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I. INTRODUCTION

One of the important problems in scene analysis is the comparing of two
scenes or a scene with a prototype scene. The purpose of the comparison is to
answer questions about the similarity of the scenes. The problem is a structural
one. In this paper we give some examples of the problem, translate the problem
into its general structural form, and gilve an algorithm for solving it.

We show that the mathematical form of the problem is one of finding homomor-
phisms from one relation to another. We show that the relation homomorphism
problem is a consistent labeling problem. Finally, we illustrate how a tree
search with a look-ahead discrete relaxation operator can solve the consistent
labeling problem and, therefore, the relation homomorphism problem.

IT. 1IMAGE MATCHING

By image matching we mean how we can tell two images are of the same kind of
thing. For this to happen, all the parts of one image must have similar parts in
the other and the relationships between parts in one must be the same as the
relationship between the associated parts in the other.

We will illustrate how this problem can be posed as a relation homomorphism
problem. Suppose we have a segmented image, and we are able to characterize each
segment in terms of certain basic attributes, for example, shape discriminators.
Using these attributes, we could assign a shape value to each of the segments.,

To define a N-ary relation from these values, we can group related segments to-
gether, N at a time, and form the corresponding set of N-tuples of their values.
Then we append to the N-tuple an (N+1)-component which is the name or label of
‘the group of related segments whose shape values are the first N components. One
possible kind of label on the (N+1)st component is a counter index. We can
assign the integer label "1" to all N-tuples arising from a group of segments the
first time the N-tuple is encountered. The label "k'" can be assigned the kth
time the same kind of N-tuple is encountered.



One criterion by which segments can be considered related is spatial con-
nectivity or nearness. Two segments are eligible to be included in the same
related group when their interaction lengths overlap (when they are close
enough). To make things simple in our examples, we will use interaction lengths
of zero. Thus, two segments will be related only when they are touching.

As a specific example, one might consider a missile launching complex as
described in terms of its constitutent image phonemes. These might include rail-
road spurs, roads, power lines, buildings, radar antennas, support vehicles, etc.
In terms of the stylized examples which we will present for purposes of simpli-
city and generality, such specific components are represented by circles,
squares, triangles, etc.; however, it should be kept in mind that these "geo-
metrical objects" are generic prototypes and always represent actual image
components, shapes, attributes, subattributes, etc.

The example in Figure 1 illustrates an image which has four basic kinds of
figures: squares, triangles, circles, and arrows. A quadruple whose first
three components are these shapes taken in the order square, triangle, circle,
and arrow will be considered to belong to the relation defined by the image if
all three shapes touch each other in a pairwise manner. 1In general, we may use
the criterion: consider any N-tuple if enough of its components interact in a
pairwise or K-wise manner. The fourth component of the quadruple is a label
which just counts the number of distinct times that the shapes its first thres
components represent occur in a related manner in the image.

In Figure 1, there are four drawings. Each drawing has two triangles, one
circle, one square, and one arrow. Using the relation idea, there are two pairs
of drawings whose arrangements are isomorphic by the identity function. The
drawings themselves, however, have their parts placed differently in absolute
position and orientation. This isomorphism becomes clear upon examination of
Figure 2 which shows the possible arrangements for the drawings. The drawings
on the left each define the relation labeled A. Hence, they are isomorphic.

The drawings on the right each define the relation labeled B. Hence, they are
isomorphic. :

Matching can mean matching in the sense of isomorphism or can mean matching
in the looser sense of similarity. In the next section, we define the general
concept of similarity in terms of relation homomorphisms and in the following
sections we continue the image matching example using the relation homomorphism
concept.

ITI. THE RELATIONAL HOMOMORPHISM PROBLEM

For an N-ary relation R < AN and a function f:A > B from set A to set B, we
i N

define the composition of R with f, Reof, as the relation R' < B where R' =
{(bl,...,bN) £ BN | there exists (al,.".,aN) in R with f(ai) = bi’ N S )
Let T < AN and S ¢ g be two N-ary relations. A function f:A = B which satisfies
Tof = S is called a relational homomorphism. Given two arbitrary N-ary relations
the relational homomorphism problem is the problem of determining all relational
homomorphisms between them. The image matching problem and the scene labeling
problem are examples of relational homomorphism problems. Automata homomor—

phisms, graph homomorphisms, and graph colorings are other examples of relational
homomorphism problems.

Let A = {w,v,0,1} and R be a ternary relation defined on the set A;
Re Ax Ax A, Suppose R is given by:



Let B = {a,b,c,d,0,1} and h:A > B be defined by:

h

Hod<d s
oo

Then Reh has the triples:

ddl
adl
da0
aal

Let S be a ternmary relation defined on the set B; S B x B x B. Suppose §
is given by the triplets: '

aal
bal
cal
da0
adl
bdl
cdl
ddl

Since Reh < 8§, h is a homomorphism from R into S. Since h is a one-one
function, S contains a copy of R. The function h is called a homomorphism.

Let f:A + B be defined by:

’P—h
|

HFoon ow
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Then Sef has the triplets:

Notice that S°f ¢ R, making f a homomorphism of § into R. Since it is the case
that Sef = R, R is a homomorphic image of S and f is said to be onto R.

Let T be the ternary relation defined on B consisting of the following
triplets:



aal
bal
ab0
bbo

Let g:A - B be defined by:

O <4 g
O o

Then Reg = T. This makes g a one-one onto homomorphism. One-one onto
homomorphisms are called isomorphisms. Two relations which are isomorphic are
exactly the same except for the name of the symbols used. To convert one rela-
tion to the other, we need just translate all symbols in the first relation
through the isomorphism and we will obtain the second relatiom.

IV. HOMOMORPHISMS FOR IMAGE MATCHING

In this section, we wish to continue the image matching problem first with
isomorphic images and then with homomorphic images. Our isomorphism example will
be more complicated here than in Section II, where it was the simple identity
function.

Our example is illustrated in Figure 3 which has four drawings. Each draw-
ing has two squares, one circle, one hexagon, and one triangle. Taking the com-
ponent order as square, hexagon, triangle, and cirecle and using the relation con-
cept, there are two pairs of drawings in Figure 3 whose corresponding relations
are isomorphic. Also the relation for each drawing in Figure 3 is isomorphic to
the relation for one.of the drawings in Figure 1.. The isomorphism, however, is
not the identity function: a square stays square, a hexagon becomes a triangle,
a triangle becomes an arrow, and a circle remains a circle,

More complicated still is the case where the correspondence between one
drawing and another is by a homomorphism which does not establish a one-one
correspondence. Such a case is illustrated in Figure 4 which depicts two draw-
ings. Taking the component order as hexagon, circle, triangle, arrow, and square
and using the name or label 1 for all triplets except the triplet (arrow, tri-
angle, square) which gets the label 2, we may use the relation concept to
establish the correspondence between one of the drawings (the one on the right)
in Figure 4 and two of the drawings in Figure 1 (the ones on the left). The cor-
respondence is a homomorphism and finding it, although easy, should begin to give
the reader some idea of the combinatorial problems involved. The drawings on the
left of Figure 4 is homomorphic to neither of the drawings in Figure 1.

The problem of finding homomorphisms is truly one of establishing the cor-
respondence using relationships. TFigure 5 shows the quadruples in the relation
for the right-hand dirawing of Figure 4 and the relation for a left-hand drawing
of Figure 1. The homomorphism between the relations appears in the central
bottom part of Figure 5.

V. HOMOMORPHISMS FOR SCENE LABELING

Suppose a scene has been divided into segments S = {sl,...,sK}. A low level

feature extractor with decision rule using gray tone, color, shape, and texture
of each segment assigns some possible description from a set of D descriptions to
each segment. This operation defines a segment-description relation F = 8 x D.



The problem with this low-level assignment is that each segment may be associated
with multiple descriptions. The desired labeling of the scene would have each
segment described unambiguously. We would, therefore, like to use some a priori
information to reduce the ambiguity. -

A similar situation arises in the line labeling problem of Waltzlé. Here,
S i1s the set of line segments found in a scene and D is a set containing labels
that can be associated with any line. The labels in D could be, for example,
convex, concave, occluding left, occluding right (see Figure 6). The segment-~
description relation F, determined from low level processes, associates with each
line in S one or more labels from D. The desired line labeling would be some
subset of F that associates each line with only one label.

One way of reducing the possibly ambiguous description a line or segment
initially has is to use constraints from a higher level world model. Such a
model can specify labeling constraints for each group of related segments or
lines. To employ such a model, related (ordered) sets of N segments or lines
must be determined. Segments can be related on the basis of their relative
spatial positions. Lines can be related on the basis of the junctions they form.
Then for each kind of relationship the model can specify a constraint which the
labels of each kind of related segments or lines must satisfy.

For instance, pairs of segments in S could be related if they mutually touch
each other. There could be different kinds of touching such as to the left, to
the right, above, below, in front of, in back of, supported by, and contained in.
Suppose L is the set of such relationship labels. Then the set of spatially
related segments or lines could be specified by the relation A =S x S x L, where
(s,t,i) € A if and only if label i describes the way segment s relates to segment
t. 1In the general case, the relationships in L can describe the way N segments
or lines are related so that the relation A is a labeled N-ary relation:

Ac gN x L.

The world model contains constraining information. For example, pairs of
segments whose relationship label is i can be constrained by the world model to
have associated with them only certain allowable deseription pairs. 1In this case
the world model is specified as a relation C <D xDxL, where (dl’dZ’i) e ¢ 4f

and only if it is legal for a pair of segments s and Sy having relation i to
have respective descriptions dl and dz. In general, the relation C is a labeled
N-ary relation, Cc DN X L which includes in it all labeled N-tuples of compatible
descriptions for an ordered set of N related segments.
To summarize the information we have available:
(1) F= S x D, the assignments of descriptions given by a low level opera-
tion; :

(2) A _g;SN x L, the labeled sets of related N-tuples of segments;
(3) g & DN x L, the N-ary relational labeling constraints specified

by the world model.

The scene labeling problem is to use F, A, and C to determine a ney labeling
relation G which contains fewer ambiguous descriptions than F and which is con-
sistent with the constraints specified by the world model.

To express this problem in terms of relation homomorphisms, extend the
relation F to the relation F', F' = (S/\L) x (DL N ), by: :



F' = {(s,d) I (s,d) e F or s=4d ¢ L}
F' has the same mapping that F does plus the addition of the identity mapping on
L. To keep F' essentially the same as F, we will assume that S, L, and D are

mutually exclusive.

Consider the relation A < sV x L as an (N+l)-ary relation on (s (U 1) since
T.
it is certainly true that A = (S kJ)L)h+l. Likewise, consider the relation
+
G e DN x L as an (N+1)-ary relation on (D(\J)L); € & U)\_}IJR 1.

Our problem is to find all functions G: (S k_)L) -+ (DKH)L) satisfying:
(L) G F!
(2) dsR 2@

Note that this discussion of scene labeling is more general than that of Rosen-

12
feld, Hummel, and Zucker ~ who consider only binary relational constraints,
VI. THE CONSISTENT LABFLING PROBLEM

In this section we formulate a general network constraint analysis problem
which we call the labeling problem. The labeling problem is a generalization of
specific problems from each of several different specialty areas. Some of these

specific problems include the subgraph isomorphism problem (Ullmanl3), the graph
homomorphism problem (Harary ), the automata homomorphism problem (Ginzbergs),
the graph coloring problem (Hararys), the relational homomorphism problem
(Haralick and KartusG), the packing problem (Deutsch3), the scene labeling
problem (Barrow and Tenenbauml), the shape matching problem (Davisz), the

15 : :
Latin square puzzle (Whitehead ), constraint satisfaction problems (Fike4),

and theorem proving (Kowalskig). The generalized problem involves a set of
units which usually represent a set of objects to be given names, a set of

labels which are the possible names for the units, and a compatibility model
containing ordered groups of units which mutually conmstrain one another and
ordered groups of unit-label pairs which are compatible. The compatibility model
is sometimes called a world model. The problem is to find a label for each unit
such that the resulting set of unit-label pairs is consistent with the con-
straints of the world model.

Before we can fully state the labeling problem, we need some caoncepts and
definitions. Let U = {1,...,M} be a set of M units and let L be a set of labels.
A function f:U + L is called a labeling of U. The labeling problem is to use the
world model to find a particular kind of labeling called a consistent labeling
for all M units in U.

The problem of labeling is that not all of the labelings are consistent
because some of the units are a priori known to mutually constrain one another.
If an N-tuple of units (ul,...,uN) are known to mutually constrain one another,

then not all labelings are permitted or legal for units (ul,...,uN). The com-

patibility model tells us which units mutually constrain one another N at a time
and which labelings are permitted or legal for those units which do constrain
one another. One way of representing this compatibility model is by a quadruple

(U,L,T,R) where T ggUN is the set of all N-tuples of units which mutually



constrain one another and the constraint relation R < (U x L)N is the set of all
2N-tuples (ul,Rl,...,uN,RN) where (21,...,2N) is a permitted or legal labeling

of units (ul,...,uN). We call T the unit constraint relation and R the unit-

label constraint relation.

A labeling f£:U + L is a consistent labeling with respect to the compatibil-
ity model (U,L,T,R) if and only if (ul,...,uN) e T implies

(ul,f(ul),...,uN,f(uN)) € R; that is, for each (ul,...,uN) € T, the labeling
(f(ul),...,f(uN)) is a permitted or legal labeling of units (ul,...,uN). When U

and L are understood, such a labeling is called a (T.R)~-consistent labeling.

The consistent labeling problem is to find all consistent labelings with respect
to the compatibility model (U,L,T,R). We denote the set of all (T,R)-consistent
labelings by Cg_j‘(T,R).

In the following theorem we prove that the relational homomorphism problem
can be expressed as a consistent labeling problem. Hence, all relational homo-
morphism-problems can be solved by solving the consistent labeling problem.

Theorem 1

The relational homomorphism problem can be expressed as a consistent
labeling problem.

Proof

Let U = {1,...,M} be a set of units, T UN, and S < LN. Define
N N

Rc (Ux L). by R = {(ul,ﬁl,...,uN,QN) e (U x 1), [ (ul,...,uN) e T and
(Ql,...,EN) e §}. Let f be a function from U to L. We will show that the
labeling f is consistent with respect to the compatibility model (U,L,T,B) i€
and only if Tef < §, ‘

Suppose f is a (T,R)~consistent labeling. Let (Rl,...,QNj € Tef. Then
there exists (ul,...,uN) e T such that Rn = f(un), n=1,...,N. But since f is
a consistent labeling, (ul,f(ul),...,uN,f(uN)) e R. Now by definition of R,
(f(ul),...,f(uN)) € S. Hence, (21,...,2N) € S and we obtain Tef < §,

Suppose Tef = 5, Let (ul,...,uN) € T. Since T°f = S and f is a function
defined everywhere on U, (f(ul),...,f(uN)) € S. Now by definition of R,
(ul,...,uN) e T and (f(ul),...,f(uN)) e S imply (ul,f(ul),...,uN,f(uN)) e R.

Hence, f is a (T,R)-consistent labeling.
VII. FINDING CONSISTENT LABELINGS

Given the compatibility model (U,L,T,R), where T ¢ UN and R < (U x L)N, the
problem is to find all labelings in the set C%B(T,R). To motivate a procedure
for doing this, we first investigate the cases where it is easy to compute it.
Then we will look for ways to operate on the model, reducing it to a set of
simpler models for which it is easier to find consistent labelings. To help us
do this, we need two additional concepts.

We define the projection wR by:

TR = {(u,2) e Ux L | for some (ul,ﬂl,...,uN,QN) e R, (u,f) = (un,ﬂn) for
some n}



And for any N-tuple (ul,...,uN) of units we define the block R(ul,...,uN) by:
: . ,
R(ul,...,uN) = {(21,...,£N) e L ] (ul,il,...,uN,RN) e R}.

Proposition 1 proves that if the relation R is a function and if
(ul,...,uN) e T implies R(ul,...,uN) # ¢, then nR is a (T,R)-consistent labeling.

Furthermore, since f ¢ (¥2(T,R) implies £ € wR, if 7R dis a function, then f = 7R.
This implies &2(T,R) is the singleton set {wR}. Hence, our simple procedure for
finding consistent labelings will depend on determining the projection mRand to
make sure that R does mot have extraneous elements: (ul,zl,...,uN,ﬂN} e R
implies (ul,...,uN) e T. '

Proposition 1

EEE T g2 UN and R < (U x L)N. Suppose mR is a function and (ul,...,uN) e T
implies R(ul,...,uN) # ¢. Then 7R is a (T,R)-consistent labeling.
Proof

Let (ul,...,uN) e T. Since R(ul,...,uN) # ¢, there exists 21,...,2N such
that (ul,zl,...,uN,EN) e R. By definition of =R, (un,ﬂn) e m™, n=1,..,,N.
Since 7R is a function, it is single-valued. Hence, Rn = wR(un), o 1N,
Now, (ul,ﬂl,...,uN,QN) € R and En = wR(un) implies (ul,ﬂR(ul),...,uN,ﬁR(un)) e R.
By definition of (T,R)-consistent labeling, TR is a (T,R)-consistent labeling.

This fact suggests a search procedure in which the set éQ(T,R) of consistent
labelings is successively partitioned by reducing R until the resultant R either
has no consistent labelings or TR is the consistent labeling. Such a search
procedure can have two components. One part can reduce an R at any stage by
removing from R those easy to find unit-label N-tuples which contribute to no
consistent labelings. We call this part the look-ahead part. Another part can
divide R into two relations such that the consistent labelings for the pair of
relations constitute a partition for the consistent labelings of the original
relation. We call this part the tree search part.

VII.1 Tree Search

The tree gearch is based on the idea that the easiest way to find the
labelings in gé(T,R), is to break that prcblem in two parts by finding an
ngg R and R, < R so that the labelings in (T,Rl) and &z(T,RZ) are easier to

find, do not duplicate one another, and exhaust the labelings in éQ(T,R).

One way of doing this is to break one of the blocks of R into two pieces
and define Rl to be R with one piece of the broken block and R2 to be R with the
other piece of the broken block. Let Gwl,...,wN) e T be given. Let {Pl,PZ} be

a partition of the block R(w ,...,WN). Define:
Ri = {(ul,ﬁl,...,uN,RN) g R [ (ul,...,uN) = (Wl,...,wN) implies
(El,...,EN) 5 Pi}, i=1 and 2.
From Proposition 2, we know that Rl’RZ < R implies OQ(T,Rl) U C\E(T,RZ) <
&21T,R). Proposition 3 (part 1) proves that the labelings in<¥2CT,Rl) and
é£1(T,R2) exhaust the labelings in &Z(T,R); hence, SEKT,Rl)\_) éﬁ?(T,Rz) =

QQQ(T,R). Furthermore, the fact that {P.,P.} is a partition of R(w.,...,w )
1’2 1 N
force5<§2(T,Rl) (ﬂ} &Q(T,RZ) = ¢ (part 2). Therefore, we obtain that



‘ {éfi(T,Rl), gzﬁT,Rz)} is a partition of EQ(T,R). Because Rl,R_ < R, we have
reduced the original problem to two smaller problems.

Proposition 2

R = § implies o2(T,R) = JXT,s).

Proof

Let f ¢ xZ(T,R). Let (ul,...,uN) e T. Since f ¢ c%Q(T,R) and
(ul,...,uN) e T, (ul,f(ul),...,uN,f(uN)) € R. But R < S. Hence,
(ul,f(ul),...,uN,f(uN)) e S. Now by definition of #E(T,S), f e C%E(T,S).

Proposition 3

Let T < A and R < (U x L)N. Let (wl,...,wN) e T. Let {Pl’P2} be a par-

tition of the block R(wl,... W,

E N)' Define:

R1 = {(ul,ﬂl,...,uN,ﬂN) e R I (ul,...,uN) = (Wl,...,WN) implies

(Rl,...,RN) £ Pi}, i=1or 2.

Then | .
@ Lew g Lrrd U Erry)
@ ey M Perry) = ¢

Proof

(1) Let f ¢ ée(T,R). Since (wl,...,wN) eTand f ¢ #Q(T,R),
(Wl,f(wl),...,wN,f(wN)) e R. By definition of R; and Ry»
(Wi’f(wl)""’wN’f(WN)) € Rl or RZ‘ Let (ul,...,uN) £ 1,

Since f ¢ (T,R), (ul,f(ul),...,uN,f(uN)) € R. Either

(ul,...,u ) = (w ...,WN) or not, If (ul,...,uN) = (w ,...,WN),

l),...,uN,f(uN)) £ R1 or R2'

If (ul,...,uN) # (Wl,...,WN), then by definition of R, and Rys

(ul,f(ul),...,uN,f(uN)) € R and (ul,...,uN) # (wl,...,wN) imply

(ul,f(ul),...,uN,f(uN)) € Rl and RZ' Hence, (ul,...,uN) e T

implies (ul,f(u ) s Uy f(u )) e R

we have by assumption either (ul,f(u

1 or (ul,...,uN) € T implies
(ul,f(u ),... f(u )) € Ry. By definition of consistent labeling,

fe %(TR)UC}E(T,R)

(2) Suppose f ¢ c;?(T R ) fﬁ\ éékT,R ). Since (w ...,WN) e T,
fe in(T R ), and f > &Q(T,R ), (wl,f(wl), s xS ,f(wN)) £ Rl and
(w l,f(w s f(w )) e R,. This implies that (f(wl),...,f(wNj) £
Pl(H\PZ. But thls is impossible, since {Pl’PZ} is a partition of

R(w ,...,WN)- Hence éQ(T R ) (n\(ﬁe(T R ) = @



VII.2 Look-Ahead

The idea behind the look—ahead is to locate any N-tuples of unit~label. pairs
in R which do not contribute to consistent labelings. Some such N-tuples are
easy to find. Others are difficult. By looking ahead for the easy ones and
removing them, we guarantee that no matter what N-tuple in T is used to divide

R into Rl and RZ’ we will not discover that the setstizﬁT,R ) and<¥l(T,R2) are

empty. This single idea can be quite powerful because the efficiency of the
tree search depends, in part, on which N-tuple in T is used to do the diyision.
At any step, choosing the "right" N-~tuple could show that (T,Rl) and €T R

are empty. Constantly choosing the "wrong" N-tuple (a situation which Mackworé§
shows leads to thrashing behavior) might mean thatdif is not until the bottom of
the tree search that we discover that (T,Rl) and (T,R,) are empty and that

we may have to rediscover that there are no consistent labelings again and again
all for the same reason: that there is some N-tuple in T such that from where
we are (near the top of the tree) there is no way it can participate in a con-
sistent.labeling. ' '

To help us define the look-ahead operator ¢, we need to define the idea of

restriction. If T ¢ UN and V< U, we define the restriction of T by V as:

TIV = {(ul,...,uN) e T | we BV, m = dy s s,NE

If R (U x L)N and V € U, we define the restriction of R by V as:
Rly = flug0,iiup,0) e R u, €V, m= 1,008

Proposition 4 proves that f, a consistent labeling with respect to (U,L,T,R),
implies flv is a consistent labeling with respect to (V,L,TIV,RIV) where V < U.

The look-ahead operator ¢ throws out of R all those N-tuples of unit-label
pairs which cannot be extended to consistent labelings through each N~tuple in
. It is defined by:
oR = {(ul,ﬂl,.,.,uN,ﬁN) e R | (wl,...,wN) e T implies that there exists

a consistent labeling f with respect to the
compatibility model (V’L’T|V’RIV) where

V = {ul,...,uN,wl,...,wN}}
Theorem 2 proves that éékT,R) = éekT,¢R) from which it follows by induction that

Yr,p) = L, o).

Proposition 4

Suppose V < U. Then f, a consistent labeling with respect to (U,L,T,R),
implies that f|V is a consistent labeling with respect to (V,L,T[V,R]V).

Proof

Suppose V< U and f is a consistent labeling with respect to (U,L,T,R). Let
(vl,...,vN) £ TIV. Certainly (Vl""’VN) € T. Since f is a consistent labeling
with respect to (U,L,T,R), (vl,f(vl),...,vN,f(vN)) e R. But (Vl,...,vN) > TIV
implies v, € V, n=1,...,N, Hence (vl,f(vl,...,uN,f(uN)) > R[v and



£(v) = £[y(v)), n = 1,...,N. Therefore, (vl,fjv(vl),...,vN,f]V(vn)) e R|,.

Theorem 2

Lr,ry = £(1,4m).
Proof

By definition of ¢R, ¢R = R. By Proposition 2, R = R implies
LT, R) = JAT,R).

Suppose f ¢ é{i(T,R). Let (ul,...,uN) e T. Then (ul,f(ul),...,uN,f(uN)) €
R since f ¢ é{i(T,R). We need to show that (ul,f(ul),...,uN,f(uN)) g ¢R. So
let (wl,...,wN) € T. Define V = {ul,...,uN,wl,...,wN}. By Proposition 4, f is

a consistent labeling with respect to the compatibility model (U,L,T,R) implies
that f|V is a consistent labeling with respect to (V,L,T|V,R[v). Thus, by defini-

tion of ¢, (ul,flv(ul),...,uN,fIv(uN)) e ¢R. Since u eV, n = 1,...,N,
f|v(un) = f(un). Hence, (ul’f(ul)""’uN’f(uN>) € 9R. Then by definition of
Fr,er), £ e L£(T,6R).

To help make this discussion concrete, we give the example of Figure 7
which shows a tree search from beginning to end. The compatibility model con-
sists of the unit set U = {1,2,3,4,5}, label set I, = {a,b}, unit constraint
relation T = {(1,3), (1,4), (2,3), (3,4), (4,5)}, and unit-label constraint
relation R = {(1,a,3,a), (1,a,3,b), (1,a,4,a), (1,a,4,b), (2,a,3,a), {2:8;3.0],
- (3,a,4,b), (3,b,4,a), (4,a,5,a), (4,b,5,b)}. TFor this R, ¢R = R so that the
look-ahead does not help at the top of the tree. The tree consists of one
division using the block R(1,3) = {(a,a), (a,b)}. This division forms the
relations Rl and RZ' After applying two iterations of the look-ahead operator

. . 2 2
to Rl and R2, we reach a fixed point and the projections w¢ Rl-and T R2

consistent labelings.
VITI. LOOK-AHEAD OPERATORS

14 1T .. 10 6 ]
Waltz , Montanmari , Mackworth » and Haralick and Kartus all give
examples of some look-ahead operators. In this section we describe a look-ahead
operator of the basic type and power used by the above researchers. Haralick

7
and Shapiro has a detailed discussion of this kind of 2 parameter look-ahead
operator. It is defined by:

¢KPR = {(ulle""’uN’gN) e R | for every combination jl""’jK
] T 2
of 1,...,N and for every uK+1,...,up e U

2 1] 1
there exists RK+1""’lp e L such that f
defined by f(ujk) = gjk’ k=1,...,K and
f(u') = 2', = Ktlyw.. ;P

(up) 5’ P 5

is a (T,R)-consistent labeling}
Figure 8 shows a tree search employing this look-ahead operator. Notice that it

requires one more iteration to reach a fixed point. For binary compatibility
models, ¢23 operator will be weaker than the ¢ operator of the previous section.



IX. COMPLEXITY ANALYSIS

Each iteration of ¢ requires checking each N-tuple of R to see if it can be
extended to a consistent labeling. Thus, each N-tuple of R must be extended by

each N-tuple of T. Then a brute force procedure would generate at most #LN
labelings to be checked. At most, each such check requires determining whether
for each N~tuple in T, the corresponding N-tuple of unit-label pairs is in R.

Therefore, each iteration of ¢ requires at most #R #T #LN #T operations.

The greatest number of nodes in any branch can be log2 #R. This represents

the most number of times ¢ reaches a fixed point down a branch. In additien,
there cannot be a combined total of any more than #R more iterations in the
branch, since each iteration of ¢ not reaching a fixed point takes at least omne
N-tuple of unit-label pairs out of R. Hence, the number of iterations in any
branch is at most (log2 #R + #R).

We define the complexity, o, of a consistent labeling problem to the ratio
of the number of branches the tree search has divided by the number of consis-
tent labelings. Hence, the total number of operations is:

all + # (T, R)] 4R + log, #R] #R #T #LN 41

Of course, the NP-completeness of the problem implies that in the worst case we
expect a to be exponential in the number of units. However, practical problems
seem to have parameter values for o which must be low-order polynomials in num-
ber of units. This behavior in practice is similar to the behavior of other

algorithms that solwve NP-complete problems. For example, the simplex algorithm
for linear programming hardly ever exhibits the worst case behavior in practice.

X. CONCLUSION

In this paper we have illustrated how a segmented scene can be translated
into a relational structure and how scene matching can be accomplished by
finding homomorphisms from one relation to another.

We have described the consistent labeling problem and shown how solving it
solves the homomorphism problem. Finally, we described a procedure involving
tree search and look-ahead operators for solving the consistent labeling problem.
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(a)

(a) (b)

(c% | ; %

Figure 1 illustrates four drawings, each of which has two triangles, one square,

one circle, and one arrow. Using the relation idea, there are 2 pairs
of drawings whose arrangements are isomorphic.

Relation A Relation B

Oat) (oaf.
(201 (Oaf .

(2 O1:) (OAO

Figure 2 illustrates the quadruples for the relations defined by the drawings -
of Figure 1. The two drawings on the left in Figure 1 define Relation
A. The two drawings on the right in Figure 1 define Relation B. The
quadruple ([7],A,+,2) means that the drawing has a piece that consists
of a square, triangle, and arrow pairwise touching each other and the
label two designates that this is the second such piece in the drawing.




Figure 3 illustrates four drawings each of which has two squares, one circle,
one hexagon, and one triangle. Using the relation concept, there
are 2 pairs of drawings whose relations are isomorphic. The relations
defined by each drawing here is isomorphic to the relations defined

by one of the drawings in Figure 1.

Figure 4 illustrates two drawings. Using the relation concept, labels of 1 or
2 can be assigned to each triplet of related shapes to make one of the

drawings in Figure 1 a homomorphic image of one of these drawings.



Relation for Right-Hand Relation for Left-Hand
Drawing of Figure 4 Drawing for Figure 1 -

O=0<()
L I=0d

Homomorphism

Figure 5 illustrates the relation defined by one of the drawings in Figure 4

and the relation defined by one of the drawings in Figure 1.

Below
the relation is the homomorphism.



Occluding
Right Edge

Occluding
Right Edge

Key: + convex edge

- concave edge.
+  boundary edge with the face of the

object to the right of the arrow

Figure 6 illustrates four possible labels for the edges of an object with
trihedral vertices. '



13 14 45
aa ab aa
ab aa bb

aa ab
ab ba

Divide (1,3)

13 14 45 13 14 45
aa ab aa ab aa aa
aa bb ab bb
23 34 23 34
aa ab aa ab
ab ba ab ba
$5R; %23%y
13 14 45 ) 13 14 45
aa aa aa . ab aa aa
ab bb ab bb
23 34 23 34
aa ab ab ab
ba ba
2 2
%238y 29381
13 14 45 _ 13 14 45
aa aa aa ab aa aa
ab bb . ab bb
23 34 ' 23 34
aa ab ab ba
3 3
o4 aaR
13 14 45 13 14 45
aa ab bb aa aa aa
23 34 . 23 34
aa ab aa ba

Figure 8 illustrates a simple tree search using the ¢23 operator on the

relations R and T from Figure 7.



