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ABSTRACT - In LANDSAT imagery, spectral and
spatial information can be used to detect
the drainage network as well as the rela=-

tive elevation model 1in mountainous ter-
rain. To do this, mixed information of ma-
terial reflectance and topographic

modulation in the original LANDSAT imagery
must be separated first. From the naterial
reflectance information, big visible rivers
can be detected. From the topographic mo-
dulation information, ridges and valleys
can be detected and assigned relative ele-
vations, A complete elevation model can be
generated by interpolating values for non-
ridge and non-valley pixels. The small
streams not detectable from material re-
flectance information can be located 1in

the valleys with flow direction known from
the elevation model. Finally, the flow di-
rections of big visible rivers can be in-
ferred by solving a consistent labeling
problem hased on a set of Spatial reasoning
constraints.

1. Introduction

It is a common task for a photointer-
preter to examine the spatial pattern on an
aerial image and by appropriate interpreta-
tion be able to tell the elevation of one
area relative to another and be able to in-
fer the stream network and the drainage
network even though some of the streams may
be below the resolution of the sensor.
There is a wealth of information in spatial
patterns on aerial imagery but most compu-
ter data processing of remotely sensed im-
agery, being limited to pixel =spectral
characteristics, does not make use of k5 A

In this paper, we describe a procedure
by which the stream network and relative
elevation model <can be infered from a
LANDSAT scene of mountainous and hilly ter-
rain. The processing has a number of dis-
tinectly different steps. First to appro=-
priately prepare the imagery for processing
we must destripe it and perform haze remo-
val, Destriping can be done by the Horn
and Woodham [1979] technique. Haze removal

can be done by the Switzer, Kowalik and
Lyon [1981] technique. These two steps
constitute the preprocessing and are not
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discussed in this paper,.

To a first order effeect, after prepro-
cessing the cause of the intensity value at
any pixel is due to the combined effect of
the angle at which the sun illuminates the
ground patch corresponding to the pixel ang
the reflectance of the surface material on
the ground pateh. To make sense of the
spatial pattern first requires separating
these two effects, For this purpose the
Eliason, Soderblom and Chavez [1981] teah-
nique can be used to create two images from
the one LANDSAT image. The first image is
a reflectance image and the second image is
a topographic modulation image and has in-

formation related to surface slope and sun
illumination. The details are given in
Section 2.

As discussed in Section 34 the reflec-
tance image can be used by the Alfoldi and
Munday [1978] procedure for identification
of all areas of water. The topographic mo-
dulation image can be used to identify the
ridges and the valleys. This is discussed
in Section 4. With the valleys identified,
each valley pixel may be assigned a rela-
tive elevation which increases as the val-
ley path from the pixel to the river it
empties in increases. Ridges must be as-
signed elevations higher than their neigh-
boring valleys and each ridge pixel can be
assigned a relative elevation which in-
creases on the ridge path from the pixel to
the saddle point where the ridge crosses a
valley inereases. The ridge valley eleva-
tion assignment procedure is discussed in
Section 5. Once ridges and valleys have
been located and assigned relative eleva-
tions, a complete elevation model can be
generated by interpolating values for non=-
ridge and non-valley pixels. The interpo-
lation procedures are discussed in Seetion
6 The final element of the spatial rea-
soning is the assignment of stream or river
flow direction for those water bodies which
were directly identified by reflectance
properties, This is discussed in Section 7T
and 8. In the remainder of this section,
we review previous work done by saptial
reasoning investigators.
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Since the launch of the first Earth
Resources and Technolegy Satellite (ERTS,
jater renamed LANDSAT) in July 1972, much

work in remote sensing has been done by us-
ing pattern analysis and picture processing
techniques for image classification, re-
storation and enhancement. Few people have
tried the scene analysis or artifieial in-
telligence approach to describe the image
in terms of the properties of objects or
regions in the image and the relationships
petween them. Ehrich [1977] found global
lineaments by partitioning the image into
windows and applying long, straight linear

filters at different orientations in each
window to extract local evidence. Dynamic
programming [Montanari, 1971; Martelldi,

1972] was then used to form complete global
lineaments. VanderBrug [1976] tested vari-
ous detectors to get linear features in sa-
tellite imagery. This was only at the lo=-
cal level. Later VanderBrug [1977a] used
relaxation to reduce noise in the output.
Finally VanderBrug [1977b] defined a merit
sunction that can be used to select pairs
of segments to be merged so that local line
detector responses can be linked together
into a global representation of the curves.
His work is closely related to the Shirai
[1973] technique which employed sequential
line following to find edges in scenes con-
taining polyhedra. Li and Fu [1976] used
tree grammars to locate highways and rivers
from LANDSAT pictures. The above investi-
gations deal with the extraction of all the
linear features from an image, but they do
not deal with the interpretation of these
linear features. In the following investi-
gations, knowledge about the desired fea-
tures are considered crucial in such ana-
lyses.

Bajesy and Tavakoli [1975] argued that
an image filter is not meaningful unless
one has a world model, a description of the
world one is dealing with. They recognized
objects matching this desecription and fil-
tered them out. This strategy is used to
sequence the recognition of bridges, riv-
ers, lakes, and islands from satellite pic-
tures. Nagao and Matsuyama [1980] built an
image understanding system that automati-
cally located a variety of objects 1in an
aerial photograph by using diverse know-
ledge of the world. It is one of the first
image understanding systems that has incor-
porated very sophiscated artificial intel-
ligence techniques into the analysis of
complex aerial photographs. Fischler, Ten-
enbaum and Wolf [1981] designed a low-reso-
lution road tracking (LRRT) algorithm for
aerial imagery. The approach was based on
a new paradigm for combining local informa-
tion from multiple sources, map knowledge,
and generic knowledge about roads. The fi-
nal interpretation of the scene was ac=-
hieved by using either graph search or dy-
namic programming.

Similarly, knowledge is important in
our problem which requires analysis both at
the local and global levels. Local level
analysis will be discussed in Section 2 to
4; global level analysis will be discussed
in Section 5 to 8.

2. Illumipation model

The brightness and darkness in each
band of LANDSAT images come from two main
sources. First, they can be due to material

properties. For example, in the spectral
region (.8 = 1.1 pm) of band 7, water bod=-
ies absorb infrared radiation, so they ap-
pear as clearly delineated dark bodies;
living vegetation reflects strongly in this
portion of the infrared, so areas of living
green vegetation appear as bright regions.
Second, they may be due to topography and
sun illumination angle effects. The moun-
tain side facing to the =sun appears as a
bright region; the mountain side facing
away from the sun may appear as a shadow or
dark region. Unfortunately, the LANDSAT
data values are some combination of these
two effects. Eliason, Soderblom, and Cha-
vez [1981] address this problem by defining
an illumination model. In the following,
their general theory about the brightness
in LANDSAT imagery will be introduced, and
extraction of material reflectance and to=-
pographic modulation information based on
clustering on ratio images will be de=
seribed.

The original LANDSAT image B' measur-
ing the amount of 1light reflected from a
surface at pixel (r, c) for wavelength "i'
i=14, 5,6, T 1is :
B*(r, c, wi) = R(r, c, wi)

p) + H (w,)
where R 1S the brightness of the =scene if
the surface were flat, Tp is the modulation
of the brightness introduced by topography,
and H is the haze due to atmospheric scat-
tering. The image of R is called material
reflectance image, and the 1image of Tp is
called topographic modulation image. p is
the photometric function which depends on
the phase angle, the incidence angle, and
the angle of emergence [Wildey, 1975], but
which does not depend on Wie Two assump-
tions are made here:

1. Tp is independent of material proper-
ties and wavelength.

2. The photometric functicn p is indepen-
dent of wavelength.

# Tp(r, o,

After H 1is calculated by the Switzer,
Kowalik and Lyon [1981] technique, for each
band, H(w,) is subtracted from B'(r, c, w,)
at all piXels to get the haze-corrected im-
age

B(r, c, wi) o= B'(r, c, w,) - H(w,)

= R(r, ¢, wi) # Tp(r, e, p).
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Because Tp is independent of
wavelength, in the ratio image of two bands
with wavelength Wy and e each pixel (r,
c) has gray level

B(r, ¢, N1) / B (r, e, we)

= (R(r, ¢, w,) ® Tp(r, e, p)) / (R(r, e,
w2) ® Tp(r, e, pl)

= R(r, Cy W ) / R (r': Cy ""2)1

which is independent of Tp. Thus, the to-
pographic information is removed. A simple
demonstration of this theory is that, in

the ratio image after all diffuse lighting
has been removed, all shadows disappear.

Eliason, Soderblom, and Chavez estimate
the material reflectance image R for each
W, by clustering using different ratio im-
ages as features. The result is a cluster
image Cl (r, c). For each w,, the average
brightness value of all the pixels in each
cluster is taken to represent R for their
respective cluster, Two basic assumptions
are inherent:

1. All image elements that group in a ra-
tio cluster represent a single material.

2. The topographic slopes of all elements
in a cluster are symmetrically distributed
toward and away from the sun, such that
their average brightness can be used to es-
timate the brightness of that material on a
flat surface.
The material
used in detecting
in Section 3.

reflectance images will be
visible rivers described

From the cluster image, four material
reflectance images R(r, c, w,) can be esti-
mated because, for each clus%er, four aver-
age brightness values can be calculated
from the four bands, i.e., for i = 4, 5, §,

7T, if C1 (r, e) = k at pixel (r, ¢), then
Zxly B(x,y,w,)
Cl(x,y)=k
R{r,c,w.) =
= E:xs:y 1
Cl(x,y)=k
For any pair of the haze-corrected image

B(r, ¢, w;) and material reflectance image
R(r, ¢, w;), i = 4, 5, 6, T, the topograph-
ie modula%ion image Tp «can be calculated
simply by taking the ratio of B over R.
This topographic modulation image is an im-
age whose tonal variation is unambiguously
identified with surface slope and sun illu-
mination angle.

3. Detection of Visible Rivers

the LANDSAT image
a 57 meter by 80
the resolution is
it is not possible
network

Because one pixel in
represents approximately
meter area on the ground,
low. For the most part,
to directly observe the drainage

of the LANDSAT data. If rivers op lakes

are visible to the humans, they can be de-
tected by spectral information as described
in this section. We call such rivers (ip-
cluding big lakes) “visible rivers® On the
other hand, if the streams are not visible,
they can only be detected by spatial infor.-
mation and we call them “invisible streams.'
For any window over the LANDSAT image, 1if
one can detect some visible rivers by using
spectral information and detect ridges and
valleys by spatial pattern, then it is Pos~
sible to continue to look for invisible
streams by using spatial information, Ex-
amples of visible rivers and invisible
streams are shown in Figure 1, The image
was taken in April, 1976 over areas in Ni-
cholas County, W. Va. and neighboring
counties.

Figure 1 - LANDSAT scene in W. Va.
a indicate a visible river, and
b, ¢ indicate invisible streams

Once the material reflectance image is
created by the technique in last section,
it can be used to identify visible rivers.
In the spectral region (.8 = 1.1 pm) of
band 7, water bodies absorb infrared radia-
tion, 80 visible rivers appear as dark
curves, and lakes appear as dark regions.
In the material reflectance image of band
T, these dark features become more clear
because shadows are removed. However, not
all dark features are water bodies; the
real water bodies can be identified by the
following process [Alfoldi and Munday,
19781,

(1) A
every pixel

band 4 green coefficient x of
is calculated as the ratio of
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the radiance of band 4 over the radiance
sum of bands L4, 5 and 6. Similarly a band
5 red coefficient y is calculated for every
pixel. x and y are called LANDSAT chromat-
icity coordinates.

(2) 1In this coordinate system, Munday
[1974] has determined a curve (Figure 2)
which 1is the 1locus of the positions of
chromaticity values of water bodies. Ir,
for some pixels, the x, y values calculated
in 1 are close to this curve, then those
pixels can be identified as portions of wa-
ter bodies.

o7

]
e

]

y(M3S 5 COCFFICIENT)
°
.

o
-

[

al

- Chromaticity plot

Figure 2

4. Ridge-Valley Map and Invisible Streams

After visible rivers are detected by
both spectral and 2D spatial information,
invisible streams can be detected by 3D
spatial information. In this mountainous
area, water flows through valleys, so that
the drainage network of invisible streams
is a substructure of the valley network.
Therefore, the approach suggested here is
to first get a relative elevation model,
then extract the valley network from this

and finally extract the
drainage network of invisible streams from
the valley network. In this section, we
describe how to extract shadowed and bright
areas, create linear features on the bord-
ers between these areas, and classify these
linear features into ridge and valley seg-

elevation model,

ments. In the next two sections, we dis-
cuss how to generate a relative elevation
model. The extraction of valley network
and the network of invisible streams will

be discussed in Section 9,

In the topographiec modulation image,
bright areas indicate that the surfaces are
facing to the sun, dark areas indicate sha-
dows. In order to detect valleys and ridg-
es, it is necessary to first segment the
image into regions of shadowed and bright
areas because valleys and ridges exist on
the borders between these regions. Gray
level thresholding can be used to determine
shadowed and bright areas. We use the Wa-
tanabe [1974] technique in a recursive way
to select thresholds. The details are giv-
en in Wang and Haralick [1982]. The con=
nected components of them are shown in Fig=-
ure 3.

P
T
il e N
L B
1

o 1

Figure 3 - a. Connected components of dark

regions
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Figure 3 b. Connected

bright regions

components of

Next, the perimeters of these bright
and shadowed regions are segmented into
“border segmenté’according to their left re-
gions, right regions, and orientations, A
border segment is a maximally long sSequence
of connected pixels which are on the border
between two given regions, Because the de~
tection of ridges and valleys is highly or-
ientation-dependent and the sun illumina-
tion comes from east in Figure 1, each
border segment is further broken into sev-
eral pleces according to orientation: all
the east-west parts can be Separated from
the north-south parts. The result is shown
in Figure 4,
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Figure 4§ -Border Segments

the sun illumination comes
those border Segments which are val-

tified according to the brightne
right regions.

the trees in this area in A
ated, the strongest
shadow boundaries

88 of their
Because most of
pril are unfoli-
region boundaries are
rather than tonal boun-
daries, and the strongest boundaries are
those at the extremes of steep slopes
oriented normal to the sun direction. Be=-
cause the sun illumination is Predominantly
east-west, a boundary that is dark on the
left and bright on the right will corres-
pond to a ridge, and the reverse will cor-
respond to a valley.

For east-west
above ridge-valley inference
fails., Where east-west
3ome are ridges and
classify

the
mechanisnm
boundaries exist,
some are valleys, To
these east-west border segments
correctly, it requires elevation informa-
tion. As shown in Figure 5, if end a of
the valley Segment V1 is higher than end b,
X can be determined to be a valley. Also,
if end a is lower than end b or about the
same, X can be determined to be a ridge.
The results of ridge-valley finding are
shown in Figure 6. Assignment of relative
elevation to ridge and valley is discussed
in the next seection.

region boundaries,
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which are

Valley map consisting of the

identified as
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border segments which are 1dentified as
ridges.

5. Relative Elevations of Ridge and Valley
Segments

The detection of the ridge
segments as discussed in the last section
only assigns a ridge or valley label to
them and does not assign relative eleva-
tions to them. In this section, we de-
seribe how to estimate their relative ele-
vations. First we will describe a model
which can do the elevation assignment job,
then we will give the equations of eleva=-
tion assignment.

and valley

Assuming that we have a strean network
in a mountainous area, and we know where
the biggest rivers are, we can trace the
network, starting from the biggest rivers,
to find the flow directions of all the
stream segments because water always flows
from higher locations to lower locations.
In other words, if the valley segments de-
tected in the last section formed a net-
work, then starting from the visible rivers
detected in Section 3, we can trace the
network and assign relative elevations to
all the segments. Unfortunately, the ob=-
served valley segments do not form a net-
work; there are many gaps. As shown in
Figure T, if it is dark on the right and
bright on the left of stream Vb, then Vg
cannot be detected due to the shadow on the
right of Vb, and a gap exists between Vb
and a smaller stream Vs.



Vb

Figure 7 -~ The gap between a smaller and a

larger stream

that the cross-sections
V-shaped c¢an be used to

If one looks at topo=-
graphic  maps, the elevation contours of
valleys such as in Figure 8 can be fre-
quently found. Thus, if one draws a line
ab perpendicular to the valley Va, the ele=-
vations are inereasing from peint o to
point a , and also from point o to point b.
However, if a ridge point 1is encountered
during the process, the increasing has to
stop because the elevation starts to de-
crease., Thus the route of growth is di-
rected both by the valleys and by the ridg-
es, in other words, by global information.

The knowledge
of valleys are
bridge the gaps.

a 0 b
4\\
Va 1600 1800 "20C0C
Figure 8 - The elevation pattern of valleys

and its relation to elevation growing

Applying this idea to Figure 7 and assuming
that growing propagates away from valley
segment Vb, the end a of valley segment Vs
will be touched first by this growing, and
it is deduced that end b of Vg must be
higher than end a. This is the basiec idea
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for determining the higher-lower ends of
all the valley Segments. The elevations of
all the points in one segment can be calaoy-
lated if we know its On the other
hand, ridges get elevations when the Erow-
ing stops at them. Now, we will give the
simple equations of elevation assignment,

Our elevation growing
Sumes that elevation increases monotonical-
ly from valleys to ridges or along valley
segments from rivers to the saddles where a
valley crosses a ridge. It can be used for
assigning dinitial relative elevations to
each pixel. Because no attempt is made to
realistically account for the topographice
shape of the hillsides from the valley to
the ridge, the initial relative elevations
will be more accurate for the ridge or val-
ley labeled pixels than the non-ridge and
non-valley labeled pixels, Section 6 dis-
cusses a more realistie procedure for hill-
side elevation estimation using the ridge
valley elevations calculated in this sec-
tion.

model simply as-

There are two ways a
signed an elevation
the pixel belongs to
whether the pixel does

Pixel can get as-
depending on whether
a valley segment or
not belong to a val=-

ley segment. Let U be the set of valley
segments. Two slopes are associated with
each valley segment Vs in U: Sv(Vs) and

Sp(Vs). Sv(Vs) 1is the
self. 3Sp(Vs) is the slop
of Vs and perpendicular t

slope along Vs it-
e of lines outside
o Va.

The elevation growing model constructs
the elevation function EI: Zr X Ze -> 1Ip,
where Zr is the set of row coordinates, Zc
is the set of column coordinates, and Ip is
the set of zero and positive integers. If P
is a pixel belonging to a valley segment Vs
and pl is the lower end pixel identified as
in Figure 7, then

El(p) El1(pl) + Sv(vs) # Dist(p, pl)
where Dist is the Euclidean distance bet-
ween two pixels.

If p does not belong to any valley seg-
ment, and its elevation is originated from
pixel pr of valley segment Vs, then

El1(p) = El(pr) + Sp(Vs) & Dist(p, pr).

one can assume the
elevations of visible rivers ape lowest.
Assigning some initial elevation values to
the pixels of the valley segments classi-
fied as visible rivers, the elevations of
all the other pixels in the 1image window
can be related to the initial elevations of
visible river Ssegments by repeatedly using
the above two equations, The relative
heights of valley segments created by ele-
vation growing model are indicated by ar-
rows in Figure 9, and the ground truth is
shown in Figure 10.

In a small area,
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Stream map created from ground

Figure 10
truth.

5.1 Identification of Peak Junctions
valleys and ridges point

very often this juction
The peak it-

When several
toward a junction,
is a peak (peak at Jjunction).

self is formed by the junction
ridges that radiate ocutward from the peak.
(The idealized situation represented in
Figure 11 shows four symetrically oriented
ridges; in our area, real peaks are often
formed by Jjunctions of two or three ridg-
es.) Ridges of course are separated by
valleys, so the higher tips of valley seg-
ments tend to point toward peaks, The
ridge segments intersect to form a peak,
whereas valley segments tend to point to-
wards peaks, without actually joining. In
this subsection, we discuss the criteria
which can be used ¢to identify peak Jjunec-
tions.

of several

Because ridge segments
features of peaks, we make
that the number of ridge
junctiocn is larger than the

are the major
the constraint
segments at a
number of val=-

ley =segments. For many situations, it
seems reasonable to relate the heights of
peaks to the lengths of ridges that form

the peaks. For our class of topographic
forms (for wexample), it is wunlikely that
very high peaks can be formed by the inter-
section of very short ridges. As a result,
to exclude very low peaks and false peaks
from consideration, we impose a rather ar-
bitrary constraint opon definitions of
peaks. Currently, we define a peak junc-
tion as a junetion composed of four border
segments, with the number of its ridge seg-
ments larger than the number of valley seg-
ments, and the length of its longest ridge
segment longer than 800 meters. The peaks
thus located in Figure 1 are marked as tri-
angles in Figure 6.b. The correspondence
between this result and the topographical
map is suprisingly good.

R
R
v \\7 v PERSPECTIVE VIEW
R R
v
v
R
PLAN VIEW
.. S e v
vy T ;
A
Figure 11 - Idealized relationships between
peaks, valleys, ridges.
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the last section all pixels were as-
elevations, but because realistic
shape of the hillsides from valleys to
ridges were not taken into account, only
the relative elevations of the ridges and
valleys are held to be accurate, In this
section we describe a few interpolation
procedures whiech permit more realistic ele-
vation assignment to non-valley and non-
ridge pixels.

In
signed

The first interpolating surface has the
given elevation values at ridges and val-
leys and has a 3 X 3 digital Laplacian of
zero at all non-ridge and non-valley pix-
els. This will be referred to as the La-
placian surface, The system of linear
equations whiech this constraint gives rise
to can be written as

A x = b,
The vector x is the solution and represents
the values to be assigned to each "varia-
ble" (non=-ridge non-valley) pixel in the
elevation model. The A matrix is defined
by applying the digital Laplacian mask op=-
erator (Figure 12) to each variable pixel.
A mask operator is applied to a pixel by
placing the mask over the image so that the
central (large positive) mask value is di-
rectly over the pixel whose value is to be
computed, The pixel value is changed to
make the sum of the mask values times the
corresponding image values under them equal

to zero. For the Laplacian surface only,
Neumann boundary conditions are enforced
along the outside rows and columns of the

elevation model image. That is, the outer-
most row or column is repeated so that the
mask operator can be applied to the outside
pixels. There is one row in A for each va-
riable pixel in the elevation model and one
coefficient value in that row for each va-
riable. A is a sparse matrix since no va-
riable 1is constrained by more than four
other variables (due to the definition of
the digital Laplacian mask operator). The
b vector is the right hand side of each of
the linear equations in the system. The
constants on the 1left hand side of each
equation (that result from applying the La-
placian operator to a variable pixel that
has a known pixel 4-adjacent to it) are
carried to the right hand side and appear
in b. For equations representing variable
pixels not 4-adjacent to known pixels, the
corresponding b element is zero,
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Figure 12 - A digital Laplacian mask

The second interpolating surface hag
the given boundary values and minimizes the
quadratic variation of the resulting sur-
face [Grimson, 1981]. The boundary condi-
tions with which the surface must agree are
depth values along the Zero=-crossings. If
the surface elevation function is E and
Ssubscripts denote partial differentiation,
then the final surface E minimizes

2 2 2

J[ (E . W B B _— E ny d, dy
Since the surface functio
to a discrete grid format, the differential
operators can be converted to difference
operators, and the double integral can be
converted to double summation, the solution
of the above function can be formed by set-
ting up a discrete corresponding set of 1iw
near equations

n can be converted

Q x b.

The x and b vectors have the same meaning
as in the Laplacian case and are construct-
ed similarly, The Q matrix is likewise si=-
milar to the A matrix of the Laplacian,
Instead of using Neumann boundary condi-
tions at the edge of the image, the quad-
ratic variation surface is defined by using
special masks to fit the rows and colunmns
near the outside edges. The six masks
(Figure 13) are rotated as necessary and
applied to the only appropriate variable
Pixels of the elevation image to define Q.
Mask two is applied to corner pixels, mask
three is applied to Pixels in the outside
row or column that are adjacent to a corner
bPixel, mask four is applied to other pixels
in the outside rows and columns, mask five
is applied to pixels 1in the next-to-the
outside row and columns that are 8-adjacent
to corner pixels, mask six is applied to
other pixels in the next to the outside
rows and columns, and mask 1 is applied to
all other variable pixels in the image.
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Figure 13 - Six masks for the quadratic
variation method.

The third kind of interpolation surfac-
es can be created without using any mask.

For each non-boundary pixel, we can first
find its distances to the nearest valley
pixels and nearest ridge pixels, From

these distances and the elevations at these
nearest valley pixel and nearest ridge pix-
el, either a linear, cubiec, or fifth order
fit interpolation can be used to calculate
the elevation of this non-boundary pixel.
If cubic fit is used, the first order deri-
vative is zero at ridge and valley pixels.
If fifth order fit is used, both the first
and second order derivatives are zero at
ridge and valley pixels. The resulting
surface plots of these elevations are shown

in Figure 14,
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Figure 14a. Elevation Model
Laplacian Mask

Figure 14b. Elevation Model
Quadratic variation

by Method 1,

by Method 2,
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Figure 14e. Elevation Model by Method 3,
Fifth order fit

Thus far, we have found the relative
elevations of valley segments and generated
several interpolation surfaces. More about
invisible streams 1is discussed in Seetion
9. In the next two section, we discuss the
assignment of flow directions to wvisible
rivers detected in Section 3.

L. Elow Directions of Visible Rivers
and Constraints at Junctions

In Section 5, an elevation growing mo-
del was used to find relative elevations of
invisible streams in valleys. It remains
to find the flow directions of visible riv-
ers which are assigned constant elevations
in the elevation growing model. This prob-
lem of assigning labels of [upstream, down=-
stream} to the visible river segments is
very much like the Waltz [1975] problem of
labeling edges or polyhedra objects, and we
need to find constraints applicable to
streams.

It is believed that several stream seg-
ments joint at a junetion with certain or-
ientation and length patterns. The most
obvious and important one is the configura-
tion similar to Figure 7. It is plotted as
Figure 15. When a smaller stream S2 flows
into a larger stream 51 53, very often the
angle between S2 and S1 is less than 90 de-
grees. (General rules about flow directions
at junctions are given in Table 1.
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Figure 15 - One pattern of a stream junec-

tion
Angle
(81,83) (81,s52) (82,S83) Upstream Downstream
=180 =90 =90
Is1] = 182] < 83| S1 and S2, 33
1s1l = 1831 > |sz2] s2 51 or 33
1s1} = 1821 > {831 82 and 83, 31
Is1] = i1s2] = |83/ s2 81 or S3
=180 <90 >90 51 and S2, 33
=180 >90 <90 52 and 383, 381
<180 >90 >90 31 and 83, S2
>180 >90 <90
181] = is2] = 153} S2 and S3, 81
Is11 = i83! > [s2] ? 2
Is2] = 1s83] > 81l 52 and 83, 3$1
1s1] = 821 > 183 7 ?
=120 =120 =120
'811 = Is2f = |83 ? ?
Is1] = 183] > |82} S1 and S3, 82
Is2] = 183 > [81] S1 and 83, 82
is1] = 1821 > [83| S1 and S2, S3

Table 1 - Rules of flow directions at junc-
tions

Two constraint relations can be formal=-
ly stated on the basis of Table 1 as fol=-
lows. One is about all 3~tuples of stream
segments that constrain each other because
they meet in a junction; the other is about
all 6-tuples of segment-label pairs where
the stream segments meet 1in a junction and
the labels are possible for that type of
junection. Let a stream junction be a ver=-
tex at which 3 stream segments meet and at
least one segment is identified as visible

rivers. Let J be the set of stream junc-
tions, S = {1, ..., M} be the set of stream
segments at stream junctions, 54 =

and X be the set of
Let f: J =>

labels to
be the function
labels that can

{upstream, downstream},
junction patterns in Table 1.

X be the function that gssigns
funetions, and h: X => L
that specifies 3-tuples of

meet at each type of junction. For each x
in ¥, we define Tx and Rx as follows,

Tx = {(51,52,5 )131,3
tion type x}
Rx = {(s,

2,33 meet in junc-

1,32,12,53,13) | (51,52,33)

6 Tx and (1, 12,13) 6 h (x)}

Let T = U T and R = U

565 Tf(s) ses Re(s)®

T consists of all 3-tuples of stream seg-
ments that constrain each other, and R 1is
the corresponding constraint relation. The
labeling problem can be described by a com=-
patibility model (S, J, T, R), which is a
particular instance of the general consis-
tent labeling problem [Haralick and Shapi-
ro, 1979 and 1980]. Because we believe
that there are many spatial inference prob-
lem which are instances of consistent la=-
beling problem, in the next section we de-
seribe the form of the general consistent
labeling problem as given by Ullmann, Har-
alick and Shapiro [1982].

8. Consistent Labeling and Spatial Reason-
ing Model

Let U be a set of objects called
units, and L be a set of possible labels
for those units. Let T ¢ {flf g U} be
the collection of those subsets of units
from U that mutually constrain one anoth-
er. That is, if f = {u,, Usy + « & , U
is an element of T, tﬁen not all possibEe

labelings of u,,...,u are legal label-
ings. Thus there is at least one label as=-
signment 1 - 1, so that uy
having labél l having label 1,, . .

. s u, havlng Eab 1k is a forbidden
labeling. T is oalled the unit constraint
set. Finally, let R ¢ {g | g 2 Ux L, g
single-valued, and Dom(g) & T} be the set
of unit-label mappings in which constrained
subsets of units are mapped to their allo=-

wable subsets of labels. If g =

{(u 1.),(u,,1,), . , (uk,lk)} is an

elemen% of ﬁ hen u1, uz, ST y u are

distinet units, {u P } "is an
12 Uk

element of T meaning u . P

mutually constrain one ano%her, and u

having label 1,, u having label 1., . ]

. , and u having label lk are all sim-
ultaneously allowed.

In the consistent labeling problem, we
are looking for functions that assign a la-
bel in L to each wunit in U and satisfy
the constraints imposed by T and R. That
is, a consistent labeling is one which when
restricted to any unit constraint subset in
T yields a mapping in R. In order to
state this more precisely, we first define
the restriction of a mapping. Let h:U==>L
be a function that maps each unit in U to
a label in L. Let f ¢ U be a subset of
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the units. The restrietion h! (read h
restricted by f ) is defined” by hIf =
{(u,1) 68 ! uecr}. With this notation,
we define a consistent labeling as follows.

A function h:U ==> L is a consistent
labeling if and only if for every ferT,
hlf is an element of R,

An example is given below. Suppose the
inputs to the problem are as follows:

Uu=1{1,2, 3, 4, 5}
L = {a, b, e}
T=1{ {1}, unary constraint
{1, 2}, binary constraints
{1, 3, 413} ternary constraint
R={ {(1,a)},}(1,b)}, unary constraint
{(1,a),(2,a)},
{(1,a),(2,b)},
{(1,0),(2,b)}, binary constraints
{(2,3),(5|3J}’
{(2,b),(5,c)},

f{1,a),(3,a),(u,c)1, ternary constraints
{(1,b),(3,a),(4,a)}}

Then h = {(1,a) (2,a) (3,a) (b4,e) (5,a)}
is a consistent labeling. To see this note
that h ! (13 = {(1,a)}, h | {1,2} =

{(1,3);(2,3)}) h f {2’5} = {(2,3),(5.&)}.

and h ! = {(1,a),(3.a),(4,c)} are
all elemeé%éség} R.

If having (11, S— IN) applied to (u,,
e+ Uy) when (u,, 1., ..., Upy ly) is not
in R is allowed with'a penalty, tge process
is called inexact consistent labeling
[Shapiro and Haralick, 1981]. In order to
include these mappings, an errﬁr function
Ew is defined, Let Ew : T x LV -» [o, 1]
be the error weighting funetion. Ew (uT,
ceey Uy, 1., .., N) is the error which
occurs wheA labels (1, s lN) are ap-
plied to (u,, ..., u J. The mapping h ; U
-> L 1is an 'inexact consistent labeling irf
for all (u1, i%35 uN) in T, the summations
of Ew (u,, ..., U h(u1), «+ey h (uN)) is
within some upper bound.

In spatial reasoning problems, many
spectral and geometrical properties can be
detected for the loecally detected units.
Some frequently used properties are average
gray level, size, and shape descriptors.
Let P be the set of properties. The spa-
tial reasoning model is (v, P, 1L, Ty R;
Ew). U, L, T, Ew have the Same meanings as
before; however, the elements in R now have

the form (u,, »p,, 1,y oo, uy, Pys 1ly) whe-
re p, is the list or propergy value ranges
for 311 the properties in p for unit u,, i

= 1 to N, It means that if the property
values of u, are within the ranges speci-
fied by p, for i = 1 to N, and (u,, sasy
u,) is contained in T, then it is iegal to
label l1 to u1, S lN to Uy at the sanme

514

time.

The spatial reasoning model (v, p, L,
Ty R, Ew) can be applied to find the flow
directions of visible rivers. U containg
the units of visible rivers plus the unitg
of invisible streams intersecting the vigi.
ble rivers at junctions. P contains all
the properties detectable from the border
segments. L is {Upstream = 1, Downstreanm -
2}. T contains the junetion relations. R
contains the relations of legal flow direc-
tions defined in Table 1. Ew is the number
of times inconsistency oecurs at junctions
normalized by the total number of Jjunc=~
tions.

9. Conclusiop

To detect Stream network in LANDSAT,
both visible rivers and invisible Streams

need to be distinguished. Visible rivers
can be detected by both Spectral and 2p
spatial information, However, the detec-

tion of invisible streams needs 3D spatial
information,

For invisible streams, ridge and valley
segments must first be detected and then an
elevation growing model can be used to as-
sign relative elevations to them. Interpo-
lation can generate surface elevation at
all locations from the known values at
ridge and valley segments. From this ele-
vation surface a valley network can be gen-

erated easily. Another way to form a vale
ley network is to create gap units as in
Figure 7 during elevation growing. Local

information ineluding rules in Table 1 and
other knowledge can be used to determine
the invisible stream network as a subset of
the valley network. The flow directions of
invisible streams come directly from the
relative elevations of valley segments.

For the visible rivers part, the con-
sistent labeling based spatial reasoning
model can be used to find the flow direec-
tions of visible rivers whose units are ag-
sumed to have all constant elevations in
the elevation growing model.

Based on the consistent labeling model,
two types of spatial reasoning models can
be formulated, If one 1is only interested
in the classification or labeling of the
two dimensional Space so that roads, build-
ings or other ground objeets can be identi-
fied, the model is called a 2D spatial rea-
soning model. One example is the model
discussed in Section 8. If, in addition to
the classification, some feature values
such as terrain elevations are needed over
the two dimensional space, it is ecalled a
3D spatial reasoning model. In other
words, in the 2D spatial reasoning model,
the output specifications are symboliec; in



the 3D spatial reasoning model, the output

specifications are numerical.

of the 2D spatial rea-
goning model whieh we hope to report on
soon is to recognize the ground objects in
an urban area by segmenting the aerial im-
age into regions, measuring the properties
of these regions, formulating constraints
in T and R, and applying the model. An ap-
plication of the 3D spatial reasoning model
which will be discussed in Wang's forthcom-
ing dissertation will be to find the best
get of segment slopes 80 that the estimated
relative valley ridge elevations are as ac-
curate as possible.

An application
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