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ABSTRACT

The purpose of the article is to
establish the relationship between Rigid
Body Motion and the Optic Flow Image and
solve motion parameters from optic flow.
An essential equation relating optic flow
to rigid body motion which only involves in
rotation and translation velocities as well
as optic flow is established. A sufficient
condition under which mode of motion,
rotation velocity, translation velocity
orientation, and relative depth (or surface
structure) can be uniquely determined by
optic flow is set up. A unified and stable
scheme is proposed to compute motion
parameters and other related information by
using a variation of the essential equation
no matter whether or not the motion is a
pure rotation. The relationship between
rigid body motion and optic flow is cleared

up:

Rigid Body Motion = Optic Flow + One
Spatial Point Motion
I. INTRODUCTION

The purpose of the article is
establish the relationship between rigid

body motion and its corresponding optic

flow perspective projections and solve
motion parameters from optic flow. The
optic flow perspective projection is

contained in the optic flow image which for

each pixel (X,Y) contains the projected
motion (u,v).
In the article a basic and

essential equation relating the optic flow

image {[X,Y),(u,v)]} and the rigid body
motion (2, k) with Q being the
instantaneous rotation angular velocity and
k being the instantaneous translation

velocity is established (see section 2).
The equation is as follows:

(%) X X X
[u, v, ol (k x |Y|) = (k x|Y y' (e x|y
1 1 1
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or

u X X
vi]i-Q x|Y ,1YYl, k =0
o 1 1

which is a nonlinear equation for (2, k).

It is proved (see section 1III) that
under a certain condition the general
solution of the nonlinear equation (*) is
(R, k*) with k* ¢ k when k# 0 or k*¥ an
arbitrary vector when k = 0. Moreover, the
nonlinear equation (*) is equivalent to the
following linear egquation

(¥¥)

(! B'"B)h=0
[(X,Y), (u,v)]
_ 2 2
where B = [X", Y%, 1, XY, X, Y, v,
The relationship between two general
solutions of equations (*) and (**) can be
described by

h *
h7 k1
ne |=|x;
I
h9 .
3
and
hl 1 0 -u, -w
h2 —uy 0 -ug
*
h3 = “uwy “uy 0 kl
*
h4 vy wy [0) kz
*
zz wq (o} vy k3
[0} W W
3 2
A B ]
The relation is invertible if h#0 or
equivalently

-u, uY¥-vXl].



h7
hB z 0
hg
Concerning equation (**) itself, there
holds
Rank ( £ B' B ) = 8 iff k#O0
[(X,Y), (u,v)]
or ‘ »
Rank (£ B' B ) =6 iff k=0

[(X,Y), (u,v)]

It is also proved (see section III) that
under certain conditions Q, mode of motion
(i.e, if it is a pure rotation or not),

j&%r- (if k # 0) and the so-called

relative depth, i.e. the surface structure,
(if k #0) can all be uniquely determined by
the optic flow image.

In section IV, it is proved that the
rigid body motion = the optic flow image +
One spatial point motion.

In section V, a related algorithm and
experimental results are given.

Section VI is a summary. The topic
"Rigid Body Motion and Optic Flow" is a
basic concern in the computer vision
circles. Many important results have been
obtained (see References). However, the
article has something new. We develop an
essential optic flow equation which does

not involve: the depth information
‘Uniqueness of motion mode (whether pure
‘rotation or not), rotational velocity,

translation orientation and relative depth
(when translation velocity k # 0) from the
optic flow are all proved under certain
conditions. A unified scheme which is
equivalent to solving the smallest
eigenvalue-vectongof a nonnegative 9 x 9
matrix [(X,Y), (u,v)] (by using, for

instance, the Singular Value Decomposition
stable computational scheme) is set up no
matter whether or not the motion is a pure
rotation. The goal to clear up the
relationship between rigid body motion and
optic flow is achieved:

Rigid Body Motion = Optic Flow + One
Spatial Point Motion which means that given
optic flow and one spatial point motion the
rigid body motion is uniquely determined.

II. Basic Relation Between Rigid Body
Motion and Optic Flow Image

Suppose a rigid body is in motion in the
half space {z < 0}. The motion can be
uniquely represented by a translation
vector To(t) and a rotation matrix Ro(t)
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(i.e. an orthonormal matrix of the first
1
kind RORo = I3, det(Ro) = 1) as follows:
P(t) = R (t)P(0) + T _(t) (1)
where P(t) represents the position vector

of object point at the time t.

Let (X(t), Y(t)) be central projective
coordinates of P(t) visible from the origin
0 onto the plane z = +1. Let (u(t), v(t))
represent the instantaneous velocity of
(X(t), ¥(t)). Thus, {[(X(t), Y(t)), (u(t),
v(t))]} represents a frame of the optic
flow image.

What kind of relations exists between
the optic flow image and the motion
parameters TO,RO? It can be wunderstood

that the problem has the basic importance.
Before answering the problem, we need to

establish a descriptive form of
instantaneous motion. We can proceed as
follows:

P(t+At) = R (t+At)P(0) + T_(t+at) (by(1))

(2)
R(t,At)P(t) + T(t,At) (from t

P(t+At) =
to t + At, it is assumed that the rigid
body motion is specified by
T(t,At),R(t,At)) (3)

It is obvious that

1 0 O
R(t,0) =I3= |0 1 0
0O 0 1
4)
T(t,0) = 0O

Thus, there are a matrix S(t) and a vector
k(t) so that

R(t,At) = I + S(t)at

(5)

T(t,At) = k(t)At
Replacing P(t) in (3) by P(t) = Ro(t)P(o) +
To(t), it follows

P(t+At) = R(t,At)R_(t)P(0) + T(t,At)

(0)

Since P(o) can be any point on the rigid
body, it follows in comparison with (2)

R (t+at) = R(t,At)R_(t) (7)
T (t+At) = T(t,At) + R(t,At)T_(t)

* R(t,At)T_(t)

or

Ro(t+At)R;(t)
To(t+at) - R(t,at)T_(t) (8)

R(t,At)
T(t,At)

= To(t+At) - Ro(t+At)R;(t)T°(t)



Thus, noticing (5), it follows

R (t+At)R'(t) = I, + S(t)at (9
(o] (o] _ At
T, (t+At) - R_(t+At)R_(E)T_(t) = k(t)

or

Ry (t+At) - R_(t)

S(t) &= —=mmmmm oo R (t)
At (10)
To(t+At) - To(t)
R(t) & —m—mmmmmmmmm e - S(t)T_(t)
At
As a result,
1 o !
- - t
S() = R (B)R () = -R (£)R (%) (t1)
k(t) = To(t) - S(t)To(t)
! . .
Notice that S (t) = -S(t). From (5), it is
clear that S(t) represents the
instantaneous rotation velocity and k(t)
represents the instantaneous translation
velocity. We let
o] —m3(t) wz(t)
S(t) = [wy(t) 0 -~y (8) | (42)
-wz(t) wl(t) 0
wy(t)
and Q(t) = uz(t) From (3) and (5), we have
wy(t)

P(t+At) = (I +S(t)At)P(t) + k(t)at (13)

and hence

!
P(t) = S(t)P(t) + k(t) (13)
1d b rified that
' Cog(t)P?t¥e= Q(t) x P(t) (14)
Therefore,
P(t) = Q(t) x P(t) + k(t) (15)

which is the ordinary instantaneous motion

t
Lemma l. Ro(t) = exp(f S(t)dr)
’ (16)
t t
= S(§)dg)k(t)dr
To(t) f exp(;r
o)

Proof. We can rewrite (11) as follows

ho(t) - S(t)R (t) = 0

17)

To(t) - S(E)T_(t) - k(t) =0
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From (1), we have the following initial

I

Ro(0) = 13

(18)

TO(O) 0

It is classical in the theory of ordinary
differential equations that Ro(t) and To(t)

are uniquely determined by (16). 0
Lemma 1 and (11) indicate that two
descriptions (TO,RO) and (k,S) of rigid

body motion are equivalent to each other.
Thus, exploring the relationship between
the optic flow image {([(X,Y),(u,v)1} and
the motion (To’Ro) is equivalent to

exploring the one between the optic flow
image and the same motion (k,S). It is
worth noting that k(t)#To(t) in general. A

interesting fact which seems to conflict
the superficial intuition.
From (13)' it follows
x(t)
y(t)
z(t)

Pe) = &

X(t)

Y{t) [}
1

)] [u(t)]
+ z(t) | v(t)
0

X(t
z(t)|Y(t)
1

d

ac (z(v)

X(t)
z(t) S(t) | Y(t)]| + k(t)
1

X(t)
Z(8)t)x [Y(t)| + k(t) (19)
1

Thus

u(t) X(t)

vt)| - e(t)x |v(e)|!
0 1

z (%) ‘
X(t)

v 2t) | Y(5)|= k(t) (20)
1

The equality (19) implies necessarily

u X X
vi-x | Y], Y], k =0 (21)
0 1 1



X X X
[u,v,0] (kx Y ) = <kx Y ) (Qx Y )(22)
1 1 1

which is the basic relation between the
optic flow and the Mmotion parameters k,s.

III. From Optic Image to the Rotation ,
the Translation Orientation k/Ik)
when kFO and the Relative Depth (i.e.
Surface Structure) when kx0

We have established a basic equgtion
which the motion parameters k,Q satisfy.

* k.
How about uniqueness? Suppose (k ,2 ) is a
solution of (22). That is

e v f) b g o)

* *
What 1is the relationship between (k ,Q)

and the motion parameters (k,Q)? From
(20), we have
u X X
z|v| = zox |Y| -2z || +k (4)
0 1 1

which is the equation the true motion para-
meters (k,Q) have to satisfy with.
Replacing [u,v,0] in (23) by (24), it follows

(2xP) ' (k xP) —-%—P' (x"xP) + k' (k' xP)

* *
= (k xP)' (2 xp)
[(2xP)' - (2°xP)'](k xP) + k' (kK xP) = O

[(e-2")xP]" (k*xP) + k' (X'xP) = 0 (25)

0 k() k,(t)
Let K(t) = k3(t) 0 -kl(t) .
SRy (€)X (t) o}
* *
0 “ka(t) k()
* _ * *
K (t) =} ky(t) 0 -k, (t)
* *
“ky(t)  kq(t) 0
* * *
‘ml(t) .0 —ug(t)  wy(t)
* * * * *
2(t) =luy(t)}, s (t) = wsy(t) 0 -uy ()
* * *
ws(t) -wz(t) ul(t) 0

and remember
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w,(t) —ug(t) u,(t)
Q(t) = u(t) . S(t) = wy(t) o] -u, ()
uy(t) “uy(€) g (t) 0
We can rewrite (25) as follows
*
[(S-S)P]' K'P + k' K'P = 0
or
*
P'(S"-S)K'P + K'K'P = 0 (2b)
Lemma 2. Assume that the part on the rigid

body producing the optic flow image can not

be contained in a quadratic surface

* *
containing the origin O. Then, (k ,Q ) is
a solution of (22) iff

*
k'K =0
and (27)
* * * *
(8 -S)K + K (S -5) =0
From the previous reasoning, it is
is a solution of (22)

Proof.
* *
clear that (k ,Q )

* *
iff (k ,Q ) satisfies (26) with (k,Q) being
the genuine motion parameters. Under the

assumption of lemma, (k*, Q*) satisfies
(26) for all points P's which produce optic
flow image iff the coefficients of both the
first term and the second term in (26)
should be zero. That means

% .
k' K =0
and
* * & *
(S -S)K + [(S -S)K ]'= 0
the latter leads to (27). a]

* *
Lemma 3. k' K =0 iff k = ok with o any

. *
real number when k#0 or any vector (K any
skew-symmetric matrix) when k=0.

*
Proof. Since k' K = (k
conclusion is immediate. o

*
X k), the

(26) holds iff K = 0 or K* # 0

Lemma 4.
and S* = S.
Proof. (26) holds iff (S -S)K' is skew-
svmmetric.
0 ~ug vy
*
Let S -5 = ugy 0 muq |- Then
-u, wy o]
* * * *
) . wg k3-w2k2 uzkl u3k1
S -S)K= * _ *_ * *
( %) ulkZ w3k3 ;%kl w3t£ .
uyky k3 upkaTey
Thus

* *
(S -S)K is skew-symmetric iff




*
w3k3 + w2k2 = w3k3 + wlkl = w2k2 + wlkl i 0
128)
* * _ k* * _ * * _
wky *ougky = ugky +ougky = wpky *ougky ‘(28)
It is easy to see that (28) is equivalent to
* * *
wi k) = wyk, = ugky = 0 (30)
Suppose k;#O. Then, (30) implies w1=0

and the first two equalities in (29) lead
to wy T Wy = 0. Similar treatment applied

to k.
° %

* * *

(S -S)K is skew-symmetric iff K
*

# 0 and S -S = 0.

. *
¥# 0 or ki ¥ 0. Therefore,

*
0 or K

o

Theorem 1. Under the same assumption as
Lemma 2, the basic equation (22) has the
general solution (uk,S) (e any real number)

*
when k # O or (k*,S) (k* any real vector)
when k = 0.

Proof. Lemma 2-4 imply Theorem 1. ©O

Rewrite (22) as follows:

X X
[u,v,0] K | Y|= [X,Y,1] KS |Y (31)
1 1
* *
Suppose K , L satisfy
X X
*
u,v,0] K [¥| = (x,v,11 v'|y| @32
1 1
for all optic flow image points
{[(X,Y),(u,v)]}. What is the relationship
between the motion (K,S) (i.e. (k,Q)) and
* *
(K, L )? Similar to the previous
arguments, it is clear that (32) holds iff
k! K* =0 (33)
and
1 \
et =sk + ks (34,

when the assumption in the Lemma 2 holds.
Theorem 2. Under the same assumption as

* *
Lemma 2, given a solution (K , L ) of the
*
equation (32) with K # O, the rotation §
* *
is uniquely determined by (K , L ) and the

*
translation k is parallel to k .
Proof. Under the assumptions of Theorem 2,

the relations (33) and (34) hold. (33)
implies that the translation k is parallel
to k* (here hence K* must be skew-
symmetric). (34) is equivalent to
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* *
—2(w3k3 + wzkz)
*

-2(w3k; +ugk)) = (35)

*
+ wlkl)

*
-2(uw,k,

*

*

12
e
13

*

1z *

It is easy to see that (35) is equivalent to

+

kl wy 1
; wa 1 (36)

*
2
*
1
* k*_
wyky +ougky =

11 7 122 7 133
*
wlkl = mmmmmmmmmmmmmmmm
2
* * *
12 = 111 7 133
*
wzkz = ======s==ssssm—SSsmass— (37)
2
* * *
33 = 113~ 122
* —
w3k3 R e
2
*
If ky # 0, then
* * *
117 = 12 7 133
Wy = mmmmmmmmmsmmoommses (38)
2k,
1
From (36) we obtain
* * *
1o+ 1y~ uiky
(0)2 m e m e ——————————
k*
! (39)
* * k*
i3 * 131 7 ¥k;
w3 TE e e e o n e e o e
k*
1

*
Furthermore, if k, £ 0, we also can use
the following formula to compute vy

(40)

which must in agreement with (39) since the
rotation S exists objectively, satisfies
(34), and both (34) and (40) uniquely
determine W, o



Because of Theorem 2, we attempt to
solve the following equation (41) instead

% *
of (22) for (k ,L')

-

*
o -ky Kk ][x
* *
[u,v,0]] Ky 0 X || Y |=
ks ok o || 1
2 1 J (41)
* * *
(1, 155 153
1] 1* 1* lf Y
(x.v, 21 22 123
DR B S | B
31 lzz 133
Expanding and rearranging (41) leads to
+* -
[ 1,
*
1,
1*
33
(x2,¥2,1,xY,X,Y,v,-u,u¥-vx] [15.+1% | =0
’ ’ ’ ’ ’ . , ’ 12 21
1* +1*
13*13;
2o @)
1y3*13;
kf
1
k*
2
k*
L 3 -
Let
B = [x2, Y%, 1, XY, X, Y, v, -u, u¥-vX],
(43)
-, -
LE%
1*
22
1*
33
* *
12*121
* +*
h =[1,+1,, (44)
* *
23*132
k*
1
k*
2
%
L 3 .
It is obvious that
{f B" B})h =0 (45)
[(X,Y), (u,v)]
Let
W= 1 B'B 46)

XY, (0, v) ]
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It is clear that W > 0 and h is an
eigenvector corresponding to the smallest
eigenvalue (i.e. zero) of W.

From (35) and (36) it is 'clear that
* %*

L. * * *
within 111, 122, 133, 112+121,

* * * * .
113+131, 123+132, each one 1is' a

* *
linear homogeneous function of kl, k2,

*
k3. Thus, relating to Theorem 1, it
follows

Theorem 3. The general solution h of (45)
is one-parameter iff  k#O, is  three-
parameter iff k = 0. And
Rank (W) = 8 iff k#0 @m
Rank (W) 6 iff k=0 48)

i

Theorem 4. k=0 iff for two optic flow
image points {[(Xi,Yi),(ui,Vi)] i=1,2}

there holds

Y2 ug
+ = , i=1,2
X ce
i Y ¥y Vi Y3 W, (49)
1 Xi
Proof.
. | X u X
From 2 [Y| + z|v]=zax|v |+ Kk,
1 (o}
it follows
. “1 Y2
Z=z + k3 (50)
X Y
and
Uy upl|X X u
z | + k3 + z =
X v||ly Y v
,"2 Y3 ky
Y 1
z +
(03 ul k2
1 X
(51)

‘Noticing 2z < 0, it is clear that k =0 if
and only if for two optic flow image points
{[Xi,Yi),(ui,vi)] i=1,2) it holds

) ”3'
ul wz Xi u1 Yi 1
+ = , i= 1,2.
X, v l|y, vy lw3 > 52)
1 X,
o 1



Keep the same assumptions of
* .
Lemma 2. Assume that (k ,Q) is a solution
* . .
of (23) with k + 0 and [?] is linear

Theorem 5.

independent with k*
1
k*
2
Then, the following equation (53) has a
solution for a iff k # O.
0)1 Uz X X u
*
a + k3 + a N
X Y Y Y v
F‘”z Y3
1 K
1
= a + (53)
*
vy vy kz
1 X
L i

Moreover, when (53) is solvable for a, the
solution is unique and

*
k

Ih* |

*
k # 0 implies k = Bk with
Thus, o

k
--- = =-sign(a)

k|

(54)

Proof. (If)
some real number p by Theorem 1.
zf will be a solution of (53).
(only if)  Suppose that @ is G solution of (53)
k = 0.

and
In this case, applying (52), it follows

(55)
*
Y k2 |
which contradicts the assumption that [
%
K

[é]are linear independent.
4

X

Y] and

Concerning the latter part of Theorem 5,
we point out that the existence of two
solutions, ey and s would lead to

X kl
*
(al-a2)k, = (o;-9,) (56)
*
Y kz
a contradictione.
Using k* = gk and o« = zB, it is obvious
that * . ©
———= = sign (B) --- - siom (&) ;oo
* el
™I Il x|l

(i =1,
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since z < O.

corollary. If k=0 and [

o

Xi
Y

)

*
2) is linear independent with k ,

ai = zi B( i= 1, 2
As a result
O (s7)
Z2 Ctz
Theorem 6., Assume k#0. Then, except at
most one image point, the relative depth
2 . _ 1 . b (5)
Ticfl k11 fFa
where ) " ,
aﬁlwlwz X +[1}]_Uw2w3 wgwl] 9)
Xyl MERARD

L1
bz[kl]_ k"‘[XJ (60)
*

ki)™ 3|Y
Proof. k#0 implies k*=k and also a#0
except for at most one image point by
Theorem 4. The equationda=b has a
solution & =2 as clear by the argument
in Theorem 5. Thus, except for at most

one image point, the following equality
holds:

"b“ =|z|°i ] = Z' o "k*"
Tar P | 3
or
\zl  _ (N
k] T nal
Noticing z< 0, it follows
z bl
TR “T-Tal . o
Theorem 7. Assume k#0. Then,
k = + sl holds if and only if
FkT = TR
there are three optic flow image points
so that
a |Ibpl + b lall =0 (61)
Proof. k#0 implies
k‘k: k
and p
(z }3 ) a=b

Thus, the fact that k has the samre
orientation as + k* implies that a has
the same orientation as +b since z is
always negative. Thus,

i = * iy implies  (61)

then



Conversely, assume that there are
three optic flow image points., Since a
is not zero except for at most one image
point by Theorem 4 and b is not zero
except for at most one image point as
easily seen from (60). Thus, there is
at least one within the three points such
that both a and b are not zero. In that
case, the equality (61) for that point
implies

TR T F e
where "-" implies p) 0 and hence
—"E—“— = "—“—E;:—"—- and '"+" implies P< 0
and hence k * o
Mk (R
Remark. For the case of k being nonzero,

at least eight image points are needed
since Rank (L A'A)=8., As a result,
there are at least six image points
where both a and b are not zero,

IV. Rigid Body Motion = Optic Flow Image +
One Spatial Point Motion

Suppose k; ‘= 0 (for instance, when t>1)
Then, from (50) it follows
Y1 92
2z =z (t 2 1)
X Y
and
tfug(§) wy(E)
z(t) = z(1) exp([ X(E) Y(§) dag)
T (62)
That is, the absolute depth z(t) can. be
uniquely determined given the absolute
depth z(1) at the time 1. By the way,
X(t)
POY) =z(t) | ¥(t)[ and B(t) =
1
©(E)  w,(t)
z(t)
X(t)  v(t)
X(t) u(t)

Y(t)] + z(t)
1

Thus, k = P(t)-Q(t) X P(t) is uniguely
determined.’ '

In general, we have
Theorem 8. The rigid body motion (k,Q) =
the optic flow image + one spatial point
motion.

Proof. The . optic flow image uniquely
determines the rotation Q(t). The rotation
Q(t) .plus one spatial pont motion
{P(t),P(t)} uniquely determines the

translation by

v(t)| are uniguely determined.
e
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k(t) = P(t) - Q(t) x P(t)
a

Example 1. Q = 0. Then (25) reduces to

[ x
[u,v,0] (k x|Y|) =0 (63)
1
or equivalently,
k k
2 3
lu,vlfly 11{[=o0 (64)
k3 kl
1 X

or still equivalently,

ulky-k3¥] + vikgX-k,] = 0 (65)

Lemma 5. Assume Q = Q. Then k = 0 iff u =
O, v = 0 for all optic flow image points.

Proof. k = 0 iff any vector k* satisfies

(6b)

Also

* % * *
u[k2-k3Y] + V[k3X—kl] =0

by Theorem 1 and hence
see Theorem 4. o

u=20, v = 0.

*
Suppose ko is the ° solution of

minimization problem

min I [u '(k;-k;Y) + 'V(k;_X’—kI)Jz (67)

=1

and 25 is the solution of following equation
*

) Yo ko1
. ,
kog | |+ ap | |- (68)
- %
Yo Yo ko2
)
for some linear independent with
Yo

*
01 Then, k = 0 and E—-= - sign(a,) —k*‘
T o) RgT]

* by Theorem 5.

k

*
02
If the absolute depth Zg at(X ,Yo>is known,

then the absolute depth z at
point (X,Y) is given by

k
any image

(69)

z =_0_
3 zO




u
where a is the solution of k;s + a =
* Y v
ko1
k*
02
Example 2. k = 0. Then, there is a unique
Q such that for the optic flow image
wy Wg
wy vy X u Y 1
+ = ("Io)
X Y
Y v vz wy
1 X
and hence (see (50))
Z w w
1 2
— = (m
z X Y
We can demonstrate that, in the case of k =
0, it is impossible to determine the

relative depth from the optic flow image
without any other information.

We have proved (see Reference) that the
rigid body motion is uniquely determined by
the optic flow image plus depth information
of four uncoplanar spatial points. Due to
Theorem 5, the conditions can be reduced to
the optic flow image plus depth information
of one spatial point.

The reason is simple since depth
information of one spatial point plus the
optic flow image determines uniquely the
motion of the spatial point.

V. Algorithm, Simulation Results,
Step 1. Compute h: Wh=0 (1 nll =1)
Step 2. Let k¥*= [h7,hg,h9]'
step 3. TIflkf| Y |k§| ,|k§| , then
h,-h,-h
{(0 _ o thethy
1 2k{
0. - hyW5W,
2 k{
W = hg-k¥ 4 s go to step 6}
3 kf
step 4. If|ky| 2 |k§| , then
~ hz-hl-h3
{wz'“
2
h, -k% (0
wi _ 4 32 ,
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kX
h6 k3(‘)2 ; g0 to step 6}

3
Step 5. Let
h,-h,-h
{co - 31772
3 ——_Zﬁg'—___—
he-k¥ @
(Dl _ 5 173 ,
h,-k% (U,
0, = — 3 Wy ;
ES
Step 6. Out:pth = [wly wz’ (.03] !
Step 7. If there are two optic flow

image points such that the corresponding
a's are zero, then

¢ output k=0
stop
If there is an image point

Step 8.
such that

fla nbl +b nanf<lla Wol +b fapl
then

{ output k=

M !

k
TET *
stop

Simulation Results

To verify that the theory works, we
generate optic flow images of an ellipsoid
in motion, and apply the algorithm to the
optic flow image obtained to recover the
motion parameters and relative depth of
the ellipsoid.

First, we compute velocity at surface
points of the ellipsoid moving with
k=[1, 1, 11"' and{l=C0, 0,.5]" in
the half space z< 0 and project the
velocity on the image plane at z=1 to
obtain the ideal optic flow image as in
Fig. 1. Applying the algorithm on the
optic flow image obtained, we recover the
motion parameters as

[0.5773502, 0.5773503, 0.5773503]"
[-6.7 * 1078, -3.4 * 1078, 0.5000000] "

K*

Q

and obtain the relative depth image in
Fig. 2 whose ideal depth image is in
Fig. 3.

VI. Summary

Given an optic flow image coming from
a part on the rigid body which can not
be contained in a quadratic surface
passing through the origin, then the mode
of motion, the rotation velocity, the



translation orientation and the relative
depth all can be uniquely determined

by solving a smallest eigen value-vector
problem of 9x9 nonnegative matrix.

When k=0, at least six image points are
needed and when k#0, at least eight image
points are needed to recover the motion,
With the aid of one spatial point motion,
the rigid body motion in uniquely deter-
mined.

In the forthcoming paper, the problem
of rigid body motion and the optic flow
under a small perturbation is considered
and solved.

Fig. 1 ﬁg'z
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ABSTRACT

Gradient-based methods offer a promising
approach for the estimation of optical flow. A major
problem with gradient-based methods is that large
errors can be made where the image is highly textured
and at discontinuities in optical flow. Methods which
operate globally can propagate these errors across the
image, totally disrupting the estimation process. We
examine how the introduction confidence measurements
-- judgements of the accuracy of flow estimates -- can be
used to locate poor estimates are prevent their propaga-
tion.

1. Introduction.

The velocity field that represents the motion of object points
across an image is called the optical flow field. Optical flow results
from relative motion between a camera and objects in the scene.
One class of techniques for the estimation of optical flow utilizes a
relationship between the motion of surfaces and the derivatives of
image brightness [2, 3,4, 7,8, 10,12, 13, 14, 15].  The major
difficulty with gradient-based methods is their sensitivity to condi-
tions commonly encountered in real imagery. Highly textured
regions, motion boundaries, and depth discontinuities can all be
troublesome for gradient-based methods. Fortunately, the areas
characterized by these difficult conditions are usually small and
localized.

The estimation errors caused by these conditions are espe-
cially problematic for methods that operate globally [4, 14]. Even
though the error prone regions are sparsely distributed, the global
method can propagate estimation errors made in the areas
throughout the image. In this paper we examine how estimates of
the accuracy of optical flow computations can be used to prevent
error propagation.

2. The Gradient Constraint Equation.

The gradient constraint equation relates velocity on the image
(u,v) and the image brightness function I(z,y,t). The common
assumption of gradient-based techniques is that the observed
brightness (intensity on the image plane) of any object point is con-
stant over time. Consequently, any change in intensity at a point
on the image must be due to motion. Relative motion between an
object and a camera will cause the position of a point on the image
located at (z,y) at time ¢ to change position on the image over a
time interval ¢ . By the constant brightness assumption, the inten-
sity of the object point will be the same in images sampled at times

This work was supported by the Alr Force Office of Scientific Research contract
F40620-83-0140.

CH2107-1/84/0000/0376$01.00 © 1984 IEEE

t and t+6t. The constant brightness assumption can be formally
stated as

I(z,y,t) = I(z+6z,y+0y,t+6t). (1)

Expanding the image brightness function in a Taylor’s series
around the point (z ,y ,t) we obtain
I(z +6z,y+6y,t+6t) = (2)
ol 24 al
I(z,y,t)+ —6x + — 6y + — 6t + h.o.t.
SR A i T

A series of simple operations leads to the gradiént constraint equa-
tion:

=Lu+ILwv +It' ) (3)
where
al 2 24
L= b=% " =%

A detailed derivation is given in [4].

3. Gradient-Based Algorithms.

The gradient constraint equation does not by itself provide a
means for calculating optical flow. The equation only constrains
the values of ¥ and v to lie on a line when plotted in flow coordi-
nates.

The gradient constraint is usually coupled with an assumption
that nearby points move in a like manner to arrive at algorithms
which solve for optical flow. Groups of constraint equations are
used to collectively constrain the optical flow at a pixel. Horn and
Schunck developed a method which globally minimizes an error
function based upon the gradient constraint and the local variation
of optical flow [4]. Another approach that has been widely investi-
gated operates locally by solving a set of constraint lines from a
small neighborhood as a system of linear equations
[5, 6, 8, 10, 12, 13, 15].

The local and global methods rely on a similar assumption of
smoothness in the optical flow field. Both methods require that
flow vary slowly across the image. The locally constructed system
of constraint equations is solved as if optical flow is constant over
the neighborhood from which the constraint lines are collected.
‘When optical flow is not constant the local method can provide a
good approximation where flow varies slowly over small neighbor-
hoods. The global method seeks a solution which minimizes local
variation in flow. The important difference between methods of
local and global optimization is not the constraint that they place
on the scene but the computational method that they use to apply
the constraint. There are contrasting aspects in the performance of
the two approaches that are directly related to the difference in the
scope of interactions across the image.



