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Abstract 
This paper presents an optimization approach for 

estimating the 3D parameters of buildings from multi­
ple images by fitting the observations to the geometric 
building models. Through multi-image traingulation, 
the coordinates of the building corners and their co­
variances are estimated from the located image corre­
sponding points. Then by a constrained optimization 
the estimated point positions and the partial models 
of the buildings are integrated. Numerical methods 
arc used to solve the constrained optimization prob­
lem by iteratively updating an approximate solution. 
To provide an initial solution, the maximum likelihood 
estimators for the parameters of the planes and the 
lines are used. The covariances of the estimated pa­
rameters can be determined by propagating the input 
covariance matrix through the linearized optimization 
model. Experimental results on the RADIUS model 
boards are then given. 

1 Introduction 
1.1 Site Model Construction 

In this paper we discuss how we used photogram­
metry to establish a ground truth site model for the 
RADIUS Model Board Data Set made available by the 
University of Washington. There are two RADIUS 
model boards. Also given are the 3D coordinates of 
some building vertices. The procedure of construct­
ing 3D building models from given images usually in­
volves the following steps: Feature Extraction, Corre­
spondence, and 3D Inference. At first the 2D features 
such as edges, corners, lines are detected on the im­
ages. These 2D features are matched to 3D features. 
~ased on the corresponding 2D features, the 3D ob­
Ject model and the camera model, the 3D inference 
procedure estimate the unknown parameters, and the 
covariance matrices of the 3D models. 

Since most of the buildings on the two model boards 
are polyhedron, geometrical relations between linear 
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elements on the buildings provide useful information 
for 3D model construction. And it is this kind of 
information which constitutes what we call a partial 
building model and is employed in the constrained op­
timization. The constrained optimization procedure 
takes the derived 3D points and their covariance ma­
trices as observations. It uses the partial models of 
the buildings to enforce constraints on the building 
parameters. To estimate the optimal 3D parameters 
that. satisfy th~ ~ela~ions in the partial models. By 
solvmg the optimizatiOn problem and propagating the 
errors we can obtain the 3D parameters and the asso­
ciated covariance matrix. 

1.2 Previous Work 
Using geometric information to infer 3D parameters 

from the observed image features attracted many re­
searchers in vision or related areas. Bopp and Krauss 
(1978) studied the relationship between 2D image 
points and their corresponding 3D points. Haralick 
(1980) presented a set of perspective projection prop­
erties for points, lines and planes. Forstner ( 1985) 
applied reliability theory to estimate 3D points from 
block triangulation in aerial images. The angles be­
tween multiple lines provides important cues of 3D 
structure. For parallel lines, Barnard (1983), Mitiche 
and Habelrih (1989) described techniques for deriving 
the orientation of two or more parallel lines from their 
perspective projections. Mitiche and Habelrih also de­
scribed an algorithm to infer object orientation from 
a set of orthogonal lines. Kanatani (1988) presented a 
technique for the derivation of the orientation of lines 
from a rectangular corner and from a corner with two 
right angles. Kawabata (1989) described techniques 
for deriving the orientation and position of quadrilat­
erals from its image by using angle relationships and 
distance relations. Haralick and Shapiro (1990) dis­
cussed important issues in analytic photogrammetry 
and in perspective projection analysis. 

Most of the previous algorithms on inverse perspec­
tive projection analysis are for some special cases. It 
is difficult to directly apply those algorithms to con-
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struct complex building models, which may involve a 
large amount of features and complicated geometric 
relations between 3D features. To solve a 3D param­
eter estimation problem with general geometric con­
straints we developed an optimization framework to 
formulate and to solve the problem. 

2 Triangulation Model 
2.1 Problem Statement 

Suppose that a set of 3D points are projected to 
multiple images. In the multi-image triangulation pro­
cedure, we assume that the image perturbation on the 
perspective projection of these 3D points are indepen­
dent. 

A world coordinate system z-y-z is specified. A 
3D point with unknown world coordinates (z, y, z)T 
is mapped to J images through perspective projection 
camera models. 

Let the camera coordinate system of the jth im­
age be denoted as z;-'Yj-z;. The rotation matrix from 
z-y-z to z;-Y;-z; is H.· and the projectivity center 
of the jth camera in the world coordinate system is 
P; = ( zj, yj, zj). Both R; and P; are known. If 
the parameters in R; and P; contains random per­
turbation, the covariance matrix of these parameters 
are provided. Without loss of generality, we assume 
that these cameras have been calibrated and their fo­
cal lengths and principal points are given. 

Let the unperturbed projection on the images be 
denoted by (ull Vt), ... , (uJ, VJ) 
and the noise perturbed observations be denoted by 
(ut, v1), ... , (uJ, VJ ). 

Using these notations, the point estimation prob­
lem can be formally stated as follows. 

• Given 

- J camera models that include the interior 
parameters and the exterior orientation pa­
rameters {R;,p;, j = l, ... ,J}, 

- the observed projection of an unknown 3D 
point on the J images {u;, v;, j = 1, ...• J}, 

- an optimality criterion. 

• Goal 

- determine the optimal 3D point coordinates 
under the given criterion, 

- estimate the covariance matrix of the de~ 
rived coordinates. 

The optimality criterion is selected to be the maxi­
mum posterior probability. The noise is assumed to 
be Gaussian distribution with zero mean. 
2.2 Perturbation Model 

The mapping from the 3D point coordinates to the 
the unperturbed projection on an image is described 
by a perspective transform. It consist of an Euclidean 
transform from the world coordinate system to the 
camera centered coordinate system, and a perspective 
projection from the 3D camera coordinate system to 
the 2D image coordinate system. 

Let us consider the Euclidean transform first. 
Given a point with world coordinates x = ( z, y, z )T, 
its coordinates in the jth camera coordinate system 
x; = (z;, y;, z; )T is an affine function of the world 
coordinates. 

Let -R;(z' y' z~)T be denoted by t · = J 1 J 1 J J 

(t.,.;, ty,;, ts,j )T, the transform can be represented as 

x; = R;x + t; (1) 

In the jth camera coordinate system suppose the 
optic axis of the camera is defined as the z; axis 
and the projectivity center is defined as the origin. 
Through perspective projection, the 3D point with 
coordinates ( z;, y;, z; )T is mapped to an image point 
with coordinates ( u;, v; )T, where 

(2) 

Through equations (1) and (2) the true projection co­
ordinates are defined as the functions of the world co­
ordinates. 

The observed projection coordinates are perturbed 
by random noise (6u;,6v;)T ..... N(O, E;). 

(u;') = 
v;' 

Let uj denote ( u;', v;')T and u; denote ( u;, v; )T. The 
observa~ion uj has distribution N(u;, E;) 

2.3 Optimization Model 
As mentioned in the problem statement the maxi­

mum posterior probability criterion is applied to the 
triangulation. The observations of the projections of 
a 3D point on multi-images and their covariances are 
given. The parameters to be estimated are the 3D 
point coordinates. In the current stage the given cam­
era models are treated as fixed parameters. By Bayes 
formula, maximizing the posterior probability 

P(z,y,z I {u;',v;', j = l, ... ,J}) 

is equivalent to 

max P(u;', v;', j = 1, ... , J I z, y, z)P(z, y, z) 
z,y,.a 

If (z, y, z)T is uniformly distributed in the sample 
space, the problem becomes a maximum likelihood 
problem, 

max P(u;',v;', j = 1, ... ,J I z,y,z) 
:,y,z 
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With a normal noise model, the maximum likelihood 
is proportional to 

where ui = Ui r.;f zi, f; yif Zj f is a function of un­
known parameters :z:, y, z. 

. The objective function in (3) can be rewritten into 
full matrix format. We can define the residuals {j, '7; 
and gas 

{; uj-u;(r.,y,z) 

T/i = vj- v;(:z:,y,z) 

g = (gl,····9nf = ({l,f'/1,6,'72 1 ••• 1{J 1 '7J)T 

where n = 21. Let 6 denote the unknown parameters, 
I: denote total covariance matrix 

and Q denote I:- 1• The optimization problem can be 
reformulated as a general least squares problem, 

The general least squares problem can be solved 
by using a numerical optimization method, such as 
Newton's method. Starting from an approximate so­
Jution, a numerical method iteratively update the cur­
rent value by using the gradient direction or the Hes­
sian matrix. Please refer to [15], [6] for details. 

Once the iteration converge to a local minimum 
point, we take the minimum point as the solution. At 
this minimum point, we can derive the error propa­
gation matrix and use it to propagate the input error 
covariance to the output [15], [16]. Hence we can get 
both the 3D point coordtnates and their covariance 
matrix. 

3 Geometric Constrained Optimiza­
tion 

In the last section we discussed how to used the 
triangulation method to derive the 3D points and the 
associated covariance matrices. These data are used 
by the geometric construction procedure to determine 
the building parameters by fitting the 3D point obser­
vations with building models. We assume that the cor­
respondence between the observations and the points 
in the building models are established (either from hy­
pothesis or from ground-truth). 

Starting from a problem statement, we develop the 
optimization model based on analyzing the building 
partial models and the perturbation model. In order 
to reduce the computational complexity we decom­
pose a big least squares problem into a set of small 

least squares problems based on the independence be­
~ween the buildings. A problem in formulating build­
Ing parameter estimation is that some of the build­
ing vertices may not be observed. To deal with this 
problem we select the parameters that are estimable 
from the given observations. To produce a good ini­
tial solution for the numerical optimization methods, 
the maximum likelihood estimators of the linear ob­
ject parameters are studied. The sequential quadratic 
programming method and the computation of the lin­
ear model are discussed in this section. 

3.1 Problem Statement 
The problem can be described as follows. 

• Given 

- partial models of the polygon buildings that 
includes 3D linear objects (points, lines, 
planes) and the geometric relations between 
them. 

- observations of a set of corresponding points. 
The observations contain the 3D coordinates 
and the associated covariance matrices. 

• Goal: 

- estimate the building parameters (point co­
ordinates, plane and line location and orien­
tation) that satisfy the partial model and are 
optimal under a given optimality criterion. 

- determine the covariance matrix of the esti-
mated parameters. 

To transform this problem into an optimization frame­
work, we need to have the mathematical model that 
constrains the unknown 3D parameters and the model 
that links the unknown parameters to the observa­
tions. They are the partial model and the perturba­
tion model. 

3.2 Partial Building Models 
3.2.1 Geometric Relations in Parti.al Building 

Models 

A site model currently consists of a group of poly­
hedron building models. Corresponding to the pla­
nar surfaces, edges, vertices on a building surface, 
each building model consists of a set of linear ob­
jects (planes, lines and points) and their geometric 
relations. Sometimes a ground normal vector and its 
relations with a subset of linear objects are also given. 

point: The parameters related to a point are its co­
ordinates, denoted by (:z:, y, z) or in vector form 
x. 

line: A line is defined by a direction cosines e = 
(e.,,ey,ez) and a reference point b = (b.,,b!l,bz) 
on the line. We choose the unique b that satisfies 
e· b = eTb = 0. 

plane: A plane is specified by a normal vector v = 
(a, ,6, -y) and a directed distance constant d. 
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A partial building model consists of five groups of 
relations. The first two specify the locations of the 
linear objects. The other three specify the angles be­
tween linear objects and the normal length conditions. 
Figure 1 and figure 2 illustrates these relations. 

Figure 1: Position relations in a partial model 

The first group defines which points are on each 
plane. Each point-plane relation can be described by 
a planar equation in canonical form. 

xT v + d = za + y/3 + :Z'"'f + d = 0; {5) 

The same point may occur on more than one plane. 
The second group specifies which points are on each 

line. Each point-line relation can be described by a 
line equation either in the explicit (parametric) form 

x r= ,.,e + b, · .,., E n 

or in the implicit form 

(I- eeT)(x- b)= 0. (6) 

The same point may occur on more than one line. 

Figure 2: Angle relations in a partial ·model 

The third group, the plane-angle-plane relation~, 
contains the inner products of the normal vectors of 
the planar surfaces. A zero inner product means two 
perpendicular planes, while 1 or -1 means two parallel 
planes. This group may also contain relations between 
a given vector ( ao, /3o, "Yo) and a subset of planar nor­
mal vectors. 

The fourth group, called the line-angle-line rela.­
tio1U, contains the inner products of the direction 
cosines of the lines. A zero inner product means two 
perpendicular lines, while 1 or -1 means two parallel 
lines. 

The fifth group, plane-angle-line, contains the inner 
products of the normal vectors of the planes and the 
direction cosines of the lines. A zero inner product 
means that a line is parallel to a plane. While a value 
1 or -1 means that a line is perpendicular to a plane. 

3.2.2 Partial Model Database 

Using the described relation set, we can create the 
partial model for a given polyhedron building. The 
simplest model is a cubic block. It contains 6 planes, 
12 lines and 8 points. Figure 3(a) and (b) show the 
point-plane relations and the point-line relations. Ta­
ble 1 give a list of the relations. 

(a) (b) 

Figure 3: angle relations in flat roof model 
(a) point-plane relations, (b) point-line relations 

Table 1: position relations in flat roof model 

1 line i point& 
I 

plane ! points ' Lt Pt, p2 I 
St Pt, P,, Ps, p, L, P,, Ps 
s, Pt, P,, Ps, Pe Ls Ps, p, 
Ss P,, Ps, Pe, Pr L, P,, Pt 
s. Ps, P,, Pr, Pa L, Pt, p, 
s. Pt, P,, P,, Pa L, p,, p, 
s. Pa, P,, Pr, Pa Lr Ps, Pr 

... ... ... 

The plane-plane, line-line and plane-line relations 
in the cubic model are illustrated in figure 4(a), (b), 
(c). The associated table 2 lists some of these rela­
tions. 

La 

(a) (b) (c) 

Figure 4: angle relations in fiat roof model 
(a) plane-angle-plane (b) line-angle-line 
(c) plane-angle-line 

The second example is a model of house with 
peaked roof. It contains 7 planar surfaces, 15 lines 
and 10 points. The position relations in the model 
are illustrated in figure 5. Figure 6 give the angles· 
relations. 
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Table 2: angle relations in flat roof model 

pla.ne-plane a.ngles ' line-line a.ngles 
plane pla.ne cosine I line line cosine 

of angle of angle 
sl St 1 Lt L1 1 
51 s, 0 Lt L, 0 
51 Sa 0 L1 La -1 
sl s, 0 L1 L, 0 
51 s. 0 L1 La 0 
51 s •. -1 L1 Le 0 
s, s, 1 L1 . Lr 0 
... . .. . .. . .. ... . .. 

. plane-line relations 
pla.ne line coaine 

of angle 

51 L1 0 

51 L, 0 

51 La 0 

51 L, 0 

51 La -1 

51 Le -1 
51 Lr -1 
... ... . .. 

The third example is a hip roof model which has a 
roof with sloping ends and sides. It contains 9 planes, 
17 lines and 10 points. Figure 7 shows the position 
relations in the model and figure 8 shows the angle 
relations. 

In a real site model some buildings may have very 
complicated structures. Dozens, or even hundred of 
linear objects may be involved in a complex building. 
The partial model of model board 1 includes about 
two thousand linear objects and thirty thousand ge­
ometric relations. The partial model of model board 
2 contains about fifteen hundred linear objects and 
twenty thousand geometric relations. 

(a) (b) 

Figure 5: position relations in peaked roof model 
(a) point-plane relations, (b) point-line relations 

3.3 Optimization Framework 
The observed 30 points and the associated covari­

ance matrix :E are obtained from triangulation. Hav-
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(a) (b) (c) 

Figure 6: angle relations in peaked roof model 
(a) plane-angle-plane (b) line-angle-line 
( c} plane-angle-line 

P10 

(a) (b) 

Figure 7: position relations in hip roof model 
(a) point-plane relations, (b) point-line relations 

(a) (b) (c) 

Figure 8: angle reli!.tions in hip roof model 
(a) plane-angle-plane (b) line-angle-line 
( c} plane-angle-line 



ing the partial object model and the perturbation 
model, we can define the estimation problem. Let 
6 E lR"' denote the parameters, X' E lR"' denote 
the observations, and p(X' I e) denote the likelihood 
function. In the building estimation problem, the pa­
rameters are the coordinates of the points, tP,e normal 
vectors and distance constants of the planes, and the 
direction cosines and reference points of the lines. 

Assume that the given optimality criterion is the 
maximum posterior probability, a Bayesian approach 
can be used to transform the problem into a max­
imum likelihood problem with constraints. Let the 
constraints be denoted by e E Ce C 1R"'. The prob­
lem can be expressed as· a constrained optimization 
problem. 

min{ -p(X' I e) I e E Ca} 

The problem can be reformulated by taking logarithm 
of the probability function. Under the assumption of 
Gaussian noise, we obtain a least squares model. The 
objective function is the sum of squared errors between 
the estimated point positions and the observed points. 

min 
e 

subject to 

{/(6) :=(X'- X)T~- 1 (X' -X)} (7) 

6ECe 

where X denotes the unknown 3D points, and the fea­
sible set Ca is determined by the partial model and 
the unit length of the directional vectors. 

If the noise effecting different 3D points are inde­
pendent, the objective function can be rewritten as 

K 

/(6) = ~)x~- x;)T~; 1 (x~ - x;) 
i=l 

where ~. is the covariance matrix of the ith point, and 
K is the number of observed points. 
3.4 Constraints 

The constraints come from the re~ations in the par­
tial model and the unit vector length requirements. 
We list the relations included in the building models 
as follows. 

• A point-on-plane relation gives constraint 

• A point-on-line relation provides 

(I- eeT)(x- b)= 0 

which contains three equations. It can be proved 
that two linearly independent equations can be 
obtained from them. 

• A plane-angle-plane relation provides one equa­
tion, 

v, · v; - Pi; = vf v; - Pii = 0 

where Pii is the cosines of the angle between the 
two planes. 

• A line-angle-line relation gives 

~ · e; - Tij = e[ e; - Ti; = 0 

where Tij is the cosines of the angle between the 
two lines. 

• A plane-angle-line relation gives 

v, · e; - tPi; = vf e; - tPij = 0 

where tPij is the cosines of the angle between the 
normal vector of plane i and direction cosines of 
line j. 

• In the plane-angle-plane and line-angle-line rela­
tions, we get the unit vector length constraints 
when i = j, i.e., 

~·~ 

II v, ll:z= 1; 

II~ li:z= 1; 

• The uniqueness of the reference point on a line 
requires 

e; · b; = 0 

If a constant vector v0 for the site is available, then 
the angle relations related to vo provide more con­
straints. 

vo · v; -Po; = v5 v; -Po; = 0 

vo · e;- To; v~e;- To;= 0 

More relations can be included in the building mod­
els if further information is available. For example, if 
the distance between two points Xi and x; is given as 
ri;, a constraint can be obtained, 

II Xi - x; ll:z -r•; = 0 

Using the constraints equations to express the feasi­
ble set Ce, the optimization problem (7) can be writ­
ten as 

min 
a 

subject to ~tt(e) = o, 

3.5 Initial Guess 

i = 1, ... , r 

After setting up the constrained nonlinear least 
squares problem, we can use a numerical method to 
compute its solution. The method requires an ini­
tial guess. Some numerical methods, like Newton's 
method, are particularly sensitive to the quality of ini­
tial choice because of its inherent assumption that the 
initial value is fairly close to the final solution. 

The initial guess of the point coordinates directly 
comes from the observations. The initial guess of the 
direction and position of a plane or a line is computed 
from the associated points by using the maximum like­
lihood estimators. In the following discussion about 
the initial value, we use the hat accent • to denote an 
estimator. 
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3.5.1 A Plane 

Suppose that we observed n points, x 1 , .. , , x,., from a 
plane. Assume that the observation noise is indepen­
dent and identically distributed as .N(O, cr2 I). The 
maximum likelihood estimator of the plane normal 
vector is the solution to the following problem. 

min 
v 

subject to 

vT (t(xi - x)(xi - x)r) v 
•=1 

VTV = 1j 

where X: = ~ }::~ 1 Xi is the mean of the related obser­
vations. Using singular value decomposition the ma­
trix }::~ 1 (xi - x)(Xi - x)T can be decomposed into 

" L(xi - x)(xi - x? = uwur 
i=l 

where u is an orthonormal matrix satisfying ur = 
U- 1, and W is a diagonal matrix containing singu­
lar values. The minimum function value equals the 
smallest singular value in W and the estimate of the 
normal vector is the column vector in U that corre­
sponds to the smallest singular value. The estimator 
of the distance variable d is d = -vT X:. 

3.5.2 A Line 

Suppose that we have observations of n points, 
x 1, •. , , x.., on a line. Assume that the observation 
noise is independent and identically distributed as 
.N(O, cr2 I). The maximum likelihood estimator of the 
line direction cosines is the solution to the following 
problem. 

mm 
v 

subject to 

-vr (t(xi - x)(xi - x)r) v 
•=1 

VT V = 1; 

where X: = .!. "~-1 Xi is the mean of the related ob-n L,,_ 

servations. Similar to the plane case, we can use sin­
gular value decomposition to decompose the matrix 
L:~1(Xi - x)(xi - x)T into uwuT 0 Thus the ob­
jective function becomes -vUWUT v. To minimize 
the function we choose the column vector in U that 
corresponds to the largest singular value in W as v. 
The estimator of reference point b is determined by 
b = (I- vvT)x. 

3.5.3 Parallel Planes 

Suppose that we observed K sets of points { {xi,k, i = 
1, ... , n(k)}, k = 1, ... , K} from K parallel planes, 
where {xi,c, i = 1, ... , n(A:)} corresponds to the kth 
plane. Assume that the observation noise is indepen­
dent and identically distributed as N'(O, cr2 I). The 

maximum likelihood estimator of the normal vector of 
the planes is the solution to the following problem. 

min 
v 

subject to 

VT (~ ~(Xi,k- Xc)(Xi,lc- Xcf) V 

VT V = 1; 

where X:~o = ntrJ }::~~~)Xi,& is the mean of the points 
on the kth plane. Using singular value decomposition 

the matrix :Ef:l }:~~)(xi,&- X:~o)(xi,l:- X:~:)T can be 
decomposed into uwur. The estimate of the normal 
vector is the column vector in U that corresponds to 
the smallest singular value in W. The estimator of the 
distance variable d1: for the kth plane is d~c = -vT;clc· 

3.5.4 Parallel Lines 

Suppose that we observed K sets of points { {xi,lc, i = 
1, ... , n(k)}, k = 1, ... , K} from K parallel lines, where 
point set {xi,&, i = 1, ... , n(k)} corresponds to the kth 
line. Assume that the observation noise is independent 
and identically distributed as .N(O, cr2 I). The maxi­
mum likelihood estimator of the hne direction cosines 
can be obtained by solving 

min 
v 

subject to 

-vT (~ %;(x;,,- x,)(x;,,- x,)T) v 

vTv = 1; 

where Xi: = ntrJ :E:~~) Xi,lc is the mean of the points 
corresponding to the kth line. Similar to· the paral­
lel plane case, we can use singular value decompo-

sition to decompose the matrix :Ef=l :E~~~l(xi,lc -
x~o)(xi,lc - X:~o)T into uwur 0 The estimate of the di­
rection cosines is the column vector in U correspond­
ing to the largest singular value in W. The estimator 
of the reference point b~o for the kth line is determined 
by 

3.5.5 Parallel Planes and Parallel Lines 

Suppose that we observed K sets of points { {xi,c, i = 
l, ... ,n(k)},k = 1, ... ,K}.from K parallel planes, 
where point set {xi,lc, i = 1, ... , n(k)} corresponds to 
the kth plane. Suppose that we also observed L sets 
of points {{xi,r i = l, ... ,m(l)}, l = l, ... ,L} from L 
parallel lines, where point set {xilt i = l, ... ,m(l)} 
corresponds to the lth line. Assu~e that the normal 
vectors of the planes and the direction cosines are par­
allel and that the observation noise is independent and 
identically distributed as .N(O, cr2 I). The maximum 
likelihood estimator of the normal vector can be de-
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rived by solving 

min 
v 

subject to 

where x~: = 1 ~~(J:) Xi 1: ts the mean of the n(J:) .l.Ji:l • 
points corresponding to the kth plane and x~ = 
... (,) L~~) Xi,l is the mean ofthe points corresponding 
to the lth line. Similar to the parallel plane case, we 
can apply singular value decomposition to decompose 
the matrix, 

K n(i:) 

uwuT = L: 1)x..~:- x~:)(x,,~:- x~:)T 
&=1 •=1 

L n(l) 

- L: 'L:(x,,z- xz)(xt,z- xz)T 
1='1 i=1 

The estimate of the normal vector is the column vector 
in u corresponding to the smallest singular value in 
W. The estimator of the distance constant d~: for the 
kth plane can be determined by d~: = -vTx~:. The 
estimator of the reference point bz for the lth line can 
be determined by bz =(I- vvT)xf. 
3.6 Optimization 

Once we have an initial guess, iterative optimiza­
tion methods such as the reduced gradient method (9], 
sequential quadratic ~rogramming [6], or augmented 
Lagrangian method l2] can be used. At each itera­
tion a local model around the current value is derived. 
The iterative methods search for the optimal solution 
of the local model by using the feasible gradient di­
rection or the reduced Hessian matrix and update the 
current value. 

Our software for partial model fitting used the se­
quential quadratic programming algorithm with trust 
region method. Given an equality constrained opti­
mization problem 

min 

' subject to 

/(6) 

h(6) = 0 

(8) 

At the kth iteration the standard sequential quadratic 
programming method approximates the objective 
function with a quadratic function q11 (~e) and the 
constraints with a system of linear equations. Thus 
the local model can be represented by 

min 
AI 

subject to 

q~:(~e) 

H~6-ho=O 

(9) 

where q~: is 

Q is the Hessian matrix of .C(e) at kth iteration 

Q = v;.c(e~:,J..I') 

and .C(e, ..\)is the Lagrangian function of problem (8). 
The matrix H contains the first order derivatives of 
the constraints. 

H= ( ~) 
~ 

Let the quadratic subproblem (9) be· rewritten as 

mm 
AI 

subject to 

~(~e)TQ(~e) +cT ~e 
2 
H~e- b= o 

where c denotes 'ilf and b denotes -h(e~:_t). 

(10) 

This problem can be solved by using range 1pa.ce 
method if Q is positive definite and the constraint qual­
ification is satisfied. The Lagrangian function of (10) 
can be constructed as 

From the first order conditions for a minimum point 
(~e·, ..\"), 'il AIL= 0 and 'il ),.L = 0, we have 

Q~e· +c+ HTJ..• = o (11) 
H ~e· - b = o ( 12) 

Left multiplying (11) with HQ- 1 gives 

H~6"+HQ- 1c+HQ- 1 HTJ..·=o (13) 

Substituting (12) into this equation leads to 

The value ~e· can then be derived from (13), 

(15) 

If the condition for range-space method is not sat­
isfied, nu.ll1pace method can be used. At first, we use 
orthogonal factorization to derive a matrix Z that con­
tains a basis of the null space of H. Then we compute 
a particular solution ~60 to the equation 

H~e- b = o. 

The general feasible set can be expressed as 

~e = ~0o+Zw (16) 
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By solving th'e problem 

minqc(~eo + Zw) 
"' 

we can obtain the optimal value of w, 

Replacing this result into (16) gives 

The Lagrange multipliers can be computed from ~e· 
by solving 

If the constraint qualification holds, the unique solu­
tion of the multipliers is 

The motivation for using trust region method is 
that the quadratic model at a given point is an ad­
equate approximation of (8) in some region around 
that point. Usually a trust region at the kth iteration 
is defined by 

n<cl = {ec + ~e 111 ~e 11~ rc (19) 

where r~o E JR.+· Without specification the default 
norm in the rest of the subsection is L2 norm, which 
is most important in defining the trust region. 

A important issue in numerical optimization is scal­
ing [4]. If some variables vary greatly in magnitude, 
the roundoff errors of the variables with large magni­
tude may overshadow the variables with small mag­
nitude. For example, if the point observations are in 
the range of [103 , 104] mm and the components of the 
normal vectors are in the range of [10- 2 , 10- 1], the 
singular value decomposition of the constraint matrix 
may be unstable. Thus, some angle constraints may 
not be satisfied. An obvious remedy is to rescale the 
independent variables such that the magnitudes are 
comparable. After finding the optimal solution, the 
variables are scaled back to the original scales. 

4 Error Propagation 
Suppose that the iteration converges to a local min­

imum point: To know the reliability of the result, we 
use the error propagation approach [15] to transform 
the input error covariance matrix to the output co­
variance matrix. 
4.1 Linear Model 

In the building estimation problem, we have the 
optimization model 

mm 
8 

subject to 

/(8) 

h(e) = o 
where f is the sum of squared errors between the es­
timated 3D points and the observed 3D points. 

The Lagrangian function is 

L(X'. e, A)= f(X', e)+ ATh(e) 

Suppose that (i, e, A) is a optimal point. From the 
necessary conditions of a local minimum point, the 
linearized model at the optimal point can be obtained 
by solving [6] [16] 

(20) 

The Lagrangian matrix at the point of (X, e, A) can 
be approximated by the Lagrangian matnx at the min­
imum if the error is small. Hence the linear model can 
be approximated by 

( 
Q* 
H* 

where 

Q* 

a· 

H* 

(H•)T 
0 

= 
= 

= 
= 
= 

) ( ) = ( -B~~x) 

v;, £(X', e, A) 
r 

'il2 f(X',e)+ 2:~;'il2h;(e) 
j=l 

'iltx£(X', e, A) 
2 ( I •) 'ilsxf X ,e 

vh(e) 

Assume. that the constraints are linearly indepen­
dent. Then the row vectors in matrix H* are linearly 
independent. We can. use the null space method to 
compute the error propagation matrix J (6] [16]. 

Once the error propagation matrix is obtained, we 
can propagate the covariance matrix of the observa­
tions :E to the output. The covariance matrix of the 
estimated parameters, Ee, can be approximated by 
Ee = J:EJT. 

5 Experimental Results 
There are 38 images of RADIUS model board 1. 

One of them is shown in figure 9. Through multi­
image triangulation, the 3D position of the building 
vertices were estimated. Based on these derived point 
coordinates, a ground map and a roof map of model 
board 1 can be drawn. Figure 10 shows the roof map. 
The shapes of some buildings are significantly dis­
torted. Using optimization method we fit the trian­
gulation result to the partial model of model board 
1. The optimization result is shown in figure 11. The 
geometrical structures of the buildings are recovered 
through the constrained optimization. 

Results on RADIUS Model Board 2 images are 
comparable. 

To verify the result we project the estimated 3D 
building models onto the images of model board 2. 
Figure 12 shows the overlay of the projected 3D mod­
els on one of the images. 
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Figure 9: An image of RADIUS model board 1 
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5.1 Comparison of Covariance Matrices 
After obtaining an optimum solution for the real 

data, we can compute the error propagation model 
at the optimum point. By propagating the input er­
ror covariance matrix through the error propagation 
model, we can approximately determine the output 
error covariance matrix. Since the constrained opti­
mization process integrates the input point data with 
the information of the geometric relations, the resul­
tant point data should be more accurate that the in­
put, i.e., the covariance& of the output points should 
be smaller than that of the input points. For both 
the input data and the output data, we calculated 
the trace of the covariance matrix of each point and 
computed the distributions of these traces. The resul­
tant distributions are illustrated in figure 13 and 14. 
The :z: axis in the figures is set to 10log10(trace) for 
visualizing the results. In the input distribution the 
small traces around -60 are related to the ground-truth 
points where covariance matrices were set small ( vari­
ances u 2 = 10-6 ) and the others are related to the 
triangulated points. In the output, the traces of the 
triangulated points are significantly improved. Most 
of them decrease about 10 dB. 

Distribution of Trace of Covariance in MB1 
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Figure 13: Distribution of trace of 'covariance matrix 
for model board 1 

6 Conclusion 
In this paper, we presented an optimization ap­

proach for the modeling and the performance charac­
terization of 3D parameter estimation problems. This 
approach was applied to the building model construc­
tion problem to estimate the optimal parameters and 
their statistics. 

The modeling is based on the partial models of the 
3D objects, the projection model, the perturbation 
model and the observed data. The partial model of a 

Distribution of Trace of Covariance in MB2 
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Figure 14: Distribution of trace of covariance matrix 
for model board 2 

3D object consists of the geometric relations of the ba­
sic 3D elements (features) of the object. The observed 
image features are perturbed by random noise. The 
maximum posterior estimation problem can be framed 
as a constrained optimization problem. When the per­
turbation has a Gaussian distribution .N(O, E) the op­
timization problem becomes a least squares problem. 

The optimization approach was applied to the 
building model reconstruction problem in RADIUS 
project. Model boards 1 and 2 were processed and 
the resulting ground truth is available from the Uni­
versity of Washington on a set of CD ROMS. 
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