
A SIMPLEX LIKE ALGORITHM FOR RELAXATION LABELING PROCESS 

Xinhua Zhuang, Robert M. Haralick, and Hyonam Joo 

Machine Vision International 
Ann Arbor, Michigan 48104 USA 

Abstract 
In this paper a simplex like algorithm is developed 

for the relaxation labeling process. The algorithm is 
simple and has a fast convergence property which can 
be summarized by a "one more step theorem." The 
algorithm is based on fully exploiting the linearity of 
the variational inequality and the linear convexity of 
the consistent labeling search space. 

I. Introduction 
R.A. Hummel and S.W. Zucker (1983) developed a 

theory to explain what relaxation labeling accomplishes. 
The theory is based on an explicit new definition of con­
sistency in terms of a variational inequality and leads to 
a relaxation algorithm with an updating formula which 
uses a projection operator. 

By fully exploiting the linearity of the variational 
inequality and the linear convexity of consistent labeling 
search space, we obtain an essential characterization 
of a consistent labeling (see Section IT). An efficient 
simplex like algorithm is developed in Section Ill. The 
convergence of the algorithm is explored in Section IV 
(see Theorem 1-2). Theorem 1 carries the name 'one 
more step theorem' which indicates the algorithm takes 
the shortest path. A comparison with Rosenfeld et al. 
consistent labeling definition is made in Section V. The 
results which are given in the final section, section VI, 
verify the theory and algorithm developed in the paper. 

II. Consistent Labeling: Definition and Characterization 

A consistent labeling problem has units each of 
which has an unknown true label. There are n units, 
denoted by U1o ... , U,., and m possible labels, denoted 
by L1o ... ,L.,.. Associated with each U, (i = 1, ... ,n) 
will be a set of m numbers Pl(i), ... ,pm(i) constituting 
a labeling distribution: 

Pl(i) ~ O, ... ,pm(i) ~ 0, (1) 

m 

LP;(i) = 1. (2) 
i=l 

For abbreviation, we let 

p(i) ~ (Pl (i) ... , Pm(i)), i = 1, ... ,n, (3) 

and simply call the (1 x m) row vector p(i) a labeliitg 
distribution for unit U1• 
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Between label assignments there are consistency 
constraints. Let a real number r{i,j; h, k) represent 
how the label L~c at the unit u,. influences the label L; 
at the unit U0: If the unit u,. having the label L~c lends 
a high support to the unit u, having the label L;, then 
r(i,j;h,k) should be large and positive. If constraints 
are such that the unit u,. having the label L~c means 
that the label L; at the unit U, is. highly unlikely, then 
r(i,j;h,k) should be small. No specific restrictions are 
placed on the magnitude of r(i,j; h, k). However, we do 
require that 

r(i,j; h, k) :5 r(i,j; i,j). (4) 

Formally, we define the support on the unit U1 hav­
ing the label L;, {U,, L;}, from the unit u,. having the 
label L~c with a labeling distribution component P~c(h), 
i.e. {Uh, L~c, P&(h)}, by r(i,j;h,.k)p~c(h); the support 
on {U~c, L;} from the unit u,. having a labeling dis-

m 
tribution p(h), i.e. {U,., p(h)}, by E r(i,j; h, k)p~c{h); 

k=l 
the support on {U,, L;} from n labeling distributions 

[p(1), ... ,p(n)J, or P!: [p(1), ... , p(n)], by q;(i; P) : 

n m 

q;(i;P) ~ L Lr(i,j; h,k)p~c(h). (5) 
h=lk=l 

Furthermore, we define the support on unit u, having 
the label L; with another labeling distribution compo­
nent v;(i), i.e. {U,, L;, v;(i)}, from P by q;(i;P)v;(i) 
the support on the unit u, having another labeling dis­
tribution v(i), i.e. {U,, v(i)} from P by the inner prod­
uct (q(i; P), v(i)) in them-dimensional Euclidean space 
Em where 

q(i; P) ~ (ql(i; P), ... ,qm(i; P)). (6) 

Finally we define the support on another set of n label­

ing distributions [v(1), ... , v(n)], or V:! [v(1), ... , v(n)], 
by the inner product (q(P), V) in the nm-D Euclidean 
space. Enm where 

q(P) ~ [q(1; P), ... , q(n; P)], {7) 



n 

(q(P), V) = ~)q(i; P), v(i)). (8). 
i=l 

For convenience we simply call each of P and V a la­
beling. Thus, the support on the labeling V from the la­
beling Pis represented by the inner product (q(P), V). 

A set of n labeling distributions {p(1), ... ,p(n)} is 
called unambiguous if each of n units is assigned a 
unique label, that is, for each i, 1 ~ i ~ n, all P;(i)'s 
(j = 1, ... ,m) are zero except one which is 1. Hummel 
and Zucker first define a consistency concept of an un­
ambiguous labeling, then by analogy they define a con­
sistency concept of an ambiguous labeling. According 
to their definition, n labeling distributions p(1), ... ,p(n) 
comprise a consistent labeling if for various n labeling 
distributions v(1), ... , v(n) there hold the following vari­
ational inequalities: 

(q(i;P), v(i)- p(i)) ~ 0, i = 1, ... ,n, (9) 

or equivalently 

(q(i; P), v(i)) ~ {q(i; P), p(i)), i = 1, ... ,n. (10) 

In other words, P is a consistent labeling iff for each 
i, i = 1, ... ,n, p(i) maximizes (q(i;P), v(i)) as v(i) 
varies over the simplex K in Em (see l!:q.(13)). Thus a 
consistent labeling P gives the support in favor of itself 

· or discriminates against any other labelings since 

n 

(q(P), V) = L(q(i; P), v(i)) 
i=l 

n 

~ L(q(i; P), p(i)) 
i=l 

= (q(P), P). 

Conversely, if a labeling P gives the support in favor of 
itself, i.e., for any other labeling V, it holds that 

(q(P), V) ~ (q(P), P), (11) 

then the labeling P is consistent, i.e. for each i, 
i = 1, ... , n Eq.(10) holds, since letting each v(h) equal 
p(h) except v(i) which could be arbitrary, Eq.(ll} will 
imply Eq.(10), as easily verified. 

Therefore, a consistent labeling P could also be 
defined by the single variational inequality, Eq.(ll). In 
other words, P is a consistent labeling iff P maximizes 
(q(P), V) as V varies over K" (see Eq.(15)). 

Let e~o ... , em be m standard basis vectors in Em. 
Let 

(12) 

K~ {fu;e;: u; ~0, fu; = 1}, 
i=l i=l 

(13} 

n 

Kf:~ flKo, (14) 
i=l 
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(15} 

Then K(K") is a linear convex set in Em(Enm) and 
Ko(Kf:) the set of vertices of K(K"). The set K takes 
a specific name 'simplex' in Topology and Linear Pro­
gramming. It is clear that q{P){q(i;P)) defines a linear 
transformation:K" -+ Enm(Em) and q;(i; P) a linear 
functional: K" -+ E1. The inner product (q(P), V) 
defines a bilinear functional: K" x K" -+ E 1 and 
the inner product (q(i; P), v(i)) a bilinear functional: 
K" X K-+ E1. 

Hummel and Zucker call a labeling P strictly con­
sistent if for each v(i) E K, v(i) =f. p(i), it holds that 

(q(i;P), v(i)) < (q(i;P), p(i)), i = 1, ... ,n. (16) 

In other words, P is a strictly consistent labeling iff for 
each i, i = 1, ... , n, p(i) is a unique maximal point of 
(q(i; P), v(i)) .as v(i) varies over K. Similarly, it could 
be proved that a labeling P is strictly consistent iff for 
each V E K"; V =f. P, it holds that 

(q(P), V) < (q(P), P). (17) 

In other words, P is strictly consistent iff P is a unique 
maximal point of (q(P), V) as V varies over K". 

The conSistency condition suggests that to find a 
consistent labeling P [p(1), .. ,p(n)J with 
p(i) = (PI(i), ... ,pm(i)) we need first to consider 

IJ?.ax (q(i; P), v(i)), 
v(•)EK 

i = 1, ... ,n. (18) 

Each maxixmiix:l, will be reached at vertices of the simplex 
K since each mner product (q(i; P), v(i)) is linear with 
respect to v(i) and the search space K a linear convex 
set. Denote the maximal vertex set by Mo(i;P). That 
is 

Mo(i;P)~{e;: (q(i;P), e;) = max (q(i;P), e~~:)}. 
l~k~m 

(19) 
Let M(i; P) be the linear convex set having Mo(i; P) as 
its vertex set. Then it is clear that M(i; P) comprises a 
face of K and represents the maximal point set. That 
is 

M(i;P) = {u(i) E K: (q(i;P), u(i)) 
= IJ?.ax (q(i; P), v(i))}. (20) 

v(•)EK 

From Eq.(19), it is easy to derive that 

M0 (i; P) = {e; : q;(i; P) = max q~~:(i; P)}, (21) 
l~k~m 

and hence 

M.(i;P) = {f u;e; E K: 
i=l 

u; ~ 0 ;r •; ¢ M 0 (;; P)} . 
(22) 



Now it becomes apparent that P is a consistent 
labeling if and only if 

p(i) E M(i; P), i = 1, ... ,n. (23) 

And P is a strictly consistent labeling if and only if 

M(i; P) = Mo(i; P) = {p(i)}, i = 1, ... ,n. (24) 

In the latter case each p( i) must be a vertex of K and 
hence a strictly consistent labeling is unambiguous. 

Let .. 
Mo(P) = II Mo(i; P), (25) 

i=l 

.. 
M(P) =II M(i;P). (26) 

i=l 

Then we could characterize a consistent labeling P by: 

P E M(P), (27) 

and a strictly consistent labeling P, which must be a 
vertex of K", by: 

M(P) = M 0 (P) = {P}. (28) 

From a practical point of view, strictly consistent 
labelings are our favorite because they are unambiguous 
and isolated, the latter will be explained in the next 
section. 

III. A Simplex Algorithm 

Similar to the approach in Linear Programming, 
our reasoning first leads to the maximal vertex set. 
Mo(P) C K[f, and then the maximal point set, 
M(P) C K", formed by Mo(P), where each M(i; P) 
comprises a face of the simplex, K. H P E M(P), 
then P is a consistent labeling. H not, what is the 
next candidate consistent labeling to choose? Suppose 

W(P):![w(1;P), ... ,w(n;P)] is the orthogonal projec-

tion of P onto M(P). That is, 

W(P) E M(P), IIW(P)- Pll = min IJV- Pll. (29) 
vEM(P) 

It is apparent that W(P) is uniquely determined by P 
and each w(i; P) is the orthogonal projection of p(i) 
onto M(i; P), i.e., 

w(i;P) E M(i;P), 

llw(i;P)- p(i)ll = . min. llv(i)- p(i)ll~30) 
v(•)EM(•;P) 

A consistent labeling P could be characterized as: 

P = W(P) or p(i) = w(i; P), i = 1, ... ,n. (31) 
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When P ¢ Z, it seems reasonable to choose W(P) as 
the next candidate consistent labeling. 

Let 

w;(i;P) = (32) 

{ 
P;(i) = E . P~c(i)f#Mo(i; P), e; E Mo(i; P), 

. k:e•!lMo(•;P) 
0, otherwise. 

w(i;P) = (wl(i;P), ... ,wm(i;P)). 

W(P) = [w(1; P), ... , w(n; P)]. 

Then w(i;P)(W(P)) defined by Eq.(32) is the orthogo­
nal projection of p(i)(P) onto M(i; P)(M(P)). It is easy 
to see that 

w;(i;P) 2:0, = 0 if e; ¢ M 0 (i;P). 

m 

L w;(i; P) = L P;(i) + L p~c(i) = 1. 
i=l j:e;EMo(i;P) k:e.~Mo(i;P) 

and for any v(i) E M(i; P) 

(v(i), w(i;P)-p(i)) = v;(i)[w; (i; P)-p;(i)J 
j:e;EMo (i;P) 

( L v;(i)) ( L P~c(i)) /#Mo(i;P) 
j:e;EMo(i;P) k:e.~Mo(i;P) 

= L p~c(i)/#Mo(i; P). 
k:e•!lMo(i;P) 

which is independent of v(i). Therefore, w(i; P) be­
longs to M(i; P) and comprises the unique orthogonal 
projection of p(i) onto M(i; P). 

Now we are able to summarize the algorithm: 
Step 1. Set P 1 • 

Step 2. Set k = 1. 
Step 3. Compute M 0 (Pk). 
Step 4. Com~ute pk+l = W(Pk). 
Step 5. H (P +1 = pk) Stop. 
Step 6. Set k = k + 1. 
Step 7. Go To Step 3. 

The next section is devoted to the convergence dis­
cussion. 

IV. Convergence Discussion 

As seen, the proposed algorithm is simple and eas­
ily implementable. It has also nice convergence prop­
erties since the linearity of variational inequalities and 
linear convexity of the consistent labeling search space 
are exploited. The following Theorem 1 is something 
similar to the local convergence theorem by Hummel 
and Zucker, but it is a little bit nicer. It confirms that 
the algorithm finds the shortest path: When it starts 
with a point close to a strictly consistent labeling, only 
one more iteration is needed to reach the goal. Theorem 



• ~ 

t 
~ 

2 relates that any sequence produced by the algorithm, 
if it converges, must converge to a consistent labeling. 

Theorem 1. (One More Step Theorem) Assume P 0 is a 
strictly consistent labeling. Then, when pic is close to 
P 0 , only one more iteration is needed to reach the goal, 
P 0 • That is, 

plc+l = pO (33) 

Proof: Since P 0 is a strictly consistent labeling, M(P) 
will consist of a single point, P0

, whenever liP- P0
11 is 

small, as argued before, Thus, when pic is close to P 0
, 

it holds that 

which implies that 

since the orthogonal projection of pic onto { P 0
} equals 

pO, 

V. Comparison with Rosenfeld et al. (1976) 
Consistent Labeling Definition 

Using the same notation as in Section II, the Rosen­
feld et al. relaxation labeling update scheme is as fol-
lows: 

P;(i) := !;(i)[1 + q;(i;P)] (34) 

}: P~c(i)[1 + q~c(i; P)] 
lc=l 

j = 1, ... ,m; i = 1, ... ,n. 

When lr(i,j;h,k)l <,their assumption, lq;(i;P)I < 1, 
will be satified. A labeling P is consistent in Rosenfeld 
et al. 's sense if P is a fixed point of Eq.(34). An essential 
condition of a consistent labeling in Rosenfeld et al. 's 
sense is that for each P;(i) > 0, q;(i;P) keeps constant, 
independent of j. Using this characterization, we could 
prove that a Hummel and Zucker's consistent labeling is 
a Rosenfeld et al. 's consistent labeling: Suppose P is a 

Case Initial distributions Algorithm 1 Algorithm 2 
after 25 iterations after 1 iteration 

A .25 .25 .25 .25 .27 .27 .23 .23 
.25 .25 .25 .25 .27 .27 .23 .23 
.25 .25 .25 .25 .27 .27 .23 .23 

1l .5 0 .5 0 .99 0 .01 0 1 0 0 0 
.5 0 .5 0 .99 0 .01 0 1 0 0 0 
.5 0 .5 0 .99 0 .01 0 1 0 0 0 

.Q .5 0 .5 0 .99 0 .01 0 1 0 0 0 
.4 0 .6 0 .91 0 .09 0 1 0 0 0 
.5 0 .5 0 .99 0 .01 0 1 0 0 0 

ll .5 0 .5 0 1 0 0 0 1 0 0 0 
.3 0 .7 0 .19 0 .81 0 1 0 0 0 
.5 0 .5 0 1 0 0 0 1 0 0 0 

E .3 0 .7 0 .9 0 .1 0 1 0 0 0 
.3 0 .7 0 .9 0 .1 0 1 0 0 0 
.5 0 .5 0 1 0 0 0 1 0 0 0 

E. .2 0 .8 0 .07 0 .93 0 1 0 0 0 
.3 0 .7 0 1 0 0 0 1 0 0 0 
.5 0 .5 0 1 0 0 0 1 0 0 0 

Q_ .3 .2 .3 .2 .98 0 .02 0 1 0 0 0 
.3 .2 .3 .2 .98 0 .02 0 1 0 0 0 
.3 .2 .3 .2 .98 0 .02 0 1 0 0 0 

II .3 .2 .3 .2 1 0 0 0 1 0 0 0 
.25 .25 .25 .25 1 0 0 0 1 0 0 0 
.2 2 .4 .2 .11 0 .89 0 0 0 1 0 

I .5 0 .5 0 1 0 0 0 1 0 0 0 
.02 0 .98 0 0 0 1 0 0 0 1 0 
.5 0 .5 0 1 0 0 0 1 0 0 0 

Fig. 1. Experimental result of the line labeling 
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Hummel and Zucker's consistent labeling. Then for each 
i, i = 1, ... , n, p(i) belongs to M(i; P), which means that 
for each P;(i) > 0, q;(i; P) = max qr.(i; P), a constant 

l<k<m 
independent of j. This completes the proof. 

Since the Hummel and Zucker's consistent label­
ing set is nonempty, the Rosenfeld et al. 's consistent 
labeling set is nonempty, too. 

VI. Experimental Results and Summary 

The simple example of scene labeling considered by 
Rosenfeld et al. (see [3]) is used to verify the new relax­
ation algorithm developed in this paper. The problem 
is to label the line of a triangle shown in Fig. 1 in [3]. 

The compatibility of label A on unit a, with la­
bel A1 on unit a;, rs;(A, A1

) is related to the function 
r(i, Ajj, A1

) in this paper as: 

r(i, A;j, A1
) = ds; · rs;(A, A1

) 

where d's are constant coefficients. Then, the function 
q!"')(A) which is the change in p~"')(A) in the kth itera­

tion, where q!"')(A) are the notation used in [3], is the 
same as the support function qA(i; P"') in the new algo­
rithm. We use the same values for fs;(A, A1

) and ds; as 
Rosenfeld et al. used in their example. 

The problem is to label three units U,(i = 1,2,3) 
three sides of a triangle, with four labels Ls(i = 1, ... , 4) 
the set of four line labels { +, -, -+, ~} used by Waltz 
(see [4]). The behavior of the label distributions for 
the algorithm proposed by Rosenfeld et al. (Algorithm 
1) and the one proposed in this paper (Algorithm 2) is 
illustrated in Fig. 1 for various initial labeling distri­
butions. The row vector of each matrix in the figure 
represents the labeling distribution for each unit. 

The first iteration using Algorithm 2 in Case A 
gives 

0.5 
0.5 
0.5 

0.5 
0.5 
0.5 

0 
0 
0 

0 
0 
0 

and the second iteration in the same case gives 

0 
0 
0 

0 
0 
0 

0.5 
0.5 
0.5 

0.5 
0.5 
0.5 

·Afterwards the results oscillate. However, Algorithm 1 
after 25 iterations gives 

.27 

.27 

.27 

.27 

.27 

.27 

.23 

.23 

.23 

.23 

.23 

.23 

It seems both algorithms do not give a meaning­
ful interpretation in Case A. In cases B, C, E, and G, 
both algorithms give the most probable interpretation. 
In case H, both algorithms give a less probable inter­
pretation. In case I, both algorthms give the desired 
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interpretation. In cases D and F, two algorithms give 
different interpretations. However Algorithm 2 gives the 
most probable interpretation In all cases except case A, 
Algorithm 2 takes only one interation to reach the goal 
in comparison with more than 25 iterations required by 
Algorithm 1. 
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