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Abstract 

USA 

The cubic polynomial is analyzed and its translation invariant 

parameters are derived. These translation invariant parameters are scale 

and contrast and are related to the horizontal and vertical distance 

between relative extrema of the cubic. The implementation details of the 

facet model second directional derivative zero-crossing edge detector 

described previously by Haralick are then given in terms of the 

translation invariant parameters. 

A variety of results are shown for a noiseless sample function having 

different kinds of discontinuities. The least square facet parameters of 

the approximating cubic are calculated under different window sizes and 

different amounts of Gaussian preaveraging. The results indicate that 

when the contrast threshold is set slightly smaller than the contrast 

difference across the discontinuity, no preaveraging or a Gaussian 

preaverage of a = .6 yield identical perfectly placed edges for all odd 

window sizes between 5 and 11. When the standard deviation is as high as a 

= 1.5, some edges are not detected, but those which are detected are 

correctly placed. If the contrast threshold is set too low, some false 

edges are detected. 

Finally a comparison of the zero-crossing of Laplacian, a popular 

Mexican hat edge detector, shows that regardless of the standard deviation 
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of the Gaussian, zero crossing slope thresholds which are too small yield 

some falsely detected edges and zero crossing slope thresholds which are 

too large yield some misdetected edges and some incorrectly placed ones. 

Furthermore, in contrast to the facet edge detector, there is no 

zero-crossing slope threshold for the Mexican hat edge detector which can 

provide perfect edge detection on the given noiseless sample function. 

By edge we mean a configuration of gray tone intensity values which 

on each side of the edge have relatively small variation in value and 

which across the edge have relatively large variation in value. An ideal 

edge of this kind is a step edge whose gray tone intensity values on each 

side of the edge take a different constant value. 

The key idea in detecting edges is to look for relatively large 

contrasts in small distances. Change in value, or contrast, divided by 

change in location which causes the value change is the essence of what a 

first derivative is. A large contrast in a small distance means a large 

first derivative. If there were to be many continguous points with large 

enough first derivative, the natural one to choose would be the one which 

has largest first derivative. If the first derivative is to be a relative 

maximum, then the second derivative must be zero and the third derivative 

must be negative if the edge is crossed from the lower value to the high 

value gray tone region. 

In the second directional derivative zero crossing edge detector 

(Haralick, 1984), bivariate cubic function is fit to the central 

neighborhood of pixel. The fit produces the estimated bivariate function 

f: 

f(r,c) 

Based on the estimated coefficients k1, .... ,k10 a decision is made 

to label the pixel as edge or non-edge. A pixel is labelled as.an 



edge if the second directional derivative, taken in the direction 

of the gradient, has a negatively sloped zero crossing located near 

the center of the pixel. 

The simplest way to think about directional derivatives is to 

cut the surface f(r,c) with a plane which is oriented in the 

desired direction and which is orthogonal to the row-column plane. 

By convention, we take the angle to be measured clockwise from the 

column axis. We define the desired direction to be the gradient 

direction at the center of the given pixel. Hence, the gradient 

angle e, satisfies 

cos e 

The angle e is well defined providing that k~+k; > 0. 

To cut the surface f(r,c) with a plane in the direction e we 

just require that r = p sin ll and c = p cos e where p is the 

independent variable. This requirement produces the cubic curve 

f 9(p)=k1 + (k2sinB + k3cosB)p (k4sin2e + k5sinBcosa + k6cos2a)p2 

+(k7sin2a + k8sin2acosa + k
9

sinBcosa + k 10cos 3a)p3 

Let 

2 2 
c 1 = k2 sin a + k3 cos a = (k2 + k3) . 

5 

c2 = k4 sin
2 

a + ks sin a cos a + k6 cos
2 

a 

c3 = k 7 sin3 a + k8 sin2 a cos a + k
9 

sin a cos 2 a + k
10 

cos 3 a 

Then fa(p) = C
0

+C 1p+C2p
2
+c3p

3 
from which it follows that the first, 

second and third directional derivatives are given by 

fa'(p) = C1+2C2p+3C
3

p2 

fa''(p)= 2C
2

+6C3p 

f '''p)= 6C a 3 
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For a pixel to be labelled as an edge pixel, the second directional 

derivative must have a negatively sloped zero crossing 

sufficiently near the center of the pixel. In this case, with the 

origin taken as the center of the pixel, there must be a p 

sufficiently small in magnitude satisfying 

f 11 (p)=O (this is the zero requirement) e 
and f 6

111 (p) < 0 (this is the negative slope requirement). 

For fe Ill (p) < 0 we must determine that c3 < 0. If c3 < 0, then c3 

# 0 and a p having the value -C2/3C3 exists which makes fe 11 (p) = 

0. If IC 2/3C3 1 < p
0

, where we take p
0 

to be somewhat less than a 

pixel length, we can label the pixel as an edge. In essence, this 

is the procedure given by Haralick (1984). 

If our ideal edge is the step edge, then we can refine the 

above detection criteria by insisting that the cubic polynomial 

f 6 (p) have coefficients which make f 8 (p) a suitable polynomial 

approximation of the step edge. Now a step edge does not change in 

its essence if it is translated to the left or right or if it has a 

constant added to its height. Since the cubic polynomial is 

representing the step edge, we must determine what is it about the 

cubic polynomial which is its fundamental essence after an 

ordinate and abscissa translation. 

To do this, we translate the cubic polynomial so that its 

inflection point is at the origin. Calling the new polynomial g, 

we have 

3 
f 6 (p-C2/3C3)-(C

0
+2C

2
/27 

2 3 
((3C1c3-C2)/3C

3
)p + c

3
p 

In our case since c 1 = (k;+k;)· 5 we know c
1 

> 0. If a pixel is 

to be an edge the second derivative zero crossing slope must be 



negative. Hence, for edge pixel candidates c 3 < 0. This makes 

2 -3c
1
c

3
+c

2 
> 0 which means that g

6
(p) has relative extrema. The 

parameters of the cubic which are invariant under translation 

relate to these relative extrema. The parameters are the distance 

between the relative extrema in the abscissa direction and in the 

ordinate direction. 

We develop these invariants directly from the polynomial 

equation for g
6 

(p). First we factor out the term 

For candidate edge pixels, c
3 

< 0. This permits a rewrite to 

(3c2/(C2 3C C 3))1.5p3) - 3 2- 1 

Let the contrast be C and the scale be S. They are defined by 

c 

s 

Finally, we have 

ga'(p) = C (Sp- S3p3) 

In this form it is relatively easy to determine the character 

of the cubic. Differentiating. 

g6 '(p) = C(S-3S
3

p
2

) 

g
6
''(p) = 6CS3

p 
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The locations of the relative extrema only depend on S. They are 

located at± 1/(3· 5s). The height difference between relative 

extrema depends only on the contrast. Their heights are 

±2C/(31 · 5). Other characteristics of the cubic dependon both C and 

S. For example, the magnitude of the curvature at the extreme s 

2(3" 5 )cs2 and the derivative at the inflection point is CS. 

Of interest to us is the relationship between an ideal perfect 

step edge and the representation it has in the least squares 

approximating cubic whose essential parameters are contrast C and 

scale S. We take an ideal step edge centered in an odd 

neighborhood size N to have (N-1)/2 pixels with value -1, a center 

pixel with value 0, and (N-1)/2 pixels with value + 1. Using 

neighborhood sizes of from 5 to 23 we find the following values for 

contrast C and scale S of the least squares approximating cubic. 

Neighborhood Size 
N 

5 
7 
9 

11 
13 
15 
17 
19 
21 
23 

Contrast 
c 

3.0867 
3.1357 
3.1566 
3.1673 
3.1734 
3.1773 
3.1799 
3.1817 
3.1830 
3.1841 

Scale 
s 

.37796 

.26069 

.20000 

.16253 

.13699 

.11844 

.10434 

.09325 

.08430 

.076924 

The average contrast of the approximating cubic is 3.16257. The 

scale S(N) appears to be inversely related to N; S(N) = S/N. The 

value of S minimizing the relative error 

S(N) - S/N 
( -------------) 

is 1. 793157. 

These two relationships 

C=3.16257 
S = 1.793157/N 

S(N) 

for ideal step edges having a contrast of 2 can help provide 

additional criteria for edge selection. For example the contrast 

across an arbitrary step edge can be estimated by 



Edge Contrast 
2C 

3.16257 

If the edge contrast is too small, then the pixel is rejected as an 

edge pixel. We have found that in many kinds of images, too small 

means smaller than 5 percent of the image's true dynamic range. 

Interestingly enough, edge contrast C depends on the three 

coefficients c
1

, c
2

, c
3 

of the representing cubic. First 

derivative magnitude at the origin, a value used by many edge 

gradient magnitude detection techniques, only depends on the 

coefficient c
1

. First derivative magnitude at the inflection 

point is precisely CS, a value which mixes both scale and edge 

contrast together. 

The scale of the edge can be defined by 

SN 
Edge Scale = 

1. 793157 

Ideal step edges, regardless of their contrast, will produce least 

squares approximating cubic polynomials whose Edge Scale is very 

close to unity. Values of Edge Scale larger than one have the 

relative extrema of the representing cubic closer together than 

expected for an ideal step edge. Values of Edge Scale smaller than 

one have the relative extrema of the representing cubic further 

away from each other than expected for an ideal step edge. Values 

of Edge Scale which are significantly different from unity may be 

indicative of a cubic representing a data value pattern very much 

different from a step edge. Candidate edge pixels with an edge 

scale very different from unity can be rejected as edge pixels. We 

have found that in many images restricting edge scale to be between 

.4 and 1.1 works well. 
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Results 

Figure 1 draws a sample data set which has three obvious step 

edges with jumps of 150, 100, and 100 respectively. We will 

preprocess this data set using no preaveraging and preaveraging 

with a Gaussian having a standard deviation of .6 and 1.5. We use 

fitting windows of 5,7,9, and 11 points and edge contrast 

thresholds of 30 and 75. These results are shown in figures 2 and 

3. 

It is apparent from these results that as the amount of 

preaveraging increases, the tendency to lose an edge increases.if 

the edge contrast threshold remains the same. As the edge contrast 

threshold increases, the tendency to eliminate false edges 

increases if the amount of preaveraging remains constant. 

For all cases where the edge is marked correctly, the position 

of the edge is correct. Those edges which are two pixels wide have 

the right boundary point of the left segment marked and the left 

boundary point of the right segment marked. Those edges which are 

one pixel wide have only one of the boundary points from the left 

or right segment marked. 

These results also suggest that for thresholds a small 

fraction below the edge jump value, little or no preaveraging gives 

a better result from a lot of preaveraging. This holds for all 

fitting window sizes tried. Thresholds which are a small fraction 

of the edge jump value have the chance of incorrectly assigning 

some inflection points as edges. This tendency can be mitigated 

somewhat by a large amount of preaveraging. 

Finally, a comparison is made with the zero-crossing of 

Laplacian edge detector. The Mexican hat kernel is given by 

sampling the second derivative of a Gaussian having standard 

deviation. The support window for the kernel is large enough so 

that the magnitude of the value of the kernel on the boundary.is 

1/1000 of the value in the center. Any pixel where the magnitude 



of the difference between itself and a neighboring pixel of 

different sign is greater than a specified threshold is marked as 

an edge. We ran experiments for standard deviations of &sin. =.6, 

1.0, 1.5, 2.5, and 5.0 and zero-crossing slope thresholds of 1, 10, 

and 20. The results shown in figure 4 indicate that thresholds 

which are too low yield some falsely detected edges. Thresholds 

which are too large yield some misdetected edges and falsely placed 

edges. We tried all values of threshold between what was too small 

and what was too large and there was no threshold for all standard 

deviations which prodvced perfect edge detection. 

Conclusions 

In the one dimensional example we illustrated, the first 

difference between the facet edge detector and the ~lexican hat edge 

detector is the way derivatives are estimated. The facet model 

uses a least squares estimate and produces estimates which are 

evidently more stable or robust than those produced by the Mexican 

hat filter. The second difference is that the facet model 

recognizes that the derivatives are estimated based on a model and 

that model must be taken into account in the processing. Hence, if 

the model is a cubic polynomial, the discontinuities must be 

understood through the eyes of the cubic polynomial. Jbe 

implementation of the facet model recognizes this and interprets 

discontinuites of step edges through the scale and contrast 

parameters of the cubic. On the other hand, there is no model of 

derivative estimation behind the Nexican hat edge detector. 

Finally we showed that even with the facet edge detector, 

preaveraging with a Gaussian filter with standard deviation just 

larger than one pixel width can yield misdetections. These results 

are similar to those of Leclerc and Zucker (1984). Standard 

deviations smaller than one pixel width do not adverssely affect 

results. 
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Figure 1. Figure 1 shows the point plot of the original data 

set. 



(A) (B) 

(C) 

Figure 2. Figure 2 (A) shows processing of the data set using 

no initial preaveraging, (B) a Gaussian preaverage 

with o = .6, and a Gaussian preaverage with a o = 

1.5. (C). The edge contrast threshold is 75 for 

fitting windows of 5,7,9, and 11 pixels wide. 
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(A) (B) 

-----
-----,~-· -··--··-· --·----· 

(C) 

Figure 3. Figure 3 shows processing of the data set using no 

initial preaveraging (A), a Gaussian preaverage 

with &sin. = . 6, (B) and a Gaussian preaverage with 

a &sin. =1 . 5.(C). The edge contrast threshold is 

30 for fitting window of 5, 7, 9, and 11 pixels 

wide. 



-
--~---··-· ·-· 
·-~---u-••-•t ·- ·-··-·' ·---·--· • -----

(A) (B) 

--··---· -··---· -··---·--··---·---·--·,--
(C) 

Figure 4. Figure 4 shows the zero crossing of Laplacian 

operator with zerocrossing slope threshold of 1(A), 

10(B), 20(C) for Gaussian presmoother having 

standard deviation of .6, 1.0, 1.5, 2.5, and 5.0. 
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