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ON SOME QUICKLY COMPUTABLE FEATURES FOR TEXTURE

By R. M. Haralick, K. Shanmugam, I. Dinstein

Abstract. - A set of features for the extraction of image texture is defined. The number
of operations required to compute these features is proportional to the number of resolution
cells on the image. Preliminary work has indicated that these features are helpful in the
automatic identification of land use categories from aerial photography and photomicro-
graphs of reservoir sandstones. In some cases identification accuracy near 90% has been
obtained. However, because of small sample size limitations, further work must be done

to verify these results.

The paper is divided into three parts. In the first part we discuss image normalization
(a preprocessing function). In the second part we define the textural features and in the
third part we illustrate the application of these features on image data.

I. Image Normalization. - The data which the sensors or instruments produce are not
always in the kind of normalized form with which it makes sense to work. For example,
many sensors or measuring instruments produce relative measurements, i.e. the measure-
ments are correct up to an additive or multiplicative constant. Despite calibration efforts,
this is particularly true for the camera-film-digitizer system which produce the digital .
magnetic tape containing the digitized image. Variations in lighting, lens, film, developer,
and digitizer all combine to produce a grey tone value which is an unknown but usually
monotonic transformation of the "true" grey tone value. Under these conditions we would
certainly want two images of the same scene, one image being a grey tone monotonic trans-
formation of the other, to produce the same results from the pattern recognition process.
It is easy to show that normalization by equal probability quantizing guarantees that images
which are monotonic transformations of one another produce the same results. It should be
realized that something is not gained for nothing. The normalization is achieved by sacri-
ficing the detailed grey information. After probability quantizing to 16 levels for example,
an image which originally had 128 grey tones would only have 16 quantized grey tones and if
equal probability quantizing were used, then the histogram of the quantized image would be

uniform.
A precise statement of the effect of equal probability quantizing is as follows:

Let X be a random variable with continuous cumulative probability function FX. Let Q,, the
K level equal probability quantizing function for X be defined by Ql(x) =k if and only if

_ k-1 k
lub{w |Fx(w) = —K—}<x<1ub{w| Fx(W) = }.

For any strictly monotonic function g, define the random variable Y by Y = g(X). Let
Qy, the K level equal probability quantizing function for Y, be defined by
Qz(y) = k if and only if
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lub{w |Fy(w) = ISI-{—IKy<lub{w| Fy(w) = lé}

The following lemma states that the equal probability quantization of X produces a random
variable which is identical to the equal probability quantization of Y.
Lemma: Q,(X) = Q_(Y).

Although the pro%ability quantizing concept is simple, the application of it to digital
image can easily give rise to problems since the cumulative probability function for a digi-
tized image is not continuous. This implies that it is not usually possible to define a quan-
tizing function which will make the grey tone histogram of the quantized image uniform.
The problem is how to obtain a quantizing function which makes the grey tone histogram of
the quantized image approximately uniform. We have had reasonable success with the
following algorithm.

Let X be a non-negative random variable with cumulative probability function Fyg. Let
Q, the K level equal probability quantizing function for X, be defined by Q(x) = k if and only
if Qe _1<X<q. We defineq,,q,,9 ,...,q 1in an iterative manner. Let qo = 0. Suppose
4y 1 has been defined. Then let of‘;{ be the smallest number such that

1-F (qk ) 1-F.(q )
X k-1 X k-1
Kkl Fy(q 4 - FX(quW + Fx(q ;) - F@ for all real q.

Figure 1 illustrates the equal probability quantizing algorithm.

II. Definition of Textural Features. - Other than some work with the Fourier,
Hadamard transforms and the autocorrelation function, there exists little or no theory to
aid in establishing what textural features should consist of. Rather the feature extraction
operation is determined intuitively, rationalized heuristically and justified later pragma-
tically and empirically.

Let Lx ={1,2,...,N_}and L_ ={1,2,...,N_} be the x and y spatial domains and
h X Lx be the set of resolution cells. Let G ={3i, .++«y N_} be the set of possible grey tones.

en a digital image I is a function which assigns some ggrey tone to each and every resolu-
tioncell; :IL_ x L +G. *

An essenytial c)f)mponent of our conceptual framework of texture are four closely related
matrices from which all of our texture-context features are derived. These matrices are
termed angular nearest neighbor grey tone spatial dependence matrices.

We assume that the texture-context information in an image I is contained in the
over-all or "average' spatial relationship which the grey tones in image I have to one
another. More specifically, we shall assume that this texture-context information is ade-
quately specified by the matrix of relative frequencies P;; with which two neighboring
resolution cells separated by distance d occur on the image, one with grey tone i and the
other with grey tone j (see Figure 2). Such matrices of spatial grey tone dependence
frequencies are a function of the angular relationship between the neighboring resolution
cells as well as a function of the distance between them. For angles quantized to 45°
intervals the unnormalized frequencies are defined by:

*The spatial domain Ly x L, consists of ordered pairs whose components are row and
column respectively. This convention conforms with the usual two subscript row-column
designation used in FORTRAN,
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P(i,j,d, 0° = #{((k,1), (m,n))e(L xLX>x<L xL )| k-m=0, [1-n|=d, (k,1)=i, I(m,n)=j}

Pd,j,d, 45%= #{(k,1), (m, n)) € (LpxL )x(Lny )l(k—m—d 1-n=-d) or (k-m=-d, 1-n=d),
1k, =i, I(m,n)=j}

Pd,j,d, 90 )— #{(k,1), (m, n))e(L xL )x(Lny )| k-m =d, 1-n=0, I(k,1)=i, I(m,n)=j}

Pd,j,d, 135° )= #{((k, 1), (m, n))E(L xL )x(L xL )| k-m=d, 1-n=d) or (k-m=-d, l-n=-d),
Ik, 1)=i, I(m,n)=j}

Note that these matrices are symmetric; P(i,j; d,a) = P(j,1i; d,a). The distance
metric pimplicit in the above equations can be explicitly defined by
p((k,1), (m,n)) = max{|k-m|,

Consider Figure 3-a, which represents a 4 x 4 image with four grey tones, ranging
from 0 to 3. Figure 3-b shows the general form of any grey tone spatial dependence
matrix. For example, the element in the (2,1)-st position of the distance 1 horizontal PH
matrix is the total number of times two grey tones of value 2 and 1 occurred horizontally
adjacent to each other. To determine this number, we count the number of pairs of resolu-
tion cells in R., such that the first resolution cell of the pair has grey tone 2 and the second
resolution celIHof the pair has grey tone 1. In figures 3-c through 3-f we calculate all four
distance 1 grey tone spatial dependence matrices. The appropriate frequency to proba-

bility normalization for these matrices can be easily computed.
From each of these four normalized angular nearest neighbor grey tone spatial depen-

dence matrices at each distance we define the following textural features:
N
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Features t; and t, essentially measures homogeneity. The more homogeneous the
character of the grey tone transition on the image, the larger t; will be and the smaller ty
will be. The greater the heterogeneity, the smaller ty will be and the larger t, will be.
Feature t., can be easily recognized as the correlation and it measures the linear depen-
dence of the neighboring grey tones. Feature t 4 Mmeasures the extent to which the same or
similar grey tones tend to be neighbors. Feature t. measures homogeneity of contrast, the
extent to which grey tones of the same contrast teng to be neighbors.
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Features of the same kind and of different angles can be used together by obtaining
their average, range, or standard deviation. Information in the range or standard deviation
tells about patterns having angular orientation preferences in the image. Small ranges or
deviations indicate no angular preference; high ranges or deviations indicate strong angular
preference.

III. Application of Textural Features. - The first application we illustrate is the use
of textural features to help distinguish between photomicrographs of different kinds of
reservoir rocks. The analysis of reservoir rock pore structure is important to geologists
and petroleum engineers who are interested in obtaining a series of numerical descriptors
of features which statistically describe porous media. These features are useful for the
correlation and prediction of the physical properties of porous media including porosity,
specific permeability and formation factor.

To explain the interpretation of some of the suggested textural features, let us consider
the kinds of values they take on different kinds of porous rocks. Figure 4 shows two types
of images and the values of textural features t; and t3. The Dexter sandstone image has
a smaller number of distinct grey tone transitions compared to the Upper Muddy sandstone
image. In this respect, Dexter sandstone is more homogeneous than Upper Muddy sand-
stone. Hence the nearest neighbor grey tone spatial dependence matrix for the Dexter

sandstone will have fewer entries of large magnitude and the nearest neighbor grey tone
spatial dependence matrix for the Upper Muddy sandstone will have a large number of small
entries. Feature tl has a smaller value for the Upper Muddy sandstone than for the Dexter
sandstone. .

The grain structure for the Dexture sandstone is more organized than the grain struc-
ture of the Upper Muddy sandstone. This organization implies that given the grey tone in
any resolution cell, there is a higher probability of predicting (using a linear function) the
grey tone in a neighboring resolution cell. This leads to a higher value for feature t3.

In reference 1 an identification experiment was performed using 4 kinds of sandstone,
the average and range of features t; and tg at distance 1 and the average and range of
feature t, at distance 2. Linear discriminant functions were obtained using 84 training
samples. A different test set of 60 samples was then processed. Over 88% of the test
samples were correctly identified.

A second application we illustrate is the use of textural features to help distinguish
between terrain land use categories on black and white aerial photography. This earth
resource application is important in automatically making land use maps. Figure 5a illus-
trates a typical example of each one of fourteen land use categories: still water, heavily
wooded, scrub, polluted water, marsh, turbulent water, single road, orchard, double road,
swamp, railroad yard, residential without trees, urban, residential with trees. The digi-
tized images are ordered according to their feature values ty. Notice that as the imagery
becomes more heterogeneous and complex, feature value t, gets larger. Figure 5b illus-
trates the ranges each of these categories takes for feature ty. These ranges were obtained
from a small set consisting of six samples for each category with the exception of still
water which had twelve samples and residential with trees which had eight samples. Some
of the categories look quite alike such as marsh and turbulent water or scrub and heavily
wooded and other categories such as road or turbulent water had a wide range of appear-
ance. In fact photointerpreters working from the digitized images could not do better than
correctly identify 40% of the images. Working from the original aerial photographs they
correctly identified 75% of the images. In reference 2 an automatic identification experi-
ment was performed using 9 of these terrain categories and a decision rule which assumed
the features were independent and uniformly distributed. The machine correctly identified
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70% of the images using a procedure where the machine trained on 53 samples and was
tested on the 54th sample.

Figure 6 illustrates the ranges for 2 other features. Notice that some categories which
are not separable on the basis of ty are separable using some of the other features. Figures
5 and 6 clearly indicate the potential value which the textural features we defined can have
in helping to discriminate between land use categories. They also indicate their limitations.
In part these limitations are due to imperfections in the way the terrain land use category
definitions are operationalized. This is the usual ""ground truth" problem. In part the
limitations are due to textural features which are not powerful enough. Hence, our future
research will be directed along lines of clearing up these limitations.
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Figure 1.

Figure 2.

1-F(q ;) ‘

Flay) | —

]'F(qk_‘ )
K=k+1

- Flap_y) F

Nlustrates the quantizing algorithm. At the kth iteration, F(qq -1) probability
has already been allocated to k-1 levels and 1-F(qq ~1) probability remains to be
allocated to K levels. If 1—F(qk—1) probability is split up equally among the
remaining K-k+1 quantizing level to be allocated, each level would get
1"F(qk—l). Since F is a step function, there is no guarantee that a gk can be

found and that F(qk)= F(qk_l') + _lj-g%f_l_)_ Hence we look for a % which is

closest to satisfying the equality.
90 d‘egrees

135 degrees ! 45 degrees
6J7 |8
“1S ¥ 311 O0degrees
413 |2,
i \

Resolution cells nos. 1 and 5 are the 0-degree (horizontal) nearest neighbors to
resolution cell * , resolution cells nos. 2 and 6 are the 135-degree nearest
neighbors, resolution cells 3 and 7 are the 90-degree nearest neighbors, and
resolution cells 4 and 8 are the 45-degree nearest neighbors to * . (Note that
this information is purely spatial, and has nothing to do with grey tone values).
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Figure 3-a. Figure 3-b. This shows the general form of
any grey tone spatial dependence
matrix for an image with integer
grey tone values 0 to 3. #(i,j)
stands for number of times grey
tones i and j have been neighbors.

o° 4 21 0 900 6 0 2 0
2 400 04 2 0
Py o1 0 6 1 Pv={2 2 2 2
0 01 2 0 2 0

Figure 3-c. Figure 3-d.
2130 ° 4100
135° 1 210 45 1220
Plb |3 110 2 Pro =l0 2 4 1
0 020 0010

Figure 3-e. . Figure 3-f.

Figure 3. Illustrates simple example for the calculation of the nearest neighbor grey tone
spatial dependence matrices.
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Digitized Photomicrograph of
a. Dexter Sandstone
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Digitized Photomicrograph of
b. Upper Muddy Sandstone
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Figure 4. Compares some typical feature values for Dexter sandstone and Upper Muddy

sandstone.
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J Figure 5a. Illustrates a typical example of the digitized images of fourteen land use
categories.

1
1 , :
{ SWATR [ewsesscscmsns}i
HWOOD R
} : SCRUB iy

»

PWATR el iy

{ onm——- PSR S |

MARSH

, SROAD jemmnovesenmenennecannnanna |
“{J ORCHR R S S B
e DROAD e
SWANP fusdvsssd

RAILY Jesmaniaiio]
RWOUT focaia it
URBAN st
RWITH {esmwe]

R R R R R R R R R R R R RN R R R R N R S RO RN RN R E RO R R Y|
i i 1

i
i,782 2,833 3.938 5.044

U TWATR R |
AVERAGE ENTROPY DISTANCE 3

Figure 5b. Illustrates the ranges each of these catagéries takes for feature t,.
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Figure 6. Illustrates the ranges for the average of feature t

and the range of t 4 for each
of the fourteen land use categories.
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