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Abstract

We present a case study of the design of a fully autonomous morphological detection algorithm. Grayscale
input images contain objects to be detected among difficult clutter, replacement noise, and background tilt. We
include our criteria for choosing algorithm structure, with associated grayscale and binary structuring elements
based upon comparing the geometry of target and noise/clutter objects. We discuss background cancellation, and
histogram-based techniques for final thresholding to binary detection images.

Finally we present a performance characterization methodology for the detection algorithm. In addition to
conventional detection statistics we consider the “quality” of the hits and false alarms, vis-a-vis the feature set
and classifier used in classification downstream of the detector in the overall system design.

1 Introduction

We describe the design process, algorithm structure, and performance results for a fully autonomous morphological
detector. The design is aimed at a class of images from a particular scanner system. In such images, objects to be detected
(“targets™) are geometrically relatively well defined (though with a random component), but embedded in an often severe
random background environment characterized most easily with heuristics and by examples.

Typical input images may contain randomly sized and located replacement noise and clutter objects, as well as grayscale
background tilt far exceeding local target/background contrast. Targets vary in size by a2:1 factor in linear dimension, and may
appear distorted or occluded by the physical processes involved. Inspection of images reveals that the attributes distinguishing
targets from replacement/clutter “objects” are mainly geometric (shape/size). Because of the predominance of random sized
replacement noise, which does not fit the additive linear noise model associated with classical signal processing, and because
of the geometric distinction between target and clutter/replacement noise objects, we turned to Mathematical Morphology as is
appropriate to such situations. The procedures for designing morphological filters are not as advanced in “state of the art” as is
the case for linear filters, For instance, the tools for linear filter design are described in many signal processing texts including
[1] and [2]. When the signal is deterministic and the additive noise is random a filter (Matched filter) can be designed that
optimizes the signal to noise ratio. When the signal is random the mean square error between the filtered noisy signal and the
original signal can be minimized by another filter (Wiener filter) design. The technology for implementing these filters is also
well developed and includes FIR, IR, and FFT based techniques.

By comparison the tools for designing optimum morphological filters are still a current research topic. Haralick, et. al.
in [3] study optimal filtering with openings that applies to binary images with objects that are restricted to membership in an
ordered basis set. Optimal filter design is also discussed in [4] but there are assumptions made that exclude us from using their



results. Our data set is also discussed in [5] but only in the context of finding features to train a neural net classifier. Early and
significant work on this particular detection problem was done by Ballestrasse [6].

2 A Brief Review of Morphology

The two basic operations of Mathematical Morphology are erosion and dilation. References [7], [8], and [9] each give a
comprehensive review of the mathematical properties associated with each. Binary dilation of a set F' by a set L is defined
as F&¢ L = {z|e = f+ 1 for somef € Fand for somel € L}. Binary erosion of a set F' by a set L is defined as
Fe&L={zle+1€F foralll € L}. In binary morphology, erosion and dilation are set operations with both F and L being
arbitrary sets. But in image processing a clear distinction is made between an image and a structuring element. Hereafter f
will represent a grey tone image and [ a structuring element. Grey scale dilation and erosion of an image f by structuring
element( are respectively defined as (f & )(2) = meaf {flz—2)+1l(z)}and (f&)(z) = meuLl{f(.L + z) —(z)} where the

r—z€F
output image domain changes size according to F' — F & L for dilation and F' — F & L for erosion. This is the underlying
mathematical definition which assumes that the original image exists only within its domain, F'.

Change of image size is a mathematical solution of the edge condition problem common to shifting mask algorithms
(including linear filters for example). Mathematically, results are left undefined where the lack of image data at the edge would
require local modifications of the definitions. In practice, padding is added to the edges of the original images so that sequences
of morphological operations never encounter the shrinking and growing, within the original image frame. By so doing we
can always display and consider an image size equal to that of the input image. The spatial extent of the padding depends
on the extent of the structuring element. Choice of an appropriate padding values is more subtle, and is a design decision
equivalent to assumptions upon objects only partly visible at the edges of the original images. Such design decisions, which
reflect the detection goals of the algorithm, are properly segregated from the precise mathematical definition of morphological
operations.

The primitives of erosion and dilation can be combined into more complex operations. An opening is an erosion followed
by a dilation, f ol = (f &) & [, and closing is a dilation followed by an erosion, f el = (f &) &l

Since openings are antiextensive, i.e. f ol < f, and since closings are extensive, i.e. f < f o [, it makes sense to define
two additional operations based on subtraction. Define the opening residue operation as f openres { = f — (f o) and define
the closing residue operation as f closeres I = (f o [) — f Residues have the effect of extracting the portion of the image that
is smaller than L.

The primitives of opening and closing and their corresponding residues have an easy geometric visualization as described in
Figure 1. Our design process is really based on such visualizations and what can be accomplished geometrically in successive
grayscale surfaces with a sequence of morphological operations.

3 Description of Random Images

One might conceive of the several hundred images in our database as the observed realizations of a random process. If the
random process were known then a statistical description would completely suffice to describe the images. However, since no
such statistical description is casily available, we will describe the images by examining some of their typical characteristics.
Figure 2 shows a fairly representative image. The dimensions of the images were roughly 200 rows by 300 columns.

3.1 Objects Being Detected (Targets)

The objects we wish to detect are round or ovaloid in shape and are generally darker than the surrounding pixels. Since it
was possible to clearly identify what the “ground truth” should be for each image, we created a binary mask image for each
image in our data set. The pixels that are a 1 value in the mask correspond to object pixels while 0 valued pixels in the mask
correspond to background pixels. The mask images were created with computer graphics software that interactively allows a
user to approximate objects as polygons and simultaneously overlays the result. The ground truth information was collected
at quite some time and expense; its significance is that having been collected once, it allows algorithm results to be evaluated
automatically for repeated algorithm design modifications. It also allowed other characteristics of the objects such as shape
and size to be studied further. For instance, we were able to get some of idea of the distribution of sizes of targets by estimating
a radius for each ground truth mask image connected component. A histogram of target radius is shown in Figure 3.a.
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background levels in the residues.



Figure 2: a) lllustrating a typical image (c073696). b) Illustrating a typical image with physical occlusion (s011268).
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Figure 3: a) Histogram of object radius derived from ground truth. b) Histogram of object signal-to-noise ratio derived from
ground truth.

The objects are often very hard to see due to low contrast. Indeed, careful inspection of Figure 2.a is necessary to ascertain
that there are not one but two target objects visible. One way to quantify the contrast is given by

/A (ﬁo - }Eb)Z
(02 +07)/2

where [ and o2 are estimates of the mean and variance for the portion of the image denoted by the subscript, either object
pixels (o subscript) or background pixels (b subscript). The background pixels associated with the object are sclected in the
following way. The ground truth mask image is dilated with an appropriately sized disk and then the result of the dilation xor’d
with the original mask image to form a background pixel mask image. In this way the background pixels in a ring around the
object are selected; the number of pixels in the ring is approximately the same as the number of pixels in the object. S for
the rightmost object in the image in Figure 2.a is 2.1 which is very low because S can be interpreted as an amplitude signal
to noise ratio. The corresponding value of the signal to noise ratio in dB is 6.4. A histogram of S for our image data base is
shown in Figure 3.b.

3.2 Background Characteristics

The most significant background characteristic is the presence of cloudlike patches in the image, hereafter called “glint”
(That term in fact refers to the agglomeration of effects of several physical phenomena). Glint is readily apparent in Figure
2.a. It is known from the image creation process that glint is replacement noise rather than additive noise. This being the
case, we were strongly motivated to employ Mathematical Morphology rather than classical signal processing techniques in
our algorithms.

We were able to get some idea of the size of the glint by calculating a pattern spectrum of some representative images. The
pattern spectrum is discussed in [9], [10], and [11]. Essentially a pattern spectrum consecutively applies finer and finer sieves
to an image. The difference between the amount sieved through at a given size and at the next smaller size is the value of the
pattern spectrum at the given size. It corresponds in some sense to the amount of energy in the image for shapes of that size.
Because our images are grey tone we normalized them by volume sieved through rather than area sieved through. The pattern
spectrum for the image in Figure 2.a is shown in Figure 4. From Figure 4, confirmed in visual inspections, glint appears to be
a lighter than background phenomenon generally smaller than typical target objects.

Another characteristic of the background is that it often had a significant tilt. An example of an image with background
tilt is shown in Figure 5.a.
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Figure 4: Pattern Spectrum for image c073696.

Figure 5.b is a cross section along a row of the image in Figure 5.a and it demonstrates there is a definite decrease in overall
intensity as one moves to the right in the image. Figure 5 shows that the combination of glint and background tilt preclude
effective use of simple thresholding. The contrast between object and background is often less than the background tilt; the
rightmost object in the image of Figure 5.a, which has extremely low contrast demonstrates this point.

The final property we will describe is another kind of physical occlusion that operates only on target objects because it
comes from a physical process different from that which produces “glint”” An example of this is in Figure 2.b.

3.3 Representative Image Sets

For purposes of algorithm development, we were provided several hundred images, each containing one or more verified
target objects, and a greater number containing no targets. During initial algorithm development we inspected visually, and
deliberately chose an unrepresentative set of some 200-300 images with a large number and wide variety of difficult attributes.
This was our “test-to-break™ data, upon which initial development was performed and failures traced.

Thereafter, a set of difficulty likely to approximate normal operating conditions was obtained. Technical representatives
of the mission sponsor provided a set of 84 frames, containing 210 verified target objects, certified as representative of the
average level of difficulty of target-containing frames likely to be encountered in practice. Thereupon we obtained a random
selection of approximately the same number (90) of non-target-containing frames, by sampling every n’th frame from all the
images we had been supplied, and discarding those containing targets. This set of 174 frames (84 containing 210 targets and
90 containing none) became our “representative set” of images for performance evaluation.

4 Algorithm Design

Before proceeding to describe our algorithm in detail, we provide an overall figure, Figure 6, that shows each processing
step of our algorithm including glint removal, occlusion removal, grayscale detection, and 1-bit detection.

4.1 Glint Removal

Glint removal is the first algorithm step. We decided to attack it first based on two considerations: 1) glint was smaller
in size than the target objects that occurred and morphological filtering naturally progresses from smaller to larger objects; 2)
glint removal simplifies the later problem of background normalization/target detection. Our initial attempt at a glint removal
algorithm was to apply a small closing with a disk of diameter w; to the input image (B) then open this closed image with a
disk of diameter w, to produce the glint cleaned image (K), i.e. K = (B e disk(w)) o disk(wy). Before discussing selection
of sizes for w and w, we must change our attention to a practical consideration.
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Figure 5: a) Illustrating an image with background tilt (c042893). Size is 183 rows by 279 columns. b) Row 139 of the above
image (c042893).
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Figure 6: Illustrating the overall algorithm

We knew that the algorithm we were going to develop would be eventually required to run in real time (see [12] ). Thus
even at this early stage we determined that we would restrict ourselves to square structuring elements because they can be

n

simply decomposed into two point structuring elements to gain a speedup of approximately ﬁ to 1. With this consideration
the glint cleaning algorithm became I = (B e square(w;)) o square(ws).

The size of w; is based on ensuring that the cleaning step both cleans glint of all sizes but does not bridge together
adjacent objects in the same image and thus distort their size and shape for the next stage of the algorithm. Let sq5; be
the smallest observed interobject distance. If the opening structuring element is to barely fit between two such objects, in
the limiting case when they are diagonally s.; apart, then wy = s—\‘:,"i'*- Adding a safety factor gives the working expression

unp < %’g— For our data this meant w; = 15. The purpose of the closing with disk(w;) is to “protect” the opening and
prevent it from getting “pushed down”. A secondary consideration is that it not remove target objects. These considerations
give wy = min{%2, iﬂ;‘-&} where dnin i the smallest observed target diameter. For our data this meant w; = 5.

4.2 Enhanced Glint Removal

In testing the initial glint removal algorithm described above the results were not as expected. We expected the glint to
be removed and the image mainly unchanged except for being smoother. Instead, in many images we observed a pattern of
replication of the structuring elements that is best described as “tiling”. Figure 7 depicts the results of our initial algorithm
and shows the phenomenon of tiling.

‘We discovered after some experimentation that the tiles were based upon the size of square(w;) and were thus an artifact of
performing an opening. The tiles made automatic thresholding at the object detection stage of the algorithm difficult because
the “objects” created by tiling ofien tended to become agglomerated together and look very much like the objects we were
trying to detect. These problems called for a more sophisticated glint removal algorithm that did not tile the image.

QOur approach was to retain the first operation, namely D = B e square(w), in the initial glint removal algorithm of section
4.1, but replace the second operation, namely o square(ws), by an operation that was inherently smoother. Specifically, we
created a mask [ approximating the glint regions. We then masked the (partly-cleaned) D image where I indicated glint, and
filled in the masked pixels from surrounding values, creating a “glint-cleaned” image K'; K = Fill(D,I). While there were
some “seams” where filling from different edges of masked regions met, such structure was mild and generally not target-like,
compared to the results from opening by square(w;).

It remains to describe the formation of the glint mask I. Glint was considered to be the union of “very bright glint”
region C' and a region G of pixels brighter than surrounding background, but not agglomerated into regions larger than
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Figure 7: a) Image c584910 b) Image c¢584910 after glint cleaning with initial algorithm



a maximum size. Specifically C' = 1(B > (g + 3¢)) is found by thresholding all pixels more than 3¢ above the mean.
G = 1(D openres square(w;) > T3)1is the set of regions lighter than their surroundings where structuring element square(w;)
(chosen as in section 4.1) will not fit. (So G is in a sense the collection of regions that the o square(w,) operation would
have cleaned in the initial algorithm). Finally, actual glint mask I = (C'JG) ¢ square(3) where the final small dilation,
independent of the size of targets or clutter in images, is an engineering adjustment to account for the tendency of the undilated
glint mask to “miss” single-pixel corners and edges of glint regions,

It can be seen, then, that except for the inclusion of “very bright” regions (which have no size limit when they occur) the
enhanced glint removal algorithm operates upon the same region as the o square(ws) step in the unsuccessful algorithm of
section 4.1; the main difference is a smoother glint-removal step (edge-filling), less prone to tiling.

The T3 threshold is set at max{x + 20, 0.25 x max{D openres square(ws) }, T3} where the adaptive T3 threshold process
for openres and closeres images will be described in the object detection section of this paper, and the p and o values
are measured for the opening residue image (not for the original raw image, as was the case in determining the C' mask).
The upward adjustments in the 73 threshold, compared to our “standard” thresholding procedure, were motivated by a few
instances of dramatically setting the threshold too low, resulting in too much of a “good” image being blanked out as glint and
thus ignored.

An example figure describing the result of running both the initial glint algorithm and the enhanced glint algorithm through
to detection is Figure 8. It is apparent that the initial glint algorithm performs substantially poorer.

4.3 Occlusion Removal

L = K o square(ws). ws is taken to be larger than 0.5d.q. to ensure that occlusions up to 50% of target diameter are
closed over. For our values of d.pnq., this resulted in w3 = 21 pixels.

4.4 Background Normalization and Object Detection

The background is normalized at the same time as extracting the round target objects by performing a closing residue
operation. So [V, the background normalized image, is calculated by N = L closeres square(ws). The size of wy is chosen
to be comfortably larger than the diameter of the largest expected target since its job is to fail to “fall” into any object-sized
indentations occuring in the glint cleaned image. A reasonable quantification is w4 > 1.25d 4z Where dp,q. is the largest
diameter of object expected to occur. These considerations give w4 = 64 for our data.

After the glint was cleaned, occlusions removed and the background normalized, the final detection image O containing
target objects was found by thresholding O = 1(N > T3). Because of the highly nonlinear character of morphological
operations and the consequent geometry of closing residue image 2V, it is clear that: 1) N will be identically zero where a
square(w.) can fall perfectly, and close to zero where it can “almost” fall. This dictates that the intensity histogram of image
N, on which T3 must be based, will have the majority of pixels close to zero (where closeness depends on the underlying
contrast spreads of the original image absolutely, and of detected objects (in image V') against the surrounding background).
The pixels to be retained are thus to be found in a flat histogram “tail” or a second (or greater) mode or both.

The somewhat complex procedure for setting T3 is motivated by the need to negotiate “blind” (i.e. automatically, and for
all cases) in any histogram having the possibilities just defined. In overview, the T3 threshold is performed as follows.

First two separatc models of the actual histogram for image /V are created, each resulting in an autothreshold. The higher
is taken. Then further automatic upward adjustments in the threshold level (decreases in the number of pixels detected) are
applied; the algorithms for these are based upon systematic failures of earlier autothreshold algorithm attempts, lacking such
adjustments.

Specifically the T3 threshold begins with the highest of T34 and T3 defined as follows. 734 is the threshold of the Otsu
algorithm described in [13]. To obtain T3p an exponential model density curve I’(x) = ae™** is fitted to the first three bins

of the histogram. Then T3p is taken to be the threshold corresponding to a false alarm rate of 0.001 in that model, namely

1n(0.001)
Isp = zo001 = —F—.

Experiments upon actual data frames showed that even the maximum of the above two thresholds resulted in a value lying
in the initial histogram peak, for a non-trivial number of images. (The “symptom” of such a threshold is a “saturated” detection
frame with large (0.2 and more) fractions of background detected, mainly random shapes). As a result the threshold must be
forced upward until a clear indication of a flat spot or an upturn is obtained. Specifically, beginning with the maxz{Ts+,T3g},
the threshold is increased by single gray levels until both of the following stopping criteria are fulfilled. (Note that each
consists of a major criterion with a “safety valve” to ensure that it will be satisfied before the threshold rises to the maximum
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Figure 8: a) Detection with initial glint cleaning method for image ¢584910. b) Detection with enhanced glint cleaning method
for image ¢584910.
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Figure 9: Edge effects in detection. a) Grayscale image; b) Binary detector output, in absence of edge padding/trimming; c)
Binary detector output when edge padding/trimming is used.

gray level.) Let {7} be the the number of pixels in the histogram bin at the i'th threshold iteration, and hfotal the total number
of pixels in the histogram (total area). Then stop on [C} and C5).

Cl: [h(i 4+ 1) — R(7) < 0.0025htotal] OR
[threshold is above 99.75% of the total pixels]

C2: [A(i + 1)/h(i) > 0.65] OR
[h(i + 1) < 0.000025htotal]

With the above definition of the T3 threshold for closing differences, the overall detection algorithm is seen to require
no human operator intervention. The three thresholds are set based on the amplitude statistics of the original image and
intermediate processed images. The structuring element sizes depend heuristically upon the sizes of objects being detected,
and upon assumptions concerning their inter-object distances.

4.5 Edge Effects

In the formal definition of grayscale dilation and erosion, dilation expands, and erosion contracts the domain of a grayscale
image. Since the algorithm here is made of openings and closings (each of which erodes, then dilates, or the converse) one
might suspect no net effect of growing and shrinking. This is not the case. Edge effects of shrinking and growing images
manifest themselves in “edge bridging” as exemplified in Figure 9.

The “cure” for the edge-bridging problem is straightforward (though potentially costly in computation and storage re-
quirements if implemented directly). The initial image B is padded outward in each direction by the diameter of the largest
structuring element in the algorithm sequence. Only results for the original domain of B are retained (by trimming) at
completion. Padding values are a design decision. We assigned initial values in the rim (padding region) equal to values at the
nearest edge point of the original domain of B, The effects in the final detection image are to eliminate bridging (preserving
shape), to make partially visible edge targets detectable as if they always extended full-size outward into the rim, but to make
partially visible corner targets undetectable. Since the relative sizes of images and target objects dictate that corner targets are
infrequent but edge targets are relatively frequent, and shape/size of interior targets would be important in later classification,
we were satisfied with the design tradeoffs.

5 Performance Measures

Having described the rationale behind the form of the algorithm the values of parameters, as well as iterative re-designs
based on experience with parts of the algorithm, it is desirable to evaluate how well we did. We are able to formulate objective
performance measures at this stage only because of the existence of the binary ground truth images.



5.1 Per Image Performance

We wrote software that automatically compares a binary ground truth image and an algorithm output image and produces
in tabular form a comparison of the two. Figure 10 is an instance of the output of the “autocomparator” software for the image
of Figure 8.a

The first part of Figure 10 shows the number of false alarm pixels, the number of misdetected pixels, and the number of
correctly detected pixels. These numbers, while possibly helpful are not so meaningful for morphology which is concerned
about shape. Thus the second part of the figure makes the same comparison by connected components; the basis of the
comparison is the requirement that at least one pixel must overlap. Finally the third part cross references ground truth
connected components to overlapping algorithm connected components and vice versa. The cross reference information on
overlap area provides a measure of the quality of the detection and multiple detections. To aid in cross referencing between
images and the table, location information about the upper left corner and the bottom right corner of each connected component
was included.

In reporting performance of the detector alone, we desired a measure of difficult vs trivial false detections. Since the
area of the true target objects being sought was known (in our case between 250 and 1200 pixels), it was obvious (as
exemplified in Figure 8) that a large number of false detections were simply too small (“flyspecks™) even to be comparable
to partially detected targets. Similarly, we observered numerous false detections that were spindly (see Figure 11), likely
as a result of residual tiling in the last two steps of the algorithm. Accordingly a spindliness feature was defined, namely

spindliness = L ) z;};jesalength)z‘ The major axis length is calculated from the corners of the (extremal point, see [7])
bounding box.

By way of intuitive understanding, spindliness will have values 4/ for a disk, 2 for a square, N for a 1 X N pixel rod,
and N for an “L” shaped object one pixel wide each leg having length N. It was found that by far the majority of connected
components that hit targets had spindliness < 1.5

On this basis we designated a false detection “difficult”, for purposes of predicting significant work for the classifier, if
area > 40 and spindliness < 1.8. In Figure 8.a, one can see that only 2 out of 19 false detections are “difficult” namely

algorithm connected components numbered 1 and 8.

5.2 Performance on the Ensemble of Representative Images

‘We summarize performance on the 174 representative images described in section 3.3. Statistics are presented on detections
(of true targets) and false detections.

To summarize detections, one needs to know the number of true targets, the number that were hit (at least one pixel
overlap), the total number of hits. From these can be obtained the number of targets missed and the number of excess hits
(total number of excess hits beyond one per true target). From these can be obtained py, Py, 04 Pegcess. In addition, because
of potential application criteria entailing an all-or-nothing criterion in judging an image frame to contain one or more targets
and a local concentration-of detections criterion, we computed probabilities of detections based on detecting at least one true
target per frame, and based on detecting at least 50% of all objects in a frame. We designate these as Pp(any) and Pp(son)

In terms of false detections it is necessary to know the total number of false detections, and the number of difficult false
detections, which can be expressed per representative pixel area (1000 pixcls is the area of the most “typical” target by
comparison) or per frame. In addition, since the false detections are by no means uniformly distributed, some measure of the
distribution of false detections among frames is desired. Figure 12 summarizes detector performance.

6 Conclusion

We were successful in developing a morphological algorithm that separated the target from the background nearly 90% of
the time on a per target basis and well in excess of 90% on a per frame basis. Considering the difficult signal-to-noise ratio
and clutter environment this is really quite remarkable. Our success was possible because both the objects of detection and
the clutter had substantial shape characteristics that Mathematical Morphology could exploit.

In the overall system design, the detection objects from this algorithm were fed to a feature computation process and a
binary tree classifier (which are beyond the scope of this paper). The classification results achieved on the objects found by
our detector, based on independent training and testing sets, resulted in satisfactory overall system performance.

Open development questions for the particular algorithm include robustness and residual false detections. In presently
ongoing work, the algorithm described in this paper was applied to substantially more difficult clutter environments than the



detection matrix for image ©584910 ( 191 x 312 ) is:
no signal,no detect false alarm
miss true detect

per pixel:
54564 2688
37 2303

per ccm:
0 19
0 2

ground truth ccms:

gt top bottom alg
ccm spind left right ccm overlap
# area liness (r,c) (r.¢) $ area

1 1323 1.3 (151,175) (18%,184) 12 1307
2 1017 1.2 (153,288) (186,306) 16 996

algorithm output ccms:

alg top bottom gt
ccm spind left right ccm overlap
area liness (r,c) (r,c) ¥ area
1377 1.8 ( 1, 1z2) ( 64, 12)
18 1.5 ( 1, 89) ( 3, 94)
7 2.7 ( 64,312) ( 70,312)

Lol =R R R L N
w
[=]

5 2.3 (101,312) (105,312)

1.4 (102,246) (106,251)

20 1.4 (104,143) (108,14€)

38 1.4 (105, 41) (110, 47)

89 2.2 (111,197) (116,213)

71 1.5 (114,226) (120,236

10 36 1.4 (116, 25) (121, 30)

ntgh 25 1,4 (118,307) (122,311)
12 1736 1.6 (12£,183) (191,184) 1 1307

13 25 1.4 (130,239) (134,243)

14 S 2.3 (142, 70) (146, 70)

15 25 1.4 (144,256) (148,260)
16 1328 1.5 (145,290) {(1%50,312) 2 996

17 30 1.4 (149, 8) (153, 13)

18 25 1.4 (172, 81) (176, 85)

19 62 1.4 (177,115) (183,122)

20 20 1.4 (182, 27) (186, 30)

157

{189,231) (191,235)

summary:
number of ground truth ccms = 2

number of detected ground truth ccms = 2
probability of detection = 1

number of false alarms = 19

non ground truth area of image = 57252

false alarm rate (per 1000 pixels} = 0.331866

Figure 10: Illustrating output report for image ¢584910.



Figure 11: Mustrating a detection image with spindly false alarms (c310937).

Representative Data
174 Frames
210 True Targets in 84 Frames
No True Targets in 90 Frames

Detection of True Targets (Per True Target)
Targets Hit: 182, Misses: 28, Excess Hits 10
Pd = 0.87; pina = 0.13; pepcess = 0.05

Detections of True Targets (Framewise)
PD(_SO%) = 0.93; pD(an.y) = (0.965

False Detections
633 False Detections
Rrp = 3.6 /frame
143 “Difficult” False Detections
Rr p(aifsicus) = 0.81 /frame

Distribution of False Detections
51% of FD’s in worst 13% of frames, Rrp = 14 /frame
77% of FD’s in worst 26% of frames, Rrp = 11 /frame
23% of FD’s in remaining 74% of frames, Rrp = 1 /fframe

Figure 12: Performance results on representative images



“representative images” of section 3.3. Initial performance was encouraging, with the exception that the problem of “bad
frames™ (a small fraction of frames containing large numbers of false detections) was exacerbated. Upon inspection, the
difficulty was found within the openres and closeres thresholding routine (73 threshold, of Section 4.4). The difficulty was
not in general concept; rather it lay in failure to account for extremely irregular (very-many-peaked) histo grams. A smoothing
routine in histogram space was the successful remedy. These most recent developments will be reported in future papers.

More general open research issues, related to this work include the following: methodologies for constructing optimal
morphological algorithms; criteria for choosing the shapes and sizes of structuring elements; assessment of performance
degradation when a suboptimal choice of structuring element is made instead of the optimal one; and, performance measures
that directly relate to morphology instead of detection.
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