also Kirvidfz.

transform methods.
51 5 . —
Maurer obtained encouraging results classifying
crops from low altitude color photography on the basis
of a one-dimensional Fourier series taken on a direc-
tion orthogonal to the rows.

Bajcsy and LiebermanB’A divided the image into
square windows and used the two-dimensional power
spectrum of each window. They expressed the power
spectrum in a polar coordinate system of radius r
versus angle @, treating the power spectrum as two
independent one-dimensional functions of r and @.
Directional textures tend to have peaks in the power
spectrum as a function of @. Blob-like textures tend
to have peaks in the power spectrum as a function of r.
They showed that texture gradients can be measured by
locating the trends of relative maxima of r or @ as a
function of the position of the window whose power
spectrum is being taken.

II1.4 Textural Edgeness

The autocorrelation function, the optical trans-
forms, and digital transforms basically all reference
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texture to spatial frequency. Rosenfeld and Troy

and Rosenfeld and Thurston76 conceive of texture not
in terms of spatial frequency but in terms of edgeness
per unit area. An edge passing through a resolution
cell can be detected by comparing the values for local
properties obtained in pairs of nonoverlapping neigh-
borhoods boardering the resolution cell. To detect
microedges, small neighborhoods can be used. To
detect macroedges, large neighborheods can be used.

The local property which Rosenfeld and Thurston
suggested was the quick Roberts gradient (the sum of
the absolute value of the differences between diagon-
ally opposite neighboring pixels). Thus, a measure of
texture for any subimage can be obtained by computing
the Roberts gradient image for the subimage and from
it determining the average value of the gradient in
the subimage.

Sutton and Hall83 extend Rosenfeld and Thurston's

idea by making the gradient a function of the dis-
tance between the pixels. Thus, for every distance d
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and subimage I defined over neighborhood N, they

compute:

(i,j)eN
+ | T(1,$)-T(4,34d) [+] 1(1,3)-1(1,5-d) |}

g(d) = {II(i,j)—I(i+d,j)]+11(i,j)—1(i-d,j)[

The curve of g(d) is like the graph of the minus auto-
correlation function translated vertically.

Sutton and Hall applied this textural measure in a
pulmonary disease identification experiment and obtain-
ed identification accuracy in the 80 percentile range
for discriminating between normal and abnormal lungs
when using a 128 x 128 subimage.

Triendlg0 measures degree of edgeness by filtering
the image with a 3 x 3 averaging filter and a2 3 x 3
Laplacian filter. The two resulting filtered images
are then smoothed with an 11 x 11 smoothing filter.
The two values of average tone and roughness obtained
from the low and high frequency filtered image can be
used as textural features.

Hsu38 determines textural edgeness by computing
gradient-like measures for the gray tones in a neigh-
borhood. 1If N denotes the set of resolution cells in a
neighborhood about a pixel, and 8. is the gray tone of

the center pixel, p is the mean gray tone in the neigh-
borhood and p is a metric, then Hsu suggests that:

E p(I(i,j),u), Z

n(I(i,j),gC), and p(¥,8.)
(i,3)eN (1,3)eN

are all appropriate measures for textural edgeness at
a pixel.

II.5 Texture and Mathematical Morphology

A structural element and filtering approach to
: F 49

texture on binary images was proposed by Matheron
and Serrf Their basic idea is to define a struc-
tural element as a set of resolution cells constituting
a specific shape such as a line or a square and to
generate a new binary image by translating the struc-
tural element through the image and eroding by the
structural element the figures formed by contiguous
resolution cells having the value 1. The textural
features can be obtained from the new binary image by
counting the number of resolution cells having the
value 1. The structural element approach of Serra and
Matherson is the basis of the Leitz texture analyses.

(Miiller and Hermansg, Mﬁllersg, Serrajs), The approach
has found wide application in the quantitative analysis
of micro-structures in materials science and biology.

To make these ideas precise, we first define the
translate of a set. Let Z be the set of integers Zr’
ZCE Zand Hg Z x Z. For any pair (i,i) € Z x Z, the
translate H(i,j) of H in the subset Zr 4 ZC is defined
by:

H(i,j) = {(m,n) e Zr X ZC | for some (k,%) € H,

m=5k+iand n= 3 + j}

Figure 2 illustrates a set and some of its translates.

Let Zr X ZC be the spatial domain of the given

binary image I and F be that subset of resolution
cells in Zr X ZC which take on the value 1 for image I.

T YT



The erosion FeH of F by H is defined by:
FeH = {(m,n) € Z x 2 [ H{m,n) < F}

The eroded image J obtained by eroding I with
structural element H is defined by:

J(i,j) = 1 if and only if (i,j) e FeH

The number of elements in the erosion FeH is propor-
tional to the area of the binary 1 figures in the
image. An interesting theoretical property of the
erosion is that any operation which is anti-extensive,
increasing, and idempotent must be made up of erosions
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(see MatheronEO, Serra ~, Lantuejoulqa).

Textural properties can be obtained from the
erosion process by appropriately parametrizing the
structural element and determining the number of ele-
ments of the erosion as a function of the parameter.
For example, in Figure 3 we consider a series of
structural elements each of two resolution cells in the
same line and separated by distances of 0 through 19.
The image in Figure 3 is then eroded by each of these
structural elements producing the eroded images of
Figure 3. In Figure 4, we illustrate a graph showing
the area of the erosion as a function of the distance
separating the two resolution cells of the structural
elements. A function such as that graphed in Figure 4
is called the covariance function. Notice how it has
relative maxima at distances which are multiples of
about 5 1/3 resolution cells. This implies that in the
horizontal direction there is a strong periodic compon-
ent in the original image of about 5 1/3 resoclution
cells,

The generalized covariance function can use more
complicated structural elements and summarizes the
texture information in the image. If H(d) is a struc-
tural element having two parts where d represents the
distance between these two parts, the generalized co-
variance function k for a binary image T is defined as:

k(d) = #FeH(d), where F = {(i,j) | I(i,j) = 1}

For the case where the structural element consists of
two resclution cells in the same line separated by
distance d, the generalized covariance reduces to the
auto-covariance function for the image I. The
generalized covariance function corresponding to more
complicated kinds of structural elements, however,
provides information not contained in the auto-covar-
iance function. Serra and Matheron show how the
generalized covariance function can determine mean
size of tonal features, mean free distance between
tonal features, etc.

I1.6 Spatial Gray Tone Dependence: Co-occurrence

One aspect of texture is concerned with the spa-
tlal distribution and spatial dependence among the

. ; 39 u
gray tones in a local area. Julesz first used graw
tone spatial dependence co-occurrence statistics in
texture discrimination experiments. Darling and

JosePh13 used statistics obtained from the nearest
Neiphbor gray tone transition matrix to measure this
dependence for satellite images of clouds and was able
to identify cloud types on the basis of their texture.

Bartels et al,5 and Weid et 31?3 used one-dimensional
Co~occurrence in a medical application. Rosenfeld and

et 7 24

lfUY and Haralick™ suggested two-dimensional spa-
tial dependence of the gray tones in a co-occurrence
Matrix for each fixed distance and/or angular spatial
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relationship; Haralick et al.32’33 used statistics of

this matrix as measures of texture in satellite

30,31

imagery (Haralick and Shanmugam ), aerial, and

microscopic imagery (Haralick and Shanmugamao). Chien

and Fulo showed the application of gray tone co-

occurrence to automated chest X-ray analysis.

Pressman showed the application to cervical cell

discrimination. Chen and Pavlidisgused co=occurrence
in conjunction with a split and merge procedure to
segment an image on the basis of texture. All these
studies achieved reasonable results on different
textures using gray tone co-occurrence.

Suppose the area to be analyzed for texture is
rectangular, and has Nc resolution cells in the hori-~
zontal direction, Nr resolution cells in the vertical

direction, and that the gray tone appearing in each

resolution cell is quantized to Ng levels. Let Lc =
{l,Z,...,NC} be the horizontal spatial domain, Lr =
{1,2,...,Nr} be the vertical spatial domain, and G =
{1,2,...,Ng} be the set of Ng quantized gray tones.

The set Lr X LC is the set of resolution cells of the

image ordered by their row-column designations. The
image I can be represented as a function which assigns
some gray tone in G to each resolution cell or pair of
coordinates in L_ x L ; I:L_ x L = G.

1 c T c

The gray tone co-occurrence can be specified in
a matrix of relative frequencies Pij with which two

neighboring resolution cells separated by distance d
occur on the image, one with gray tone i and the other
with gray tone j. Such matrices of spatial gray tone
dependence frequencies are symmetric and a function of
the angular relationship between the neighboring
resolution cells as well as a function of the distance

between them. For a 0° angular relationship, they
explicitly average the probability of a left-right-
transition of gray tome i to gray tone j within the
richt-left-transition probability. Figure 5 illu-
strates the set of all horizontal neighboring resolu-
tion cells separated by distance 1. This set, along
with the image gray tones, would be used to calculate
a distance 1 horizontal spatial gray tone dependence
matrix.

Formally, for angles quantized to 45° intervals,
the unnormalized frequencies are defined by:

n

P(i,3,d,0%) = H((k,1), (mm) e (L. x L) x
(Lr x LC) | kK -m=0, |2 -] =
d, I(k,1) = i, I{m,n) = j}
P(i.3,d,45%) = #H{{(k,1), (mn)) e (L x 1) x

(Lr X LC) | (k ~m=4d, 2 -n=-d)
or (k —=-m=-d, I -n =4d),

I(k,1) = i, I{m,n) = j}
P{i,j,d,90%) = #{((k,1),

(m,n)) e (Lr x LC) x

n

(erLC)I |k -m| =d, 2 -n=0,

I(k,1) = i, I{m,n) = j}



P(1,1,4,135%) = #{((k,1), (m,m) ¢ (L_x L) x
(Lr X Lc) | (k-m=4d, 2 -n =
d)or (k -m=+~d, £ -n = -d),
I(k,1) = i, I(m,n) = j},
where #f denotes the number of elements in the set.

Note that these matrices are symmetric; P(i,j;d,a)
= P(j,1i;d,a). The distance metric p implicit in the
above equations can be explicitly defined by
p((k,2), (m,n)) = max {’k - m‘, IE - nl}.

Consider Figure 6a, which represents a 4 x 4 image
with four gray tones, ranging from 0 to 3. Figure 6b
shows the general form of any gray tone spatial depen-
dence matrix. For example, the element in the (2,1)st

position of the distance 1 horizontal PH matrix is the

total number of times two gray tones of values 2 and 1
occurred horizontally adjacent to each other. To

determine this number, we count the number of pairs of
resolution cells in RH such that the first resolution

cell of the pair has gray tone 2 and the second reso-
lution cell of the pair has gray tone 1. In Figures

6c through 6f, we calculate all four distance 1 gray

tone spatial dependence matrices.

Using features calculated from the co—-occurrence

matrix (see Figure 7) Haralick et 31.33 performed a
number of identification experiments. On a set of
aerial imagery and eight terrain classes (0ld residen-
tial, new residential, lake, swamp, marsh, urban, rail-
road yard, scrub or wooded), an 82 percent correct
identification was obtained. On a LANDSAT Monterey
Bay, California image, an 84 percent correct identifi-
cation was obtained using 64 x 64 subimages and both
spectral and textural features on seven terrain classes:
coastal forest, woodlands, annual grasslands, urban
areas, large irrigated fields, small irrigated fields,
and water. On a set of sandstone photomicrographs, an
89 percent correct identification was obtained on five
sandstone classes: Dexter-L, Dexter-H, St. Peter,
Upper Muddy, and Gaskel,

The wide class of images on which they found that
spatial gray tone dependence carries much of the tex-
ture information is probably indicative of the power
and generality of this approach.

The approximate two dozen co-occurrence features
times the number of distance angle relationships the
co-occurrence matrices can be computed for lead to a
potentially large number of dependent features. Tou
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and Chang discuss an eigenvector-based feature
extraction approach to help alleviate thisg problem.

The experiments of Weszka et al.92 suggest that
the spatial frequency features and, therefore, the
autocorrelation feature are not as good measures of
texture as the co-occurrence features. We suspect that
the reason why co-occurrence probabilities have so much
more information than the autocorrelation function is
that there tends to be natural constraints between the
co-occurrence probabilities at one spatial distance
with those at another. By these relationships, a lot
of information at one spatial distance can determine
the smaller amount of informatiom in the autocorrela-
tion function at many spatial distances.

To illustrate this, consider the one-dimensional

conditional co~occurrence probabilities {pij(T)} for
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for some specific spatial distance t. Letting u be

the mean tone and Uz be the gray tone varaince, and p

3
be the probability of gray tone j occurring, the auto-*
correlation function can be written in terms of pij by

2 (L -wW@GE - pij(r)pj
p(r) = Lo

2
(¢}

Hence, for distance 2T we have

20 (-G - W ey 0,
p(2r) = 121

2
o4

Assuming the texture is Markov, we have a rela-
tionship between {pij(z)} and {pij(ZT}}. Namely,

pij(ZT) = kaik(T) ij(T)

The conditional co-occurrence at one distance can de-
termine the conditional co-occurrence probabilities at
another larger distance. Since for any distance, the
autocorrelation function is determined by the co-
occurrence probabilities, we have that to the extent
the texture is Markov, the co-occurrence probabilities
at one distance determine the autocorrelation function
at many distances.

Because the conditional co-occurrence probabili-
ties are based on a directed distance rather than the
undirected distances typically used in the symmetric
co~occurrence probabilities, some valuable information
may be lost in the symmetric approach. The extent to
which such information is lost has not been extensive-

ly studied (see Conners and Harlowll).

I1.7 A Textural Transform

We wish to construct an image J such that the
gray tome J(i,j) at resolution cell (1,3) in image J
indicates how common the texture pattern is in and
around resolution cell (i,j) of image I. We call the

image J the textural transform of I (Haralickzs).

For analysis of the micro-texture, the gray tone
J(i,j) can be a function of the gray tone I(i,j) and
its nearest neighbors.

J(i,3) = £(I(i-1,j-1), I(i-1,3), I(i-1,j+1),

1(i,3-1), I(i,3), I(i,j+1), I(i+l,j-1),
I(i+l,3), I(i+l,3+1))
Let us assume that this function f is an additive

effect of horizontal, right diagonal, vertical, and
left diagonal relationships. Then

J(i,3) fl(I(i,j-l), 1(1,3), I(4i,3+1))

(horizontal)

+ £, (T(d+1,3-1), I(1,3), I(i-1,3+1))
(right diagonal)

+ £4(I(i-1,3), I(d,3), I(i+1,i))

(vertical)




+ fa(I(i+1.j+1), 1(i,3), T(1-1.3-1))
(left diagonal)

But since we do not distinguish between horizontal-
left and horizontal-right, or right diagonal up-right
and right diagonal down-left, or vertical up and ver-
tical down, or left diagonal up-left and left diagonal
down-right, the functions fl’ f2’ f3, and f& have

additional symmetries. Assuming the spatial relation-
ships between which we do not distinguish contribute
additively, we obtain

J(i,3) = hl(I(i,j), I(i,j-1)) + hl(I(i,j),
I(i,j+1))  (horizomtal)
+ h,(I(1,3), I(i+1,3-1)) + hy(I(i,3),
I(i-1,3+1)) (right diagonal)
+ h3(1(i,j), I(i-1,3i)) + h3(1(i,j),
I(i+1,3))  (vertical)
+h,(1(4,5), I(1+1,3+1)) + h, (I{i,3),

I¢(i-1,3-1)) (left diagonal)

vhere the functions hl’ h2’ h3, and h4 are symmetric

functions of two arguments.

Since we want the h functions to indicate rela-
tive frequency of the gray tone spatial pattern, the
natural choice is to make each h the ce-occurrence
probability corresponding to the horizontal, right
diagonal, vertical, or left diagonal spatial relation-
ships.

This concept of textural transform can be gener-
alized to any spatial relationship in the following
way.

Let Zr X ZC be the set of resolution cells of an

image I (by row-column coordinates). Let G be the set
of gray tones possible to appear on image I. Let R be
a binary relation on Zr X Zc pairing together all those

resolution cells in the desired spatial relation. The
co-occurrence matrix P, P:G x G » [0,1], for image I
and binary relation R is defined by

P(i,§) = #{((a,b),(cwﬂ)eRLE(a,b)=1.and Le.dy=i}

The textural transform J, JiZox 2 (-=,») of image I

relative to function f is defined by

2

(a,b)eR(r,c)

I(r,c) = ﬁﬁT%TET F[P(I(r,c), I{a,b))]

) Assuming f to be the identity function, the mean-
ing of J(r,c) is as follows. The set R(r,c) is the set
of all those resolution cells in Zr X Zc in the desired

Spatial relation to resolution cell (r,c)., For any
resolution cell (a,b) e R(r,c), P(I(r,c), I(a,b)) is
the relative frequency by which the gray tone I{(r,c),
appearing at resolution cell (r,c), and the gray tone
I(a,b), appearing at resolution cell (a,b), co-occur
together in the desired spatial relation on the entire
image. The sum
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1
#R(r,

:E: P(I(xr,c), I(a,b))
(a,b) e R(r,c)

is just the sum of the relative frequencies of gray
tone co-occurrence over all resolution cells in the
specified relation to resolution (r,c). The factor

PR the reciprocal of the number of resolution

cells in the desired spatial relation to (r,c), is just
a normalizing factor.

Figure 8 illustrates 27 100 x 100 subimage of band
5 LANDSAT image 1247-15481 laid out according to their
proper relationships in the test area. Figure 9 illu-
strates the textural transforms of these subimages also
laid out according to their proper relationships in the
test area. Gray tones which are white are indicative
of frequently occurring textural patterns in the corre-
sponding area on the original subimage. Gray tones
which are black are indicative of infrequently occurr-
ing textural patterns in the corresponding area on the
original image. This means that the same land use
type, depending on how frequently it occurs, can be
black or white on the textural transform image.

Examining image (0,0) we notice that Thompson
Lake, a U-shaped white area on the lower left side of
the subimage and a white area on the right side of the
subimage have black tones on the transform image. On
image (0,1) Lake Chemung has a large enough area so
that its solid black texture appears as a middle gray
on the transform image. One image (2,3) Whitmore Lake
has a large enough area so that it appears white on the
transform image.

We will take a few enlargements of the subimages
and their transforms and interpret the textural trans-
form images in terms of the gray tone spatial depen-
dence patterns., Figure 10 shows an enlargement of
subimage (1,3) and its transform. Textures consisting
of white tones occurring mext to white or light gray
tones are the most infrequently cccurring textural
patterns and they appear as black in the transform
image. Finally, Figure 11 shows an enlargement of sub-
image (6,0) where white tones occurring together or
black tones occurring together are the most infrequent-
ly occurring textural patterns and they appear as black
in the transform image.

IT1.8 Generalized Gray Tone Spatial Dependence Models
for Texture

Given a specific kind of spatial neighborhood
(such as a 3 x 2 neighborhood or a 5 x 5 neighborhood)
and a subimage it is possible to compute or estimate
the joint probability distribution of the gray tone of
the neighborhood in the subimage. In the case of a
5 x 5 neighborhood, the joint distribution would be 25-
dimensional. The generalized gray tone spatial depen-—
dence model for texture is based on this joint distri-
bution. Here, the neighborhood is the primitive, the
arrangement of its gray tones is the property, and the
texture is characterized by the joint distribution of
the gray tones in the neighborhood.

Assuming equal prior probabilities, the probabil-
ity that any neighborhocd belongs to texture class k is
proportional to the probability of the arrangement of
the gray tones in the neighborhood as given by the
joint distribution for texture class k. A neighborhood
can be assigned to texture class k if the joint distri-
bution for class k is maximal.

The problem with the technique is the high dimen-
sionality for the probability distributions. Para-
metric representation of the distribution by its first



two moments naturally leads teo the characterization of
texture by the autocorrelation function or power spec-—
trum. Such approaches were discussed in Sections II.2
and II.3. Non-parametric representation of the distri-
bution by histogramming the high-dimensional distribu-
tions have sample size and storage problems. 1In the
remainder of this section, we review a discrimination
technique for representing the non-zero support for
these distributions.

Histogram approaches to representing the neighbor-
hood distribution function must pPay a heavy storage
penalty. For example, a 3 x 3 neighborhood with 4

quantized values for each gray tone requires 49 storage
locations (over 250,000). To handle this problem, Read

4
and Jayaramamurthya? and McCormick and Jayaramamurthy5
suggest using the set covering methodology of

Michalskisa and Michalski and McCormick55 to keep track
of those histogram bins which would be nen-empty. This
technique allows for the generalization of the observed
texture samples for each class and provides a simple

2
table look-up sort of decision rule (Haralick 6).
To see how this works, let the given type of
neighborhood contain N resolution cells and let G be

N
the set of quantized gray tonmes. Then G is the set of
all possible arrangements of gray tones in the neigh-

borhood.
ved neighborhoods of texture k, k =1,...,K.
assume that Skfn\sm =0 for k # m.

Let %{g GN be the training set of all obser-
We will

To generalize the training sets, we employ a

cylinder operator (Haralickzy). Let J be a subset of
the indexes from 1 to N; J < {1,...,N}. The cylinder

N -
operator yj operates on N-tuples of G constraining all

components indexed by J to remain fixed to the values
they currently hold and letting go free the values for
all components not indexed by J. 1In this manner, under
the W{Z,...,N} operator, the N-tuple (xl,...,xN)

becomes (*,x X} where * means any value.
L]

i %
Formally, for any A E;GN, we define the order #J cylin-
der operator WJ by:

N
,gN) e G l for some (al,..

¥o08) = {84 o ay) € A,

g, = a, for all j e J}

]

The cylinder operator is used to generalize the
samples of observed texture from each texture class by
creating a minimal cover of that class against all
other classes. A cover for class k is a collection of

subsets of GN
with Sk

each of which has non—-empty intersection
and empty intersection with S.»om # k. An

K
order-M cover of Sk against Kv) Sm is a collection

1
k

M0

m
m
. N
ngk of subsets of G, each subset in the collection
generalizing an N-tuple in Sk by an order-M or less
cylinder operator.

&é’v: aga |

k and

for some (xl,.. k

.,xN) e S

index set J, #7J <M, A=

LG - ) and
A R
ANS, = 8. w4 k)
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It is clear that when the observed sample sets Sk.
are disjoint, it is always possible to find a cover of

Sk since we can take the order M = § making (E/_N con—
k

tain precisely the singleton sets whose members are
elements of Sk. Hence, for large enough M, it is
M
1/}
always possible to maked{ik satisfy:

)c
S£

We will call an order-M cover minimal if by using cyl-
inder operators only of order less than M, equation
(1) cannot be satisfied,

(1)
k

sesU v as( U
A enc £
2

1
k

o

The labeling of neighborhoods by tgz}ure clg%s

can proceed in the following way. Let reres oy be

minimal covers. Let (8;5+..,8,) be an N-tuple of gray
1 N P &

tones from a neighborhood.
cover for class k and for no
it to class k. Hence, if:

If the N-tuple is in the
other class, then assign

(1) (81s--

.,gN) 3 USQ A and

A e K
(2) (gl,...,gN) ¢ Akg):f A, m# Kk,
m

then we assign the neighborhood to texture class k.
If there exists no class so that (1) and (2) are
simultaneously satisfied, then we reserve decision.

Using a decision rule similar to this but with a
definition for cover minimality which makes the cover
dependent on the order in which the N~tuples are en-

countered, Read and Jayaramamurthy67 achieved a 78
percent correct identification in distinguishing two
textures of chromatin samples and artifact samples
from pap smears using a 3 x 2 neighborhood and a 4
gray level quantization.

IT.9 Run Lengths

A gray level run length primitive 1s a maximal
collinear connected set of pixels all having the same
gray tome. Gray level runs can be characterized by
the gray tone of the run, the length of the run, and

used 4 direc-

tions: OO, 450, 900, and 1350, and for each of these
directions she computed the jeint probability of gray
tone of run and run length.

the direction of the run. GallowayZl

Let p(i,j) be the number of times there is a run
length j and having gray tone i. Let Ng be the number

of gray tones and Nr be the number of runs. Useful
statistics of the p(i,j) include:
N N N N
g r g r
b I, “
Z 2D /Z p(i,3)  (short run
i=1 j=1L ] i=1 j=1 emphasis
inverse moments)
N N N N
B T B T
Z J P(i,j)/ p(i,j) (long run
i=1  j=1 i=1 j=1 emphasis
moments)

L




= N N
Ng N'E 2 g r
3 E(E p(i,j)) /Z E p(i,i) (gray level non-
=1 vi=1 1=l j=1 uniformity)
N N
Nr NB g r
(Z p(i,j))z/ Z Z p(i, i) (run length non-
j=1 M=l 1=1 j=1 uniformity)
N
Ng Nr Ng r
E Z p(i,3) / E jp(i,j) (fraction of image
1=1 j=1 i=1 j=1 in runs)

Using these five measures for each of 4 directions
and one of Haralick's data sets, Galloway illustrated
that about 83 percent identification could be made of
the six categories: swamp, lake, railroad, orchard,
scrub, and suburb.

11.10 Auto-Regression Models

The linear dependence one pixel of an image has on
another is well known and can be illustrated by the
autocorrelation function. This linear dependence is
exploited by the auto-regression model for texture
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which was first used by McCormick and Jayarmamurthy
to synthesize textures. MeCormick and Jayarmamurthy

used the Box and Jenkin56 time series seasonal analysis
method to estimate the parameters of a given texture.
They then used the estimated parameters and a given set
of starting values to illustrate that the synthesized
texture was close in appearance to the given texture.

Deguchi and MorishitalB, Tou et al.Bg, and Tou and

Chang87

also use a similar technique.
Figure 12 shows this texture synthesis model.
Given a randomly generated noise image and any sequence
of K synthesized gray tone values in a scan, the next
gray tone value can be synthesized as a linear combi-
nation of the previously synthesized values plus a
linear combination of previous L random noise values.
The coefficients of these linear combinations are the
parameters of the model.

Although the one-dimensional model employed by
Read and Jayarmamurthy worked reasonably well for the
two vertical streaky textures on which they illustrated
the technique, performance would be poorer on diagonal
wiggly streaky textures. Better performance on general
textures would be achieved by a full two-dimensional
model in Figure 13. Here a pixel (i,j) depends on a
two-dimensional neighborhood N(i,j) consisting of
pixels above or to the left of it as opposed to the
simple sequence of the previous pixels a raster scan
could define., For each pixel (k.%) in an order-D
neighborhood for pixel (i.3), (k,2) must be previous to
pixel (i,j) in a standard raster sequence and (k,2)
must not have any coordinates more than D units away
from (i,j). Formally, the order-D neighborhood is
defined by:

N(i,j) = f(k,8) | (i -D<k<iand j-D<2<j+D)
or (k= iand j - D <2< i}

The auto-regressive model can be employed in tex-
ture segmentation applications as well as texture
synthesis applications. Let {a (m,n), Bc(m,n)} be the

coefficients for texture category ¢ and let © be a
threshold value. Define the estimated value of the
gray tone at resolution cell (i.j) by:

;c(i,j) D DIERCESNE g a (k,4) +
(k,2) € N(i,j)

B (1 -k 3~ [a0) - a (0]
(k,2) € N(L,1)

See Figure 14.

Assuming a uniform prior distribution, we can decide
pixel (i,j) has texture category k if:

la(,9) - a (@] < la(,3) - 2,(1,3) |for every ¢ and
la(1,9) - a, (1,9 <o

1f |a(i,i) - ak(i,j)i > 8, then decide pixel (i,j) is

a boundary pixel.

Those readers interested in general two-dimension-

al estimation procedures for images will find Woods94

of interest.

III. STRUCTURAL APPROACHES TO TEXTURE MODELS

Pure structural models of texture are based on the
view that textures are made up of primitives which
appear in near regular repetitive spatial arrangements.
To describe the texture, we must describe the primi-

tives and the placement rules (Rosenfeld and Lipkin73).
The choice of which primitive from a set of primitives
and the probability of the chosen primitive being
placed at a particular locatien can be a strong or
weak function of location or the primitives near the
location.

8
Carlucci® suggests a texture model using primi-
tives of line segments, open polygens, and closed
polygons in which the placement rules are given syn-—

tactically in a graph-like language. Zucker98 con—
ceives of real texture as being a distortion of an
jdeal texture. The underlying ideal texture has a

nice representation as a regular graph in which each
node is connected to its neighbors in an identical
fashion. Each node corresponds to a cell in a tessell-
ation of the plane. The underlying ideal texture is
transformed by distorting the primitive at each node

to make a realistic texture. Zucker's model is more

of a competance based mocdel than a performance model.

Lu and Fu47 give a tree grammar syntactic approach
for texture. They divide a texture up into small Y
square windows (9 x 9). The spatial structure of the !
resolution cells in the window is expressed as a tree.
The assignment of gray tones to the resolution is
given by the rules of a stochastic tree grammar.
Finally, special case is given to the placement of
windows with respect to another im order to preserve
the coherence between windows. Lu and Fu illustrate
the power of their technique with both texture syn-
thesis and texture experiments.

In the remainder of this section, we discuss some
structural-statistical approaches to texture models.
The approach is structural in the sense that primi-
tives are explicitly defined. The approach is sta-
tistical in that the spatial interaction, or lack of
it, between primitives is measured by probabilities.




We classify textures as being weak textures, or
strong textures. Weak textures are those which have
weak spatial-interaction between primitives. To dis-
tinguish between them it may be sufficient to only
determine the frequency with which the variety of prim-
itive kinds occur in some local neighborhood. Hence,
weak texture measures account for many of the statig-
tical textural features. Strong textures are those
which have non-random spatial interactions. To dis-
tinguish them it may be sufficient to only determine,
for each pair of primitives, the frequency with which
the primitives co-occur in a specified spatial rela-
tionship. Thus, our discussion will center on the
variety of ways in which primitives can be defined and
the ways in which spatial relationships between primi-
tives can be defined.

III.1 Primitives

A primitive is a connected set of resolution cells
characterized by a list of attributes. The simplest
primitive is the pixel with its gray tone attribute.
Sometimes it is useful to work with primitives which
are maximally connected sets of resolution cells having
a particular property. An example of such a primitive
is a maximally connected set of pixels all having the
same gray tone or all having the same edge direction.

Gray tones and local properties are not the only
attributes which primitives may have. Other attributes
include measures of shape of connected region and homo-
geneity of its local property. For example, a connec-
ted set of resolution cells can be associated with its
length or elongation of its shape or the variance of
its local property.

Many kinds of primitives can be generated or con-
structed from image data by simple 3 x 3 neighborhood

operators. Included in this class of pPrimitives are:
1. Connected components
2. Ascending or descending components
3. Saddle components
4. Relative maxima or minima components
5. Central axis components

Neighborhood operators which compute these kinds of
primitives can be found in a variety of papers and will
See Rosenfeld and Pfaltz7a;

Rosenfeld70

not be discussed here.

Rosenfeldéa; Rosenfe1d69; ; Rosenfeld and

; Yokoi, Toriwaki, and Fukumuragag Arcelli and

Sanniti di Bajal; and HaralickZ?.

Davis71

ITI.2 Spatial Relationships

Once the primitives have been constructed, we
have available a list of primitives, their center
coordinates, and their attributes. We might also have
available some topological information about the primi-
tives, such as which are adjacent to which. Frem this
data, we can select a simple spatial relationship such
as adjacency of primitives or nearness of primitives
and count how many primitives of each kind occur in the
specified spatial relationship,

More complex spatial relationships include closest
distance or closest distance within an angular window.
In this case, for each kind of primitive situated in
the texture, we could lay expanding circles around it
and locate the shortest distance between it and every
other kind of primitive. In this case our co-occurr-
ence frequency is three-dimensional, two dimensions for
primitive kind and one dimension for shortest distance.
This can be dimensionally reduced to two dimensions by
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considering only the shortest distance between each
pair of like primitives.

ITI.3 Weak Texture Measures .

Tsuji and Tomita91 and Tomita, Yachida, and Tsuj?_5
describe a structural approach to weak texture
measures. First a scene is segmented into atomic
regions based on some tonal property such as constant
gray tome. These regions are the primitives. Asso-
ciated with each primitive is a list of properties such
as size and shape. Then they make a histogram of size
property or shape property over all primitives in the
scene. If the scene can be decomposed into two or more
regions of homogeneous texture, the histogram will be
multi-modal. If this is the case, each primitive in
the scene can be tagged with the mode in the histogram
it belongs to. A region growing/cleaning process on
the tagged primitives yields the homogeneous textural
region segmentation,

If the initial histogram modes overlap too much, a
complete segmentation may not result. In this case,
the entire process can be repeated with each of the
then so far found homogeneous texture region segments.
If each of the homogeneous texture regions consists of
mixtures of more than one type of primitive, then the
procedure may not work at all. In this case, the
technique of co-occurrence of primitive properties
would have to be used.

Zucker et al.99 used a form of this technique by
filtering a scene with a spot detector. Non-maxima
pixels on the filtered scene were thrown out. If a
scene has many different homogeneous texture regions,
the histogram of the relative max spot detector
filtered scenme will be multi-modal. Tagging the maxima
with the modes they belong to and region growing/
cleaning thus produced the segmented scene.

The idea of the constant gray level regions of
Tsuji and Tomita or the spots of Zucker et al. can be
generalized to regions which are peaks, pits, ridges,
ravines, hillsides, passes, breaks, flats, and slopes.

(Toriwaki and Fukumura86 Peucker and Douglas63). In
fact, the possibilities are numerous enough that inves-
tigators doing experiments will have a long working
period before understanding will exhaust the possi~-
bilities. The next three subsections review in greater
detail some specific approaches and suggest some
generalizations.

ITT.3.1 Edge Per Unit Area

Rosenfeld and Troy77 and Rosenfeld and Thurston76
suggested the amount of edge per unit area for a tex-
ture measure. The primitive here is the pixel and its
property is the magnitude of its gradient. The grad-
ient can be calculated by any one of the gradient
neighborhood operators. For some specified window
centered on a given pixel, the distribution of grad-
ient magnitudes can then be determined. The mean of
this distribution is the amount of edge per unit area
associated with the given pixel. The image in which
each pixel's value is edge per unit area is actually

a defocussed gradient image. Triendlgo used a de-

focussed Laplacian image. Sutton and H31183 used such
a measure for the automatic classification of pulmonary
disease in chest X-rays.

Ohlander60 used such a measure to aid him in seg-

menting textured scenes. ROSEﬂf81d7U gives an example
where the computation of gradient direction on a de-
focussed gradient image is an appropriate feature for
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the direction of texture gradient. Hsu™ wused a

yareity of gradient-like measures.

111.3.2 Run Lengths

The gray level run lengths primitive in its one-
dimensional form is a maximal collinear connected set
of pixels all having the same gray level. Properties
of the primitive can be length of run, gray level, and
angular orientation of run. Statistics of these prop-

erties were used by Galloway21 to distinguish between

textures.

In the two-dimensional form, the gray level run
length primitive is a maximal connected set of pixels
all having the same gray level., These maximal homo-
geneous sets have properties such as number of pixels,
maximum or minimum diameter, gray level, angular
orientation of maximum or minimum diameter.

III.3.3 Relative Extrema Density

Rosenfeld and Troy77 suggest the number of extrema
per unit area for a texture measure. They suggest
defining extrema in one-dimension only along a hori-
zontal scan in the following way: in any row of pixels
a pixel i is a relative minimum if its gray tone g(i)
satisfies:

g(i) < g(i + 1) and g(i) < g(i - 1) (1
A pixel 1 is a relative maximum if:
g(i) > g(i + 1) and g(i) > g(i - 1) (2)

Note that with this definition each pixel in the
interior of any constant gray tone run of pixels is
considered simultaneously a relative minimum and rela-
tive maximum. This is so even if the constant run is
just a plateau on the way down or on the way up from a
relative extrema.

The algorithm employed by Rosenfeld and Troy marks
every pixel in each row which satisfies equations (1)
or (2). Then they center a square window around each
pixel and count the number of marked pixels. The
texture image created this way corresponds to a de-
focussed marked image.

Mitchell, Myers, and Boynes6 suggest the extrema
idea of Rosenfeld and Troy except they proposed to use
true extrema and to operate on a smoothed image to
eliminate extrema due to noise. See also Carlton and

Mitchellj, and Ehrich and Foithls’lg.

One problem with simply counting all extrema in
the same extrema plateau as extrema is that extrema
Per unit area is not sensitive to the difference be-
tween a region having few large plateaus of extrema
and many single pixel extrema. The solution to this
pProblem is to only count an extrema plateau once. This
can be achieved by locating some central pixel in the
extrema plateau and marking it as the extrema associa-
ted with the plateau. Another way of achieving this is
to associate a value of 1/N for every extrema in a
N-pixel extrema plateau.

In the one-dimensional case, there are two prop-
erties that can be associated with every extrema: its
height and its width. The height of a maxima can be
defined as the difference between the value of the
maxima and the highest adjacent minima. The height
(depth) of a minima can be defined as the difference
between the value of the minima and the lowest adja-
cent maxima. The width of a maxima is the distance
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between its two adjacent minima. The width of a mini-
ma is the distance between its two adjacent maxima.
Figure 15 illustrates these properties.

Two-dimensional extrema are more complicated than
one—-dimensional extrema. One way of finding extrema
in the full two-dimensional sense is by the iterated
use of some recursive neighborhood operators propaga-
ting extrema values in an appropriate way. Maximally
connected areas of relative extrema may be areas of
single pixels or may be plateaus of many pixels. We
can mark each pixel in a relative extrema region of
gize N with the value h indicating that it is part of
a relative extrema having height h or mark it with
the value h/N indicating its contribution to the rela-
tive extrema area. Alternatively, we can mark the
most centrally located pixel in the relative extrema
region with the value h. Pixels not marked can be
given the value 0. Then for any specified window
centered on a given pixel, we can add up the values of
all pixels in the window. This sum divided by the
window size is the average height of extrema in the
area. Alternatively we could set h to 1 and the sum
would be the number of relative extrema per unit area
to be associated with the given pixel.

Going beyond the simple counting of relative ex-
trema, we can associate properties to each relative
extrema. For example, given a relative extrema, we
can determine the set of all pixels reachable only by
the given relative maxima and not by any other rela-
tive maxima by monotonically decreasing paths. This
set of reachable pixels is a connected region and
forms a mountain. Its border pixels may be relative
minima or saddle pixels.

The relative height of the mountain is the dif-
ference between its relative maxima and the highest
of its exterior border pixels. Its size is the number
of pixels which constitute it. Its shape can be
characterized by features such as elongatiom, circu-
larity, and symmetric axis. Elongation can be defined
as the ratio of the larger to small eigenvalue of the

2 x 2 second moment matrix obtained from the {x)

coordinates of the border pixels (Bachiz, Frolovzo).
Circularity can be defined as the ratio of the stand-
ard deviation to the mean of the radii from the

region's center to its border (Haralickzs). The
symmetric axis feature can be determined by thinning
the region down to its skeleton and counting the num-
ber of pixels in the skeleton. For regions which are
elongated, it may be important to measure the direc-
tion of the elongation or the direction of the
symmetric axis.

2
Osman and Saukar6 use the mean and variance of
the height of mountain or depth of valley as proper-

ties of primitives. Tsuji and Tomita91 use size,
Histograms and statistics of histograms of these
primitive properties are all suitable measures for
weak textures.

I11.3.4 Relational Trees

Ehrich and Foith18 describe a relational tree
representation for the extrema of one-dimensional
functions with bounded domains. The relational tree
recursively partitions the function and its domain at
the smallest relative minimum. The relative minimums
for the newly formed segments and functions to the
left and right of the dividing point can be used for
further divisions. An alternative way to form the
tree is to use maximums instead of minimums for
dividing.



Figure 16 illustrates a function and Figure 17
illustrates its relational tree. The root of the tree
indicates that over the entire function domain the
highest relative maximum is point 16 and the lowest
relative minimum is point 23. The function is then
divided at valley 23. The segment to the right.of 23
has point 26 for the highest relative maximum and point
27 for the lowest relative minimum, and so on.

Textural features can be extracted at any level of
the relational tree. One such texture feature is seg-
ment contrast. Segment contrast is the difference
between the largest relative maximum and the smallest
relative minimum in the segment. The segment contrast
textural feature can be the mean or variance of seg-
ment contrast taken over the set of segments comprising
the given function at a specified level of the tree.
Another textural feature can be the variance of seg-
ment length.

III.4 Strong Texture Measures and Generalized
Co-occurrence

Strong texture measures take into account the co-
occurrence between texture primitives. On the basis

of Juleszlﬁ6 it is probably the case that the most
important interaction between texture primitives

occurs as a two-way interaction. Textures with iden-
tical second and lower order interactions but with
different higher order interactions tend to be visually
similar.

The simplest texture primitive is the pixel with
its gray tone property. Gray tone co-occurrence bhe—
tween neighboring pixels was suggested as a measure of
texture by a number of researchers as discussed 1in
Section IT.6. All the studies mentioned there
achieved a reasonable classification accuracy of dif-
ferent textures using co-occurrences of the gray tone
primitive.

The next more complicated primitive is a connected
set ol pixels homogeneous in tome. (Tsuji and

Tomitagl)). Such a primitive can be characterized by
size, elongation, orientation, and average Bray tone.
Useful texture measures include co-occurrence of prim-
itives based on relationships of distance or adjacency.

Maleson et a148 suggests using region growing tech-
niques and ellipsoidal approximations to define the
homogeneous regions and degree of co-linearity as one
basis of co-occurrence. TFor example, for all primi-
tives of elongation greater than a specified threshold
we can use the angular orientation of each primitive
with respect to its closest neighboring primitive as a
strong measure of texture.

Relative extrema primitives were proposed by
- 7 ;
Rosenfeld and Troy 7; Mitchell, Myers, and Boyne56;

Ehrich and FoithlB; Mitchell and Carlton57; and Ehrich
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and Foith™”. Co-occurrence between relative extrema

was suggested by Davis et aJ.lé. Because of their
invariance under any monotonic gray scale transforma-
tion, relative extrema primitives are likely to be
very important.

It is possible to segment an image on the basis
of relative extrema (for example, relative maxima) in
the following way: 1label all pixels in each maximally
connected relative maxima plateau with a unique label.
Then label each pixel with the label of the relative
maxima that can reach it by a monotonically decreasing
path. 1If more than one relative maxima can reach it
by a monotonically decreasing path, then label the

pixel with a special label "c" for common. We call th,
regions so formed the descending components of the
image.

Co-occurrence between properties of the descending
components can be based on the spatial relationship of
adjacency. For example, if the property is size, the
co-occurrence matrix could tell us how often a desceng-
ing component of size §; occurs adjacent to or nearby

to a descending compenent of size s, or of label "¢", ]

2
To define the concept of generalized co-occurrence b
it is necessary to first decompose an image into its
primitives. Let Q be the set of all primitives on the
image. Then we need to measure primitive properties
such as mean gray tone, variance of gray tomes, region,
size, shape, etc. Let T be the set of primitive prop-
erties and f be a function assigning to each primitive
in Q a property of T. Finally, we need to specify a
spatial relation between primitives such as distance 1
or adjacency. Let S< Q x Q be the binary relation ;
pairing all primitives which satisfy the spatial rela-

tion. The generalized co-occurrence matrix P is

defined by:

ai ) #{(ql,qz) €5 | f(ql) t; and f(qz) = t2]
Fiitysd = #s

P(tl’tz) is just the relative frequency with which two

primitives occur with specified spatial relationship in
the image, one primitive having property tl and the

other primitive having property t

9-

Zucker97 suggests that some textures may be
characterized by the frequenecy distribution of the num-
ber of primitives any primitive has related to it.,

This probability p(k) is defined by:

o) = HlaeQ {Iqurs(m = k}

Although this distribution is simpler than co-occur-
rence, no investigator appears to have used it in
texture discrimination experiments.

IV. CONCLUSION

We have surveyed the image processing literature
on the various approaches and models investigators
have used for textures. For micro-textures, the sta-
tistical approach seems to work well. The statistical
approaches have included autocorrelation functions,
optical transforms, digital transforms, textural
edgeness, structural element, gray tone co-occurrence,
and auto-regressive models. Pure structural approaches
based on more complex primitives than gray tone seems
not to be widely used. For macro-textures, investiga-
tors seem to be moving in the direction of using his-
tograms of primitive properties and co-occurrence of
primitive properties in a structural-statistical
generalization of the pure structural and statistical
approaches.,
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Figure 1 illustrates some of the image textures used by Kaizer in his autocorrelation
experiment (taken from Kaizer, 1955).
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Figure 2 illustrates the set H and some of its
translates.
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Figure 3 illustrates the erosion operation for a
number of different structural elements
on the same image.
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Figure 3 (continued).
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Figure &4 illustrates the covariance function in
the horizontal direction for the image
in Figure 3.

a.n :1,2)\ a,3] a,9
2.1 [2,2).(2,3) (@2,4) L
@0 (3,2)\(3,3) (3,4) L= 11.2,3,4}
“,1) (4.2)‘(4,3) (4,4)

= {1,2,3,4]

{((kl ), {m,n)) € (Lnyx) xL)|k—m» , |l-nl = 1,

= {n 0, 1,2), (L, 1) ©.2, 0,3), (1.3, 0,2),
(1.3, 0, 4)), (.9 .3), @0 @2). (2.2, @),

@2), (2,3, @.4), (24, @3),

((22 2,3), (2.3) (
((3 0, 32)),((3 2), G,1), (3.2), 3,3), (3.3, 3,2),
(3.9, @,4), (3.4 (33)),(41),(42),( ), 4,1,
(«.2), 4,3), (@3, @2), (6.3, @), (&9, @ L))

Figure 5 illustrates the set of all distance 1
horizontal neighboring resolution cells
on a 4 x 4 image.
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Grey Tone
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212)3]3 Tone 3 |#3,0)#(3,1) #3,2) #3,3)
Figure 6-a. Figure 6-b. This shows the

general form of any gray tone
spatial dependence matrix for
an image with integer gray
tone values 0 to 3. #(4i,3)
stands for number of times
gray tones i and j have been
neighbors.

o° 4 21 0 900 6 0 2 0
2 400 0420
P =1 0 61 Py=12 2 2 2
00 1 2 0020
Figure b6-c. Figure 6-d.
2130 . 41 0 0
(=]
133 1210 45 1220
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0020 001 0
Figure 6-e. Figure 6-f.

Figure 6 illustrates the spatial co-occurrence

(Take from Haralick et 31.33).

2

calculations.

Uniformity or energy
(Related to the variance of

{P'],--- Pij""'PNN])
Entropy z P.. log P
g
sJ
Haximum probability max P..
i
Contrast Z li < 31% ¢p, 2"
(]
2
P
Inverse difference moment z _( 'J)
s < k
3]0 -
i#]
Correlation Z o o U)P
i, 0
Probability of a run of length (P, ..)Z(P )
n for gray tone | : !
Bl

where P, = Ep\
i j ij

Figure 7 lists 7 of the common features computed from
the co-occurrence probabilities.




Figure 8 illustrates computer generated subimages in the test area.
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Figure 9 illustrates the textural transforms of the subimages of Figure 8.
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Fipure 10 illustrates an enlargement of subimage (1,3) and its transform.
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Figure 11 illustrates an enlargement of subimage (6,0) and its transform.
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Figure 12 illustrates how from a randemly generated
noise image and a given starting sequence
apseeesdys representing the initial

boundary conditions, all values in a tex-
ture image can be synthesized by a one-
dimensional auto-regressive model.
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Figure 13 illustrates how from a randomly generated
noise image and a given starting sequence
for the first order-D neighborhood in the
image, all values in a texture image can
be synthesized by a two-dimensional
auto-regressive model.
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:E: ali -k, j - 2) a(k,z

(k,2) € N(i,j)

——
Auto-Regressive Terms

a(i,j) =

+ E 50 -k, j - ) atk,1) -’;(k,.;j

(k.2) = N(i1,))
H___’

Hoving Average Terms

Figure 14 illustrates how 2 gray tone value for
pixel (i,j) can be estimated using the
gray tone values in the neighborhood
N(i,j) and the differences between the
actual values and the estimated values
in the neighborhood.
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Figure 15 illustrates how the height and size
properties of a valley are defined.
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Figure 16 illustrates a waveform,
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Figure 17 illustrates Ehrich and Foith's relational tree for the
waveform of Figure 16. The first number in each node
is the lowest valley point. The second number is the
highest peak point for the segment.
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