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ABSTRACT

In this survey we review the image processing literature on the
various approaches and models investigators have used for texture.
These include statistical approaches of autocorrelation function,
optical transforms, digital transforms, textural edgeness, struc-
tural element, gray tone co-occurrence, run lengths, and auto-
regressive models. We discuss and generalize some structural
approaches to texture based on more complex primitives than gray
tone. We conclude with some structural-statistical generalizations
which apply the statistical techniques to the structural primitives.

1.0 INTRODUCTION

Texture is an important characteristic for the analysis of many
types of images. It can be seen in all images from multi-spectral
scanner images obtained from aircraft or satellite platforms
(which the remote sensing community analyzes) to microscopic
images of cell cultures or tissue samples (which the bio-medical
community analyzes). Despite its important and ubiquity in image
data, a formal approach or precise definition of texture does

not exist. The texture discrimination techniques are, for the
most part, ad-hoc. In this paper we survey, unify, and generalize
some of the extraction techniques and models which investigatore
have been using to measure textural properties.

The image texture we consider is non-figurative and cellular. We
think of this kind of texture as an organized area phenomena. When
it is decomposable, it has two basic dimensions on which it may

be described. The first dimension is for describing the primitives
out of which the image texture is composed, and the second dimen-
sion is for the description of the spatial dependence or inter-
action between the primitives of an image texture. The first
dimension is concerned with tonal primitives or local properties,
and the second dimension is concerned with the spatial organization
of the tonal primitives.

Tonal primitives are regions with tonal properties. The tonal
primitive can be described in terms such as the average tone, or
maximum and minimum tone of its region. The region is a maximally
connected set of pixels having a given tonal property. The tonal
region can be evaluated in terms of its area and shape. The tonal
primitive includes both its gray tone and tonal region properties.

An image texture is described by the number and types of its
primitives and the spatial organization or layout of its primitives.
The spatial organization may be random, may have a pairwise de-
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pendence of one primitive on a neighbouring primitive, or may have
a dependence of n primitives at a time. The dependence may be
structural, probabilistic, or functional (like a linear dependence) .

Image texture can be qualitatively evaluated as having one or more
of the following properties: fine, coarse, smooth, granulated,
rippled, mottled, irregular, random, linecated, or hummocky. Each

of these adjectives translates into some property of the tonal
primitives and the spatial interaction between the tonal primi-
tives. Unfortunately, few experiments have been done attempting

to map semantic meaning into precise properties of tonal primitives
and their spatial distributional properties.

To objectively use the tone and textural pattern elements, the con-
cepts of tonal and textural feature must be explicitly defined.
With an explicit definition, we discover that tone and texture

are not independent concepts. They bear an inextricable relation-
ship to one another very much like the relation between a particle
and a wave. There really is nothing that is only particle or only
wave. Whatever exists has both particle and wave properties and
depending on the situation, the particle or wave properties may
predominate. Similarly, in the image context, tone and texture

are always there, although at times one property can dominate the
other and we tend to speak of only tone or only texture. Hence,
when we make an explicit definition of tone and texture, we are
not defining two concepts: we are defining one tone-texture con-
cept.

The basic inter-relationships in the tone-texture concept are the
following. When a small-area patch of an image has little variation
of tonal primitives, the dominant property of that area is tone.
When a small-area patch has wide variation of tonal primitives,
the dominant property of that area is texture. Crucial in this
distinction are the size of the small-area patch, the relative
sizes and types of tonal primitives, and the number and placement
or arrangement of the distinguishable primitives. As the number

of distinguishable tonal primitives decreases, the tonal proper-
ties will predominate. In fact, when the small~-area patch is only
the size of one resolution cell, so that there is only one discrete
feature, the only property present is simple gray tone. As the
number of distinguishable tonal primitives increases within the
small-area patch, the texture property will dominate. When the
spatial pattern in the tonal primitives is random and the gray
tone variation between primitives is wide, a fine texture results.
As the spatial pattern becomes more definite and the tonal regions
involve more and more resolution cells, a coarser texture results.
(See Picett, 1970).

In summary, to characterize texture, we must characterize the tonal
primitive properties as well as characterize the spatial inter-re-
lationships between them. This implies that texture-tone is really
a two-layered structure, the first layer having to do with speci-

fying the local properties which manifest themselves in tonal pri-
mitives and the second layer having to do with specifying the or-

ganization among the tonal primitives. We, therefore, would expect
that methods designed to characterize texture would have parts de-
voted to analyzing each of these aspects of texture. In the review
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of the work done to date, we will discover that each of the
existing methods tends to emphasize one or the other aspect
and tends not to treat each aspect equally.

2.0 REVIEW OF THE LITERATURE ON TEXTURE MODELS

There have been eight statistical problems to the measurement and
characterization of image texture: autocorrelation functions, op-
tical transforms, digital transforms, textural edgeness, structural
elements, spatial gray tone co-occurrence probabilities, gray tone
run lengths, and auto-regressive models. An early review of some
of these approaches is given by Hawkins (1970). The first three

of these approaches are related in that they all measure spatial
frequency directly or indirectly. Spatial frequency is related

to texture because fine textures are rich in high spatial frequen-
cies while coarse textures are rich in low spatial frequencies.

An alternative to viewing texture as spatial frequency distri-
bution is to view texture as amount of edge per unit area. Coarse
textures have a small number of edges per unit area. Fine textures
have a high number of edges per unit area.

The structural element approach of Serra (1974) and Matheron (1967)
uses a matching procedure to detect the spatial regularity of
shapes called structural elements in a binary image. When the
structural elements themselves are single resolution cells, the
information provided by this approach is the autocorrelation
function of the binary image. By using larger and more complex
shapes, a more generalized autocorrelation can be computed.

The gray tone spatial dependence approach characterizes texture
by the co-occurrence of its gray tones. Coarse textures are those
for which the distribution changes only slightly with dista.ce
and fine textures are those for which the distribution changss
rapidly with distance.

The gray level run length approach characterizes coarse textures
as having many pixels in a constant gray tone run and fine tex-
tures as having few pixels in a constant gray tone run.

The auto-regressive model is a way to use linear estimates of a
pixel's gray tone given the gray tones in a neighbourhood con-
taining it in order to characterize texture. For coarse textures,
the coefficients will all be similar. For fine textures, the co-
efficients will have wide variation.

The power of the spatial frequency approach to texture is the
familiarity we have with these concepts. However, one of the
inherent problems is in regard to gray tone calibration of the
image. The procedures are not invariant under even a linear
translation of gray tone. To compensate for this, probability
quantizing can be employed. But the price paid for the invariance
of the guantized imager under monotonic gray tone transformations
is the resulting loss of gray tone precision in the quantized
image. Weszka, Dyer, and Rosenfeld (1976) compare the effective-
ness of some of these techniques for terrain classification. They
conclude that spatial frequency approaches perform significantly
poorer than the other approaches.
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The power of the structural element approach is that it emphasizes
the shape aspects of the tonal primitives. Its weakness is that
it can only do so for binary images.

The power of the co-occurence approach is that it characterizes
the spatial inter-relationships of the gray tones in a textural
pattern and can do so in a way that is invariant under monotonic
gray tone transformations. Its weakness is that it does not
capture the shape aspects of the tonal primitives. Hence, it is
not likely to work well for textures composed of large-area pri-
mitives.

The power of the auto-regressive linear estimator approach is that
it is easy to use the estimator in a mode which sythesizes tex-
tures from any initially given linear estimator. In this sense,
the auto-regressive approach is sufficient to capture everything
about a texture. Its weakness is that the texture it can charac-
terize are likely to consist mostly of micr-textures.

2.17. The Autocorrelation Function and Texture

From one point of view, texture relates to the spatial size of the
tonal primitives on an image. Tonal primitives of larger size are
indicative of coarser textures; tonal primitives of smaller size
are indicative of finer textures. The autocorrelation function

is a feature which tells about the size of the tonal primitives.

We describe autocorrelation function with the help of a thought
experiment. Consider two image transparencies which are exact
copies of one another. Overlay one transparency on top of the
other and with a uniform source of light, measure the average
light transmitted through the double transparency. Now, translate
one transparency relative to the other and measure only the
average light transmitted through the portion of the image where
one transparency overlaps the other. A graph of these measurements
as a function of the (x,y) translated and normalized with respect
to the (0,0) translation depicts the two-dimensional autocorre-
lation function of the image transparency.

Let I (u,v) denote the transmission of an image transparency at
position (u,v). We assume that outside some bounded rectangular
region 0 =Cu =< Ly and 0<v<L, the image transmission is zero.

Let (x,y) denote the x-translation and y-translation, respectively.
The autocorrelation function for the image transparency d is
formally defined by:

S Ix|)zL =T Imf Hu,w) i {u + x, v + y)du dv
plx,y) = — 24 .

r‘-‘ll-—fmf |2(u,v)du dv
XY e

|x| < Lx and |y| < Ly

If the tonal primitives on the image are relatively large, then
the autocorrelation will drop off slowly with distance. If the
tonal primitives are small, then the autocorrelation will drop ’
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off quickly with distance. To the extent that the tonal primi-
tives are spatially periodic, the autocorrelation function will
drop off and rise again in a periodic manner. The relationship
between the autocorrelation function and the power spectral den-
sity function is well known: they are Fourier Transforms of one
another (Yaglom, 1962).

The tonal primitive in the autocorrelation model is the gray
tone. The spatial organization is characterized by the corre-
lation coefficient which is a measure of the linear dependence
one pixel has on another.

An experiment was carried out by Kaizer (1955) to see if the
autocorrelation function had any relationship to the texture
which photointerpreters see in images. He used a series of
seven aerial photographs of an Arctic region (see Figure 1)
and determined the autocorrelation function of the images with
a spatial correlator which worked in a manner similar to the
one envisioned in our thought experiment. Kaizer assumed the
autocorrelation function was circularly symmetric and computed
it only as a function of radial distance. Then for each image,
he found the distance d such that the autocorrelation function
? at the d took the value

1. 1
e f(d} T e.

Kaizer then asked 20 subjects to rank the seven images on a
scale from fine detail to coarse detail. He correlated the
rankings with the distances corresponding to the (1/e) th value
of the autocorrelation function. He found a correlation coeffi-
cient of .99. This established that at least for his data set,
the autocorrelation function and the subjects were measuring
the same kind of textural features.

Kaizer noticed, however, that even though there was a high deqree
of correlation between ¢ (1/e) and subject rankings, some subjects
put first what f"lﬂje)put fifth. Upon further investigations,

he discovered that a relatively flat background (indicative of
high frequency or fine texture) can be interpreted as a fine
textured area. This phenomena is not unusual and actually points
out a fundamental characteristic of texture: it cannot be ana-
lyzed without a reference frame of tonal surface, there exists

a scale such that when the surface is examined, it has no texture.
Then as resolution increases, it takes on a fine texture and then
a coarse texture. In Kaizer's situation, the resolution of his
spatial correlator was not good enough to pick up the fine texture
which some of his subjects did in an area which had a weak but
fine texture.

2.2 Optical Processing Methods and Texture

Edward O'Neill's (1956) article on spatial filtering introduced
the engineering community to the fact that optical systems can
perform filtering of the kind used in communication systems. In
the case of the optical systems, however, the filtering is two-
dimensional. The basis for the filtering capability of optical
Systems lies in the fact that the light amplitude distributions
at the front and black focal planes of a lens are Fourier Trans-
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froms of one another. The light distribution produced by the

lens is more commonly known as the Fraunhofer diffraction pattern.
Thus, optical methods facilitate two-dimensional frequency analysis
of images.

The paper by Cutrona et al. (1960) provides a good review of
optical processing methods for the interested reader. More recent
books by Goodman (1968), Preston (1972), and Shulman (1970) com-
prehensively survey the area.

In this section, we describe the experiments done by Lendaris and
Stanley, and others using optical processing methods on aerial

or satellite imagery. Lendaris and Stanley (1969, 1970) illumi-
nated small circular sections of low altitude aerial photography
and used the Fraunhofer diffraction pattern as features for iden-
tifying the sections. The circular sections represented a circular
area on the ground of 750 feet. The major category distinction
they were interested in making was man-made versus non man-made.
They further subdivided the man-made category into roads, road
intersections, buildings, and orchards.

The pattern vectors they used from the diffraction pattern con-
sisted of 40 components. Twenty components were averages of the
energy in annular rings of the diffraction pattern and 20 were

averages of the energy in 9° wedges of the diffraction pattern.
They obtained over 90 percent identification accuracy.

Egbert et al. (1973) used an optical processing system to examine
the texture on LANDSAT imagery over Kansas. They used circular
areas corresponding to a ground diameter of about 23 miles and
locked at the diffraction patterns for the areas when they were
snow covered and when they were not snow covered. They used a
Recognit System diffraction pattern sampling unit having 32 sec-
tor wedges and 32 annular rings to sample and measure the dif-
fraction patterns. They were able to interpret the resulting
angular orientation graphs in terms of dominant drainage patterns
and roads, but were not able to interpret the spatial frequency
graphs which all seem to have had the same character: the higher
the spatial frequency, the less the energy in that frequency band.

Honeywell Systems and Research Division has done work using optical
processing on aerial images to identify species of trees. Using
imagery obtained from Itasca State Park in northern Minnesota,
photo-interpreters identified five (mixture) species of trees on
the basis of the texture: Upland Hardwoods, Jack pine overstory/
Aspen understory, Aspen overstory/Upland Hardwoods understory,

Red pine overstory/Aspen understory, and Aspen. They achieved
classification accuracy of over 90 percent.

2.3 Digital Transform Methods and Texture

In the digital transform method of texture analysis, the digital
image is typically divided into a set of non-overlapping small
square subimages. Suppose the size of the subimage is n x n
resolution cells, then the n2 gray tones in the subimage can be
thought of as the nZ components of an nz—dimensional vector. The
set of the subimages then constitutes a set of n2-dimensional
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vectors. In teh transform technique, each of these vectors is
re-expressed in a new coordinate system. The Fourier Transform
uses the sine-cosine basis set. The Hadamard Transform uses
the Walsh function basis set, etc. The point to the transfor-
mation is that the basis vectors of the new coordinate system
have an interpretation that relates to spatial frequency or
sequency and since frequency is a close relative of texture,
such transformations can be useful.

The tonal primitive in spatial frequency (sequency) models is
the gray tone. The spatial organization is characterized by the
kind of linear dependence which measures projection lengths.

Gramenopoulos (1973) used a transform technique employing the
sine-cosine basis vectors (and implemented it with the FFT al-
gorithm) on LANDSAT imagery. He was interested in the power of
texture and spatial pattern to do terrain type recognition. He
used subimages of 32 by 32 resolution cells and found that on

a Phoenix, Arizona LANDSAT image 1049-17324-5, spatial frequen-
cies larger than 3.5 cycles/km and smaller than 5.9 cycles/km
contain most of the information needed to discriminate between
terrain types. His terrain classes were: clouds, water, desert,
farms, mountains, urban, riverbed, and cloud shadows. He achieved
an overall identification accuracy of 87 percent.

Horning and Smith (1973) have done work similar to Gramenopoulos,
but with aerial multispectral scanner imagery instead of LANDSAT
imagery.

Kirvida and Johnson (1973) compared the fast Fourier, Hadamard,

and Slant Transforms for textural features on LANDSAT imagery

over Minnesota. They used 8 x 8 subimages and five categorics:
Hardwoods, Conifers, Open, City, Water. Using only spectral in-
formation, they obtained 74 percent correct identification accuracy.
When they added textural information, they increased their identi-
fication accuracy to 99 percent. They found little difference
between the different transform methods. See also Kirvida (1976).

Maurer (1974) obtained encouraging results classifying crops
from low altitude color photography on the basis of a one-dimen-
sional Fourier series taken in a direction orthogonal to the
YOWS.

Bjacsy and Lieberman (1974, 1976) divided the image into square
windows and used the two-dimensional power spectrum of each window.
They expressed the power spectrum in a polar coordinate system

of radius r versus angle @, treating the power spectrum as two
independent one-dimensional functions of r and @. Directional
textures tend to have peaks in the power spectrum as a function
of §. Blob-like textures tend to have peaks in the power spectrum
as a function of r. They showed that texture gradients can be
measured by locating the trends of relative maxima of r or P as

a function of the position of the window whose power spectrum

is being taken.
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ceive of texture not in terms of spatial frequency but in terms
of edgeness per unit area. An edge passing through a resolution
cell can be detected by comparing the values for local properties
obtained in pairs of nonoverlapping neighbourhoods boardering the
resclution cell. To detect microedges, small neighborhoods can be
used. To detect macroedges, large neighborhoods can be used.

The local property which Rosenfeld and Thurston suggested was the
quick gradient (the sum of the absolute value of the differences
between diagonally opposite neighboring pixels). Thus, a measure
of texture for any subimage can be obtained by computing the
Roberts gradient image for the subimage and from it determining
the average value of the gradient in the subimage.

Sutton and Hall (1972) extend Rosenfeld and Thurston's idea by
making the gradient a function of the distance between the pixels.
Thus, for every distance d and subimage I defined over neighbor-
hood N, they

g(d) = Z ORI - e d, D TIGLD - G- 40

(irj) €

+ |1(iL0) =G, )]+ 1L, -G, - )

The curve of g(d) is like the graph of the minus autocorrelation
function translated vertically.

Sutton and Hall applied this textural measure in a pulmonary disease
identification experiment and obtained identification accuracy in
the 80 percentile range for discriminating between normal and ab-
normal lungs when using a 128 x 128 subimage.

Triendl (1972) measures degree of edgeness by filtering the image
with a 3 x 3 averaging filter and a 3 x 3 Laplacian filter. The
two resulting filtered images are then smoothed with an 11 x 11
smoothing filter. The two values of average tone and roughness ob-
tained from the low and high frequency filtered image can be used
as textural features.

Hsu (1977) determines textural edgeness by computing gradient-like
measures for the gray tones in a neighborhood. If N denotes the
set of resolution cells in a neighborhood about a pixel, and g

is the gray tone of the center pixel, p is the mean gray tone in
the neighborhood and‘f is a metric, then Hsu suggests that

Z p(1(i,5),u) , Z e(1(i,3),q.), and plu,g.)

(i,J) e N (i,j) e N

are all appropriate measures for textural edgeness at a pixel.
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2.5 Texture and Mathematical Morphology

A structural element and filtering approach to texture on binary
images was proposed by Matheron (1967) and Serra (1973) . Their
basic idea is to define a structural element as a set of resolution
cells constituting a specific shape such as a line or a square and
to generate a new binary image by translating the structural ele-
ment through the image and eroding by the structural element the
figures formed by contiguous resolution cells having the wvalue 1.
The textural features can be obtained from the new binary image

by continuing the number of resolution cells having the value 1.
The structural element approach of Serra and Matheron is the basis
of the Leitz texture analyses. (Miller and Herman, 1974; Miller,
1974; Serra, 1974). The approach has found wide application in

the quantitative analysis of micro-structures in materials science
and biology.

To make these ideas precise, we first define the translate of a
set. Let Z be the set of integers Z,, Zo € %2 and HE Z x 2. For
any pair (i,j) € Z x Z, the translate H (i,3) of H in the subset
Zy X Zo is defined by:

H(i,j) = {{m,n) ¢ o | for some (k,2) e H, m=k + i

and n =2 + j}

Figure 2 illustrates a set and some of its translates.

Let 2, x Z, be the spatial domain of the given binary image I and
F be that subset of resolution cells in Zr x Z. which take on the
value 1 for image I. The erosion FeH of F by H is defined by:

th{mm)“zleHmm)gﬂ

The eroded image J obtained by eroding I with structural element
H is defined by:

J(i,j) =1 if and only if (i,j) ¢ FoH

The number of elements in the erosion FeH is preoportional to the
area of the binary 1 figures in the image. An interesting theore-
tical property of the erosion is that any operation which is anti-
extensive, increasing, and idempotent must be made up of erosions
(see Matheron, 1975; Serra, 1978; Lantuejoul, 1978).

Textural properties can be obtained from the erosion process by
appropriately parametrizing the structural element and determining
the number of elements of the erosions as a function of the para-
meter. For example, in Figure 3 we consider a series of structural
elements each of two resclution cells in the same line and separated
by distances of 0 through 19. The image in Figure 3 is then eroded
by each of these structural elements producing the eroded images

of Figure 3.
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In Figure 4, we illustrate a graph showing the area of the erosion
as a function of the distance separating the two resolution cells
of the structural elements. A function such as that graphed in
Figure 4 is called the covariance function. Notice how it has
relative maxima at distances which are multiples of about 5 1/3
resolution cells. This implies that in the horizontal direction
there is a strong periodic component in the original image of
about 5 1/3 resolution cells.

The generalized covariance function can use more complicated
structural elements and summarizes the texture information in

the image. If H(d) is a structural element having two parts

where d represents the distance between these two parts, the gene-
ralized covariance function k for a binary imageI is defined as:

k(d) = #Feti(d), where F = {(i,5) ] 1(i,j) = 1}

For the case where the structural element consists of two resolution
cells in the same line separated distance d, the generalized co-
variance reduces to the auto-covariance function for the I. The
genreralized covariance function corresponding to more complicated
kinas of structural elements, however, provides information not
contained in the auto-covariance function. Serra and Matheron

shov: how the generalized covariance function can determine mean

size of tonal features, mean free distance between tonal features,
etc.

2.6 Spatial Gray Tone Dependence: Co-occurrence

One aspect of texture is concerned with the spatial distribution
and spatial dependence among the gray tones in a local area. Julesz
(1962) first used gray tone spatial dependence co-occurrence sta-—
tistics in texture discrimination experiments. Darling and Joseph
(1968) used statistics obtained from the nearest neighbor gray
tone transition matrix to measure this dependence for satellite
images of clouds and was able to identify cloud types on the basis
of their texture. Bartels et al. (1969) and Weid et al. (1970) used
one-dimensional co-occurrence in a medical application. Rosenfeld
and Troy (1970) and Haralick (1971) suggested two-dimensional
spatial dependence of the gray tones in a co-occurrence matrix for
each fixed distance and/or angular spatial relationship; Haralick
et al. (1972 and 1973) used statistics of this matrix as measures
of texture in satellite imagery, {(Haralick and Shanmugam, 1973 and
1974), aerial, and microscopic imagery (Haralick and Shanmugam,
1973) . Chien and Fu (1974) showed the application of gray tone
co-occurrence to automated chest X-ray analysis. Pressman (1976)
showed the application to cervical cell discrimination. Chen and
Pavlidis (1978) used co-occurrence in conjunction with a split

and merge procedure to segment an image on the basis of texture.
All these studies achieved reasonable results on different textures
using gray tone co-occurrence.

Suppose the area to be analyzed for texture is rectangular, and
has Ne¢ resolution cells in the horizontal direction, N, resolution
cells in the vertical direction, and that the gray tone appearing
in each resolution cell is quantized to Ng levels. Let L¢ =
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{ ?,2,...,Nc} be the horizontal spatial domain, Ly = {1,2,...,Nr}
be the vertical spatial domain, and G = {1,2,...,Ng} be the set

of Ng quantized gray tones. The set Ly x Lo is the set of reso-
lutidn cells of the image ordered by their row-column designations.
The image I can be interpreted as a function which assigns some
gray tone in G to each resolution cell or pair of coordinates in
Lr x Lg; I:Ly X Lo—G.

The gray tone co-occurrence can be specified in a matrix of re-
lative frequencies Pj4 with which two neighboring resolution
cells separated by diStance d occur on the image, one with gray
tone i and the other with gray tone j. Such matrices of spatial
gray tone dependence frequencies are symmetric and a function of
the angular relationship between the neighboring resolution cells
as well as a function of the distance between them. For a 0°© angu-
lar relationship, they explicitly average the probability of a
left-right-transition of gray tone i to gray tone j within the
right-left transition probability. Figure 5 illustrates the set
of all horizontal neighboring resolution cells separated by dis-
tance 1. This set, along with the image gray tones, would be used
to calculate a distance 1 horizontal spatial gray tone dependence
natrix.

Formally, for angels guantized to 45° invervals, the unnormalized
frequencies are defined by:

P(4,3,d,00 =4 {((k, 1), (mn) € (Lp x Lo) x (L, x Lo
k-m=0, [1-n =4, I(k,1) =41, 1l(m,n)=j

P(i,7,8,45%) =4 {(0,1), (mn) € (Lp x Lo) x (Ly % el
(k -m=4d, 1 -n==d) or (k - m = -d, 1-n=4d),

P(i,3,4,90%=4# {(0,1), mn)) e (L x Lo) x (Lp x Lo)|
]k - ml =d, 1-n-=20, 1(k,1) =i, l(m,n) = j

P(i,3,4,1359) =4 {((k,1), (m,n)) € (Ly x L) x (Ly x Le)l
(k -m=4d, 1-n=4d) or (k -m = -d,1 - n=-d),
1(k,1) =i, 1(m,n) = 3 ,
where %k denotes the number of elements in the set.

Note that these matrices are symmetric; P(i,j;d,a) = P(j,i;d,a).
The distance metric p implicit in the above equations can be ex-
plicitly defined by p((k,1), (m,n)) = max{ |k - m|, |1l - n| }.

Consider Figure 6a, which represents a 4 x 4 image with four gray
tones, ranging from 0 to 3. Figure 6b shows the general form of
any gray tone spatial dependence matrix. For example, the element
in the (2,7)st position of the distance 1 horizontal P;; matrix is
the total number of times two gray tones of value 2 ang 1 occurred
horizontally adjacent to each other. To determine this number, we
count the number of pairs of resolution cells in Ry such that the
first resolution cell of the pair has gray tone 2 and the second
resolution cell of the pair has gray tone 1. In Figrues 6c through
6f, we calculate all four distances 1 gray tone spatial dependence
matrices.
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Using features calculated from the co-occurence matrix (see |
Figure 7), Haralick et al. (1973) performed a number of identi- |
fication experiments. On a set of aerial imagery and eight terrain

classes (o0ld residential, new residential, lake, swamp, marsh,

urban, railroad yard, scrub or wooded), an B82% correct identifi-

cation was obtained. On a LANDSAT Monterey Bay, California image,

an 84% correct identification was obtained using 64 x 64 subimages

and both spectral and textural features on seven terrain classes:

coastal forest, woodlands, annual grasslands, urban areas, large

irrigated fields, small irrigated fields, and water. On a set of

sandstone photomicrographs, an 89% correct identification was

obtained on five sandstone classes: Dexter-L, Dexter-H, St.Peter,

Upper Muddy, and Gaskel.

The wide class of images on which they found that spatial gray
tone dependence carries much of the texture information is probably
indicative of the power and generality of this approach.

The approximate two dozen co-occurrence features times the number
of distance angle relationships the co-occcurrence matrices can be
computed for lead to a potentially large number of dependent fea-
tures. Tou and Chang (1977) discuss an eigenvector-based feature

extraction approach to help alleviate this problem.

The experiments of Weszka et al. (1976) suggest that the spatial
frequency features and, therefore, the autocorrelation feature are
not as good measures of texture as the co-occurrence features. We
suspect that the reason why co-occurrence probabilities have so
much more information than the autocorrelation function is that
there tends to be natural constraints between the co-occurrence
probabilities at one spatial distance with those at another. By
these relationships, a lot of information at one spatial distance
can determine the smaller amount of information in the autocorre-
lation function at many spatial distances.

To illustrate this, consider the one-dimensional conditional co-
occurrence probabilities {piﬂ (?)} for some specific spatial
distance v . Letting i be the mean gray tone and o2 be the gray
tone variance, and pj be the probability of gray tone j occurring,
the autocorrelation function can be written in terms of ~fij by

E; G-uw-w Pij(T)pj

i,
O(T) = J 2
ag

Hence for distance 2v we have

2 (1= WG - w pyj (20,
p(2r) = Lo

2
o

Assuming the texture is Markov, we have a relationship between

{Pij(T)} and {pij(ZT}}. Namely,
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The conditional co-occurrence at one distance can determine the
conditional co-occurence probabilities at another larger distance.
Since for any distance, the autocorrelation function is determined
by the co-occurrence probabilities, we have that to the extent
the texture is Markov, the co-occurrence probabilities at one dis-
tance determine the autocorrelation function at many distances.

Because the conditional co-occurrence probabilities are based on

a directed distance rather than the undirected distances typically
used in the symmetric co-occurrence probabilities, some valuable
information may be lost in the symmetric approach. The extent to
which such information is lost has not been extensively studied
(see Conners and Harlow, 1976).

2.7 A Textural Transform

We wish to construct an image J such that the gray tone J(i,j) at

resolution cell (i,j) in image J indicates how common the texture

pattern is in and around resclution cell (i,j) of image I. We call
the image J the textural transform of I (Haralick, 1975).

For analysis of the micro-texture, the gray tcne J (i,j) can be
a function of the gray tone I (i,j) and its nearest neighbors.
J(i,3j) = £(1(i-1,3j-1), I(i-1,3), I(i=1,3+1), Tii,9=1), T(i;3).
I(i,j+1), I(i+l,3-1), I(i+1,3), I(i+1,j+1))

Let us assume that this function f is an additive effect of hori-
zontal, right diagonal, vertical, and left diagonal relationships.
Then

Jli,3) = £7(1(1,3-1), I(i,3), I(i,3+1)) (horizontal)
+ £2(I(i+1,3-1), I(i,3), I(i-1,3+1)) (right diagonal)
+ £3(I(i-1,3), I(i,3), {(I(i+1,3)) (vertical)
+ £4(I(i+1,3+41), I(i,3), I(i-1,3-1) (left diagonal)

But since we do not distinguish between horizontal-left and hori-
zontal-right, or right diagonal up-right and right diagonal down-
left, or vertical up and vertical down, or left diagonal up-left
and left diagonal down-right, the functions £, fa, £3, and f4
have additional symmetries. Assuming the spatial relationships
between which we do not distinguish contribute additively, we
obtain

J(i,3) = ha{I(i,3), T(i,3-1)) + hi(1(4i,§), I(i,5+1)) (horizontal)
+ h2(I(i,3), I(i-1,3-1)) + ha(I(i,j), I(i-1,§+1)) (right
diagonal)

+ h3(I(i,3), T(i-1,3}) + h3(I(i,3), I(i+l,3)) (vertical)

+ hg(T(i,3), I(i+l,3+1)) + hg(I(i,j), I(i-1,3-1)) (left
diagonal)
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where the functions hi, h2s h3, and h4 are symmetric functions
of two arguments.

Since we want the h functions to indicate relative frequency of
the gray tone spatial pattern, the natural choice is to make
each h the co-occurrence probability corresponding to the hori-
zontal, right diagonal, vertical, or left diagonal spatial re-
lationships.

This concept of textural transform can be generalized to any
spatial relationship in the following way.

This concept of textural transform can be generalized to any
spatial relationship in the following way.

Let Zy X Zc be the set of resolution cells of an image I (by row-
column coordinates). Let G be the set of gray tones possible to
appear on image I. Let R be a binary relation on Zr X Zo pairing
together all those resolution cells in the desired spatial relation.
The co-occurrence matrix P, P:G x G—=[0,1], for imacee I and binary
relation R is defined by

P(iLg) = #{{(a,b), (c,d)) e R I#A(a,b) =i and I(c,d} = j}

The textural transform J, J:Z,. X I, (- ) of image I relative
to function f is defined by

Jr,c) = ' E f
m (e} & Rlrc) [P(1(r,c), 1(a,b))]

Assuming f to be the identity function, the meaning of J (r,c) is
as follows. The set R(r,c) is the set of all those resolution
cells in Z, x Z, in the desired spatial relation to resolution
cell (r,c). For any resclution cell (a,b) € R(r,c), P(I{(r,c),
I(a,b)) is the relative frequency by which the gray tone I(r,c),
appearing at resolution cell (r,c), and the gray tone I{(a,b),
appearing at resolution cell (a,b), co-occur together in the
desired spatial relation on the entire image. The sum

E P(1({r,c), 1(a,b))

(a,b) € R(r,c)

is just the sum of the relative frequencies of gray tone co-occur-

rence over all resolution cells in the specified relation to re-

solution (r,c¢). The factor 4___ , the reciprocal of the number
#R(r,c)

of resolution cells in the desired spatial relation to (r,c), is

just a normalizing factor.
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Figure 8 illustrates 27 100 x 100 subimage of band 5 LANDSAT
image 1247-15481 laid out according to their proper relation-
ships in the test area. Figure 9 illustrates the textural trans-
forms of these subimages also laid out according to their proper
relationships in the test area. Gray tones which are white are
indicative of freguently occurring textural patterns in the cor-
responding area on the original subimage. Gray tones which are
black are indicative of infrequently occurring textural patterns
in the corresponding area on the original image. This means that
the same land use type, depending on how frequently it occurs,
can be black or white on the textural transform image.

Examining image (0,0) we notice that Thompson Lake, a U-shaped
white area on the lower left side of the subimage and a white
area on the right side of the subimage have black tones on the
transform image. On image (0,1) Lake Chemung has a large enough
area so that its solid black texture appears as a middle gray

on the transform image. One image (2,3) Whitmore Lake has a large
enough area so that it appears white on the transform image.

We will take a few enlargements of the subimages and their trans-
forms and interpret the textural transform images in terms of the
gray tone spatial dependence patterns. Figure 10 shows an enlarge-
ment of subimage (1,3) and its transform. Textures consisting of
white tones occurring next to white or light gray tones are the
most infrequently occurring textural patterns and they appear as
black in the transform image. Finally, Figure 11 shows an enlarge-
ment of subimage (6,0) where white tones occurring together or
black tones occurring together are the most infrequently occurring
textural patterns and they appear as black in the transform image.

2.8 Generalized Gray Tone Spatial Dependence Models for Texture
Given a specific kind of spatial neighborhood (such as a 3 x 2
neighborhood or a 5 x 5 neighborhood) and a subimage, it is possible
to compute or estimate the joint probability distribution of the
gray tone of the neighborhood in the subimage. In the case of a

5 x 5 neighborhood, the joint distribution would be 25-dimensional.
The generalized gray tone spatial dependence model for texture

is based on this joint distribution. Here, the neighborhood is

the primitive, the arrangement of its gray tones is the property,
and the texture is characterized by the joint distribution of the
gray tones in the neighborhood.

Assuming equal prior probabilities, the probability that any neigh-
borhood belongs to texture class k is proportional to the probabi-
lity of the arrangement of the gray tones in the neighborhood as
given by the joint distribution for texture class k. A neighbor-
hood can be assigned to texture class k if the joint distribution
for class k is maximal.

The problem with the techniques is the high dimensionality for the
probability distributions. Parametric representation of the distri-
bution by its first two moments naturally leads to the characteri-
zation of texture by the autocorrelation function or power spectrum.
Such approaches were discussed in Sections 2.2 and 2.3. Non-para-
metric representation of the distribution by histogramming the
high-dimensional distributions have sample size and storage problems
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In the remainder of this section, we review a discrimination
technique for representing the non-zero support for these dis-
tributions.

Histogram approaches to representing the neighborhood distribution
function must pay a heavy storage penalty. For example, a 3 x 3
neighborhood with 4 gquantized values for each gray tone requires
49 storage locations (over 250,000). To handle this problem,
Read and Jayaramamurthy (1972) and McCormick and Jayaramamurthy
(1975) suggest using the set covering methodology of Michalsky
(19659) and Michalsky and McCormick (1971) to keep track of those
histogram bins which would be non-empty. This technique allows
for the generalization of the observed texture samples for each
class and provides a simple table look-up sort of decision rule
(Haralick, 1976).

To see how this works, let the given type of neighborhood contain
N resolution cells and let G be the set of quantized gray tones.
Then GN is the set of all possible arrangements of gray tones in
the neighborhood. Let S € GN be the training set of all observed
neighborhcods of texture class k, k =1,...,K. We will assume that
S, M Sy = @ for k # m.

To generalize the training sets, we employ a cylinder operator
(ilaralick, 1978). Let J be a subset of the indexes from 1 to N;
J< {1,...,N]. The cylinder operator ¥ ; operates on N-tuples of

GN constraining all components indexed by J to remain fixed to
the values they currently hold and letting go free the values for
all components not indexed by J. In this manner, under 2,...,N
operator, the n-tuple (x1,+..,%XN) becomes (*,x2 . Xy) where *
means any value. Formally, for any A & GN, we définé the order
#J cylinder operator Y7 by:

N i
WJ(A) = {(g],...,gN) € G | for some (ai,...,aNJ e A,

9; = 3 for all j e J}

The cylinder operator is used to generalize the samples of ob-
served texture from each texture class by creating a minimal
cover of that class against all other classes. A cover for class
k is a collection of subsets of GN each of which has non-empty
intersection with Sy and empty intersection

K
with S, m# k. An order-M cover of Sk against ko Sp is a
m=1 collection
m#k

M
%e k of subsets of GN, each subset in the collection generalizing
an N~tuple in Sy by an order-M or less cylinder operator.
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M
ﬁgk = {A G gN ‘ for some (x1,...,%Xy) € Sk and index set J,
<M,

A :\PJ(Xl,-..JXN) and Af\Sm = f, m# k}-

Tt is clear that when the observed sample sets Sk are disjoint,
it is always possible to find a cover of Sk since we can take
the order M = N making ¥Zﬂ contain precisely the singleton sets
whose members are elements of Sk. Hence, for large encugh M, it
is always possible to make ¥} satisfy:

S S UM A‘E( U 52)‘: (1)
Tk

We will call an order-M cover minimal if by using cylinder ope-

rators only of order less than M equation (1) cannot be satisfied.

The labeling of neighborhoods by texture class can proceed in
the following way. Let.%l,...,ﬁgK be minimal covers. Let
(g1+...,9y) be an N-tuple of gray tones from a neighborhood. If
the N-tuple is in the cover for class k and for no other class,
then assign it to class k. Hence, if

(1) lg1,....9y) e L,/ A and
Ac#

(2) Agrs-eo.om) & A, m 4k,

Aecdlm

then we assign the neighborhood to texture class k. If there

exists no class so that (1) and (2) a i
: re simultaneo is-
fied, then we reserve decision. s S

Using a.dgcision rule similar to this but with a definition for
cover minimality which makes the cover dependent on the order
in which the N-tuples are encountered, Read and Jayaramamurth
(1972! achieved a 78 percent correct identification in distinZ
guishing two textures of chromatin samples and artifact samples

from pap smears using a 3 x 2 i
oD ames g neighborhood and a 4 gray level
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2.9 Run Lengths

A gray level run length primitive is a maximal collinear con-
nected set of pixels all having the same gray tone. Gray level
runs can be characterized by the gray tone of the run, the

length of the run, and the direction of the run. Galloway (1975)

used 4 directions: 09, 459, 900, and 1359, and for each of these
directions she computed the joint probability of gray tone of

run and run length.

Let p(i,Jj) be the number of times there is a run of length j
and having gray tone i. Let Ng be the number of gray tones and
Ny be the number of runs. Use%ul statistics of the p(i,j)
include:

iy qQ 4y
A // 3 E: p(i, i) (short run
i=1 J=1 emphasis
inverse moments)

IT
z pli,j) {tong run
=] emphasis moments)

"
Z p(i,j) (gray level
=1 nonuniformity)

(run length

Ir
Z pli,j)

J j 1 nonuniformity)
N
a Nr Nq Nr
E z p(i,j) / E Z ip(i,g) (fraction of image
i=1 JF i'= i= in runs)
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Using these five measures for each of 4 directions, and one of
Haralick's data sets, Galloway illustrated that about 83 percent
identification could be made of the six categories: swamp, lake
railroad, orchard, scrub, and suburb.

2.10 Auto-Regression Models

The linear dependence one pixel of an image has on another is
well known and can be illustrated by the autccorrelation function.
This linear dependence is exploited by the auto-regression model
for texture which was first used by McCormick and Jayaramamurthy
(1974) to synthesize textures. McCormick and Jayaramamurthy used
the Box and Jenkins (1970) time series seasonal analysis method
to estimate the parameters of a given texture They then used the
estimated parameters and a given set of starting values to illus-
trate that the synthesized texture was close in appearance to the
given texture. Deguchi and Morishita (1976), Tou et al. (1976),
and Tou and Chang (1976) also use a similar technigque.

Figure 12 shows this texture synthesis model. Given a randomly
generated noise image and any sequence of K synthesized gray

tone values in a scan, the next gray tone value can be synthe-
sized as a linear combination of the previously synthesized values
plus a linear combination of previous L random noise values. The
coefficients of these linear combinations are the parameters of
the model.

Although the one-dimensional model employed by Read and Jayarma-
murthy worked reasonably well for the two vertical streaky tex-
tures on which they illustrated the technique, performance would
be poorer on diageonal wiggly streaky textures. Better performance
on general textures would be achieved by a full two-dimensional
model illustrated in Figure 13 Here a pixel (i,j) depends on a
two-dimensional neighborhood N(i,j) consisting of pixels abnove

or to the left of it as opposed to the simple sequence of the
previous pixels a raster scan could define. For each pixel (k, )

in an order-D neighborhood for pixel (i,3j), (k,1l) must be previnus
to pixel (i,j) in a standard raster sequence and (k,l1) must not
have any coordinates more than D units away from (i,j). Formally,

the order-D neighborhood is defined by:

N(i,j) = {(k,JJ ‘ (i-D=<k<<i and j - D= <j + D)
or (k =i and j - D <j)}.
The auto-regressive model can be employed in texture segmentation
applications as well as texture synthesis applications. Let
ﬁxc(m,n),‘gc[m,n)} be the coefficients for texture category c and

let B be a threshold value. Define the estimated value of the
gray tone at resolution cell (i,3j) by:

a (i,j) = Zac(f-k, j=2) a_(k,2) + Zsc(i—k, J=2) fag(,8) = a (k,0)]
(k,2} ¢ N(i,j) (k,2) e N(T,j)

Figure 14,
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Assuming a uniform prior distribution, we can decide pixel (i,j)
has texture category k if:

A
ali,j) - ax (i,j)| = |a(i,j) - 32 (i,j)l for every [/

and |a(i,j) - 8 (1,3)]| < @.

A
If Ia(i,j) - ak(i,j)|:>-9, then decide pixel (i,j) is a boundary
pixel.

Those readers interested in general two-dimensional estimation
procedures for images will find Woods (1972) of interest.

3. STRUCTURAL APPROACHES TO TEXTURE MODELS

Pure structural models of texture are based on the view that
textures are made up of primitives which appear in near regular
repetitive spatial arrangements. To describe the texture, we
must describe the primitives and the placement rules (Rosenfeld
and Lipkin, 1970). The choice of which primitive from a set of
primitives and the probability of the chosen primitive being
placed at a particular location can be a strong or weak function
of location or the primitives near the location.

Carlucci (1972) suggests a texture model using primitives of line
segments, open polygons, and closed polygons in which the place-
ment rules are given syntactically in a graph-like language.
Zucker (1976) conceives of real texture as being a distortion of
an ideal texture. The underlying ideal texture has a nice repre-
sentation as a regular graph in which each node is connected to
its neighbors in an identical fashion. Each node corresponds to
a cell in a tessellation of the plane. The underlying ideal tex-
ture is transformed by distorting the primitive at each node to
make a realistic texture. Zucker's model is more of a competance
based model than a performance model.

Lu and Fu (1978) give a tree grammar syntactic approach for tex-
ture. They divide a texture up into small square windows (9 x 9).
The spatial structure of the resclution cells in the window is
expressed as a tree. The assignment of gray tones to the resolution
is given by the rules of a stochastic tree grammar. Finally, special
case is given to the placement of windows with respect to another

in order to preserve the coherence between windows. Lu and Fu
illustrate the power of their technique with both texture synthesis
and texture experiments.

In the remainder of this section, we discuss some structural-
statistical approaches to texture models. The approach is struc-
tural in the sense that primitives are explicitly defined. The
approach is statistical in that the spatial interaction, or lack
of it, between primitives is measured by probabilities.

We classify textures as being weak textures, or strong textures.
Weak textures are those which have weak spatial-interaction bet-
ween primitives. To distinguish between them it may be sufficient
to only determine the frequency with which the variety of primi-
tive kinds occur in some local neighborhood. Hence, weak texture
measures account for many of the statistical textural features.
Strong textures are those which hLave non-random spatial inter-
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actions. To distinguish between them it may be sufficient to
only determine, for each pair of primitives, the frequency with
which the primitives co-occur in a specified spatial relation-
ship. Thus, our discussion will center on the variety of ways in
which primitives can be defined and the ways in which spatial
relationships between primitives can be defined.

3.1 Primitives

A primitive is a connected set of resolution cells characterized
by a list of attributes. The simplest primitive is the pixel with
its gray tone attribute. Sometimes it is useful to work with pri-
mitives which are maximally connected sets of resolution cells
having a particular property. An example of such a primitive is

a maximally connected set of pixels all having the same gray tone
or all having the same edge direction.

Gray tones and local properties are not the only attributes which
primitives may have. Other attributes include measures of shape
of connected region and homogeneity of its local property. For
example, a connected set of resolution cells can be associated
with its length or elongation of its shape or the variance of

its local property.

Many kinds of primitives can be generated or constructed from
image data by simple 3 x 3 neighborhood operators. Included in
this class of primitives are:

1. Connected components

2. Ascending or descending components
3. Saddle components

4. Relative maxima or minima components
5. Central axis components

Neigborhood operators which compute these kinds of primitives can
be found in a variety of papers and will not be discussed here.

See Rosenfeld and Pfaltz (1966), Rosenfeld (1968), Rosenfeld (1970),
Rosenfeld (1971), Rosenfeld and Davis (1976), Yokoi, Toriwaki,

and Fukumura (1975), Arcelli and Sanniti di Baja (1978), and
Haralick (1978).

3.2 Spatial Relationships

Once the primitives have been constructed, we have available a
list of primitives, their center coordinates, and their attri-
butes. We might also have available some topological information
about the primitives, such as which are adjacent to which. From
this data, we can select a simple spatial relationship such as
adjacency of primitives or nearness of primitives and count how
many primitives of each kind occur in the specified spatial re-
lationship.

More complex spatial relationships include closest distance or
closest distance within an angular window. In this case, for each
kind of primitive situated in the texture, we could lay expanding
circles around it and locate the shortest distance between it

and every other kind of primitive. In this case our co-occurrence
frequency is three-dimensional, two dimensions for primitive kind
and one dimension for shortest distance. This can be dimensionally
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reduced to two dimensions by considering only the shortest dis-
tance between each pair of like primitives.

3.3 Weak Texture Measures

Tsuji and Tomita (1973) and Tomita, Yachida, and Tsuji (1973)
describe a structural approach to weak texture measures. First
a scene is segmented into atomic regions based on some tonal
property such as constant gray tone. These regions are the pri-
mitives. Associated with each primitive is a list of properties
such as size and shape. Then they make a histogram of size proper-
ty or shape property over all primitives in the scene. If the
scene can be decomposed into two or more regions of homogeneous
texture, the histogram will be multi-mocdal. If this is the case,
each primitive in the scene can be tagged with the mode in the
histogram it belongs to. A region growing/cleaning process on
the tagged primitives yields the homogeneous textural region
segmentation.

If the initial histogram modes overlap too much, a complete seg-
mentation may not result. In this case, the entire process can be
repeated with each of the then so far found homogeneous texture
region segments. If each of the homogeneous texture regions con-
sists of mixtures of more than one type of primitive, then the
procedure may not work at all. In this case, the technique of
co-occurrence of primitive properties would have to be used.

Zucker et al. (1976) used a form of this technique by filtering
a scene with a spot detector. Non-maxima pixels on the filtered
scene were thrown out. If a scene has many different homogeneous
texture regions, the histogram of the relative max spot detector
filtered scene will be multi-modal. Tagging the maxima with the
modes they belong to and region growing/cleaning thus produced
the segmented scene.

The idea of the constant gray level regions of Tsuji and Tomita
or the spots of Zucker et al. can be generalized to regions

which are peaks, pits, ridges, ravines, hillsides, passes, breaks,
flats, and slopes. (Toriwaki and Fukumura, 1978; Peucker and
Douglas, 1975). In fact, the possibilities are numerous enough
that investigators doing experiments will have a long working
period before understanding will exhaust the possibilities.

The next three subsections review in greater detail some speci-
fic approaches and suggest some generalizations.

3.3.1 Edge Per Unit Area

Rosenfeld and Troy (1970) and Rosenfeld and Thurston (1971) sug-
gested the amount of edge per unit area for a texture measure.

The primitive here is the pixel and its property is the magnitude
of its gradient. The gradient can be calculated by any one of

the gradient neighborhood operatcocrs. For scme specified window
centered on a given pixel, the distribution of gradient magnitudes
can then be determined. The mean of this distribution is the
amount of edge per unit area associated with the given pixel. The
image in which each pixel's value is edge per unit area is actually
a defocussed gradient image. Triendl (1972) used a defocussed
Laplacian image. Sutton and Hall (1972) used such a measure for
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the automatic classification of pulmonary disease in chest X-rays.

Ohlander (1975) used such a measure to aid him in segmenting tex-
tured scenes. Rosenfeld (1975) gives an example where the compu-
tation of gradient direction on a defocussed gradient image is

an appropriate feature for the direction of texture gradient.

Hsu (1977) used a variety of gradient-like measures.

3.3.2 Run Lengths
The gray level run lengths primitive in its one-dimensional form

is a maximal collinear connected set of pixels all having the
same gray level. Properties of the primitive can be length of
run, gray level, and angular orientation of run. Statistics of
these properties were used by Galloway (1975) to distinguish bet-
ween textures.

In the two-dimensiocnal form, the gray level run length primitive
is a maximal connected set of pixels all having the same gray
level. These maximal homogeneous sets have properties such as
number of pixels, maximum or minimum diameter, gray level, angu-
lar orientation of maximum or minimum diameter. Maleson (1978)
has done some work related to maximal homcgeneous sets and weak
textures.

3.3.3 Relative Extrema Density

Rosenfeld and Troy (1970) suggested the number of extrema per
unit area for a texture measure. They suggest defining extrema

in one-dimension only along a horizontal scan in the following
way: in any row of pixels, a pixel i is a relative minimum if its
gray tone g(i) satisfies:

g(i)=Cg(i + 1) and g(i) <lg(i - 1)
A pixel 1 is a relative maximum if:
g({i)==g(i + 1) and g(i)== g(i - 1)

Note that with this definition each pixel in the interior of any
constant gray tone run of pixels is considered simultaneously a
relative minimum and relative maximum. This is so even if the
constant run is just a plateau on the way down or on the way up
from a relative extremum.

The algorithm employed by Rosenfeld and Troy marks every pixel in
each row which satisfies equations (1) or (2). Then they center

a sqguare window around each pixel and count the number of marked
pixels. The texture image created this way corresponds to a de-
focussed marked image.

Mitchell, Myers, and Boyne (1977) suggest the extrema idea of
Rosenfeld and Troy except they proposed to use true extrema and
to operate on a smoothed image to eliminate extrema due to noise.
See also Carlton and Mitchell (1977) and Ehrich and Foith (1976,
1978) .

One problem with simply counting all extrema in the same extrema
plateau is that extrema per unit area is not sensitive to the
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difference between a region having few large plateaus of extrema
and many single pixel extrema. -The soclution to this problem is
to only count an extrema plateau once. This can be achieved by
locating some central pixel in the extrema plateau and marking
it as the extrema associated with the plateau. Another way of
achieving this is to associate a value of 1/N for every extrema
in a N-pixel extrema plateau.

In the one-dimensional case, there are two properties that can

be associated with every extrema: its height and its width. The
height of a maxima can be defined as the difference between the
value of the maxima and the highest adjacent minima. The height
(depth) of a minima can be defined as the difference between the
value of the minima and the lowest adjacent maxima. The width of
a maxima is the distance between its two adjacent minima. The
width of a minima is the distance between its two adjacent maxima.
Figure 15 illustrates these properties.

Two-dimensional extrema are more complicated than one-dimensional
extrema. One way of finding extrema in the full two-dimensional
sense is by the iterated use of some recursive neighborhood ope-
rators propagating extrema values in an appropriate way. Maximally
connected areas of relative extrema may be areas of single pixels
or may be plateaus of many pixels. We can mark each pixel in a
relative extrema region of size N with the value h indicating that
it is part of a relative extrema having height h or mark it with
the value h/N indicating its contribution to the relative extrema
area. Alternatively, we can mark the most centrally located pixel
in the relative extrema region with the value h. Pixels not marked
can be given the value 0. Then for any specified window centered
on a given pixel, we can add up the vaules of all pixels in the
window. This -sum divided by the window size is the average height
of extrema in the area. Alternatively we could set h to 1 and the
sum would be the number of relative extrema per unit area to be
associated with the given pixel.

Going beyond the simple counting of relative extrema, we can associ-
ate properties tc each relative extrema. For example, given a re-
lative maxima, we can determine the set of all pixels reachable
only by the given relative maxima and not by any other relative
maxima by monotonically decreasing paths. This set of reachable
pixels is a connected region and forms a mountain. Its border
pixels may be relative minima or saddle pixels.

The relative height of the mountain is the difference between its
relative maxima and the highest of its exterior border pixels. Its
size is the number of pixels which constitute it. Its shape can be
characterized by features such as elongation, circularity, and
symmetric axis. Elongation can be defined as the ratio of the
larger to small eigenvalue of the 2 x 2 second moment matrix ob-
tained from () coordinates of the border pixels (Bachi, 1973;
Frolov, 1875). Circularity can be defined as the ratio of the
standard deviation to the mean of the radii from the region's
center to its border (Haralick, 1975). The symmetric axis feature
can be determined by thinning the region down to its skeleton

and counting the number of pixels in the skeleton. For regions
which are elongated, it may be important to measure the direction
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of the symmetric axis.

Osman and Saukar (1975) use the mean and variance of the height
of mountain or depth of valley as properties of primitives. Tsuji
and Tomita (1973) use size. Histograms and statistics of histo-
grams of these primitive properties are all suitable measures for
weak textures.

3.3.4 Relational Trees

Ehrich and Foith (1976) describe a relational tree representation
for the extrema of one-dimensional functions with bounded domains.
The relational tree recursively partitions the function and its
domain at the smallest relative minimum. The relative minimums

for the newly formed segments and functions to the left and right
of the dividing point can be used for further divisions. An alter-
native way to form the tree is to use maximums instead of minimums
for dividing.

Figure 16 illustrates a function and Figure 17 illustrates its
relational tree. The root of the tree indicates that over the
entire function domain the highest relative maximum is point 16
and the lowest relative minimum is point 23. The function is then
divided at valley 23. The segment to the right of 23 has point

26 for the highest relative maximum and point 27 for the lowest
relative minimum, and so on.

Textural features can be extracted at any level of the relational
tree. One such texture is segment contrast. Segment contrast is

the difference between the largest relative maximum and the smallest
relative minimum in the segment. The segment contrast textural
feature can be the mean or variance of segment contrast taken

over the set of segments comprising the given function at a sgpe-
cified level of the tree. Another textural feature can be the
variance of segment length.

3.4 Strong Texture Measures and Generalized Co-occurrence

Strong texture measures take into account the co-occurrence between
texture primitives. On the basis of Julesz (1975) it is probably
the case that the most important interaction between texture primi-
tives occurs as a two-way interaction. Textures with identical
second and lower order interactions but with different higher order
interactions tend to be visually similar.

The simplest texture primitive is the pixel with its gray tone
property. Gray tone co-occurrence between neighboring pixels was
suggested as a measure of texture by a number of researchers as
discussed in Section 2.6.

All the studies mentioned there achieved a reasonable classifi-
cation accuracy of different textures using co-occurrences of the
gray tone primitive.

The next more complicated primitive is a connected set of pixels
homogeneous in tone. (Tsuji and Tomita (1973)). Such a primitive
can be characterized by size, elongation, orientation, and average
gray tone. Useful texture measures include co-occurrence of primi-
tives based on relationships of distance or adjacency. Maleson

I —
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et al. (1977) suggests using region growing technigques and ellip-
soidal approximations to define the homogenecus regions and degree
of co-linearity as one basis of co-occurrence. For example, for
all primitives of elongation greater than a specified threshold,
we can use the angular orientation of each primitive with respect
to its closest neighboring primitive as a strong measure of
texture.

Relative extrema primitives were proposed by Rosenfeld and Troy
(1970) , Mitchell, Myers, and Boyne (1977), Ehrich and Foith (1976),
Mitchell and Carlton (1977), and Ehrich and Foith (1977). Co-
occurrence between relative extrema was suggested by Davis et al.
(1978) . Because of their invariance under any monotonic gray scale
transformation, relative extrema primitives are likely to be very
important.

It is possible to segment an image on the basis of relative extrema
(for example, relative maxima) in the following way: label all
pixels in each maximally connected relative maxima plateau with

a unique label. Then label each pixel with the label of the rela-
tive maxima that can reach it by a monotonically decreasing path.
If more than one relative maxima can reach it by a monotonically
decreasing path, then label the pixel with a special label "c"

for common. We call the regions so formed the descending components
of the image.

Co-occurrence between properties of the descending components can
be based on the spatial relationship of adjacency. For example, if
the property is size, the co-occurrence matrix could tell us how
often a descending component of size s occurs adjacent to or near-

(L 1}

by to a descending component of size s or of label "c

To define the concept of generalized co-occurrence, it is nz2cessary
to first decompose an image into its primitives. Let Q be the set
of all primitives on the image. Then we need to measure primitive
properties such as mean gray tone, variance of gray tones, region,
size, shape, etc. Let T be the set of primitive properties and f

be a function assigning to each primitive in Q a property of T.
Finally, we need to specify a spatial relation between primitives
such as distance or adjacency. Let S Q x Q be the binary relation
pairing all primitives which satisfy the spatial relation. The
generalized co-occurence matrix P is defined by:

#{(qqu) € S { f(gq) = tq1 and £(gy) = t?_}
#5
P(tq,ty) is just the relative frequency with which two primitives

occur with specified relationship in the image, one primitive having
property t1 and the other primitive having property tj.

P(ty;E2) =

zucker (1974) suggests that some textures may be characterized by
the frequency distribution of the number of primitives any primi-
tive has related to it. This probability p(k) is defined by:

(k) = #{iqeo|#siq = x]
¥0

P
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Although this distribution is simpler than co-occurrence, no in-
vestigator appears to have used it in texture discrimination ex-
periments.

4.0 CONCLUSION

We have surveyed the image processing literature on the various
approaches and models investigators have used for textures. For
micro-textures, the statistical approach seems to work well. The
statistical approaches have included autocorrelation functions,
optical transforms, digital transforms, textural edgeness, struc-
tural element, gray tone co-occurrence, and autoregressive models.
Pure structural approaches based on more complex primitives than
gray tone seems not to be widely used. For macro-textures, inves-
tigators seem to be moving in the direction of using histograms
of primitive properties and co-occurrence of primitive properties
in an structural-statistical generalization of the pure structural
and statistical approaches.

E— B
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Figure 1 illustrates some of the image textures used by Kaizer in his
autocorrelation experiment (taken from Kaizer, 1955).
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H = H(0,0) H(0,1) H(D,2) H(0,3)
rﬂ
H(3,0) H(3,4) H(-1,0) H(9,9)

H = {(0,0),(0,1),(0,2),(1,2)}

Figure 2 illustrates the set H and some of its translates.
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Figure 3 illustrates the erozion operation for a number of different

structural elements on the same imane.
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Figure 3 (continued) illustrates the erosion operation for a number of
different structural elements on the same image.
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Figure 3 (continued) illustrates the erosion operation for a number of
different structural elements on the same image.
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Figure 4 illustrates the covariance function in the horizontal
direction for the image of Figure 3.
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Figure 5 illustrates the set of all distance 1 horizontal neighboring
resolution cells on a 4 x 4 image.




- 413 -

Grey Tone
S0 ] 2 3
HE N SN 0 |#(0,0)#(0,1) #(0,2) #(0,3)
O[O0 (1 |1 1 #(1!0)#(]’1}#(112)#(;,3)
021212 _I(_Srey 2 |#(2,00#2,1) #(2,2) #(2,3)
22|33 o3 |#(3,0)#(3,1) #(3,2) #(3,3)

Figure 6-a. Figure 6-b. This shows the general
form of any gray tone
spatial dependence matrix
for an image with integer
gray tone values 0 to 3.
#(71,]) stands for number
of times gray tones i and
j have been neighbors.
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Figure 6-c. Figure 6-d.
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Figure 6 illustrates the spatial co-occurrence calcuations.

(Taken from Haralick et. al., 1973).
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Figure 7 lists 7 of the common features computed from the co-occurrence
probabilities.




Figure 8 illustrates computer generated subimages in the test area.
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Figure 10 illustrates an enlargement of subimage (1,3) and its transform,




Fiqure 11 illustrates an enlargement of subimage (6,0) and its transform.
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3 | %

Randomly Generated Noise Image Synthesized Image

Moving Average

Auto-Regressive
Terms

Terms

illustrates how from a randomly generated noise image and a
given starting sequence apseeadys representing the initial

boundary conditions, all values in a texture image can be
synthesized by a one-dimensional auto-regressive model.

Figure 12
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D pixels

a(i,j)

b(i,])

Order D Neighborhood of Synthesized

Order D Meighborhood of Randomly
Generated Noise Image Image
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Auto-Regressive Terms

a(i,j) =

Figure 13 illustrates how from a randomly generated noise image and a given
starting sequence for the first order-D neighborhood in the image,
all values in a texture image can be synthesized by a two-dimensional

auto-regressive model.



ali,j)

a(i,j) = Z ali -k, j - 1) alk,2) =+ E eEz -k, § - ) fatk,e) - Bk,
N

(k,2) e N(i,j) (k,2) e N(i,j)
__.v_._...._d %,__}
Auto-Regressive Terms Moving Average Terms

Figure 14 illustrates how a gray tone value for pixel (i,j) can be estimated
using the gray tone values in the neighborhood N(i,]) and the
differences between the actual values and the estimated values
in the neighborhood.

]
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Figure 16 illustrates a waveform.
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