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Abstract

Split beam sonar binary images are inherently noisy and have large quantities of "shot" noise as well as many missing data
points. We address the problem of their restoration via Mathematical Morphology. Conventional restoration techniques for
these types of images do not make use of any of the spatial relationships between data points, such as a qualitative observation
that outliers tend to have a much larger distances to neighboring pixels. We first define an explicit noise model that characterizes
the image degradation process for split beam sonar images. A key feature of the model is that the degradation is split into two
parts, a foreground component and a background component. The amount of noise occuring in the background decreases with
distance from the underlying signal object. Thus outliers in the model have the same statistical properties as those observed
in training data. Next we propose two different restoration algorithms for this these kinds of images based respectively on
morphological distance transforms and dilation with a toroid shaped structuring element followed by intersection. Finally we
generalize to processing other kinds of imagery where applicable.

1 Introduction

Noise manages to corrupt most images that are of interest in digital image processing. It makes detecting and estimating
desired quantities more difficult. With increased understanding of how noise corrupts images, it should be possible to design
better and more robust mathematical morphological ([1]) algorithms that are less sensitive to noise. Split beam sonar images
are an instance of a mixed noise corruption process that both removes foreground pixels and adds background noise to an
image. Before further processing can proceed is is desirable to try and undo some of the effects of the noise. If the noise
model is explicit, algorithm structure design may become easier, algorithm performance can be quantified, and algorithms can
be designed for new classes of imagery without even viewing them.

Prior work in design of morphological algorithms has focussed mainly on algorithm performance in terms of training
data, rather than with an explicit noise model ([2],[3]) whereby a sample mean is minimized rather than an expectation.
Alternatively, one sided subtractive (additive) noise has been assumed in [4], [5], [6], [7], [8],and [9]. The “germ grain” mixed
noise model described in [10] and [11] defines an image degradation process in which “germs” fall on an image according to a
known (Poisson typically) distribution. Each germ is then dilated with a “primary grain” selected from a different distribution
which describes the noise at that point. If the grain is on the foreground it become subtractive noise, if the grain is on the
background then it becomes additive (union) noise. The approach of [12],[13] was to minimize an error bound which depended
on the grains and the image jointly obeying certain limiting geometric assumptions.

The mixed noise models in the literature other than the germ grain model are typically designed to describe degradation
of document images under various conditions. Kanungo, Haralick, and Philips in [14] focus on document image formation
including optical and perspective effects. In it a degradation model is proposed that also varies with distance. However, the
distance is not Euclidean distance, and a different form is assumed for the degradation. There is also no discussion as (0 when
the model is appropriate, and if so, how to estimate the parameters. In [15], the morphological pattern spectrum is used to
characterize salt and pepper noise affecting document images, however this is used only to predict success of their recognition
algorithm, not as a description of the noise process. Reference [16] assumes that image noise is necessarily additive and white,
then proceeds to estimate the standard deviation. In [17], both additive and multiplicative noise are allowed, however it is



Figure 1: Illustrating split beam sonar image. a} Image b) Corresponding point scatterer model of underwater object c) Solid
model formed from point scatterer model by closing with a large disk.

assumed that homogeneous regions of the image can first be successfully detected. For each homogeneous region, the kind of
noise affecting it is then categorized.

In this paper we first describe some parts of the split beam image formation process. Secondly we describe a noise
model which is more appropriate for our class of imagery than the noise models described in the literature. Next we propose
two different restoration algorithms for these kinds of images based respectively on morphological distance transforms and
dilation with a toroid shaped structuring element followed by intersection. The algorithms are judged by their performance in
minimizing on the average, a point wise cost function. The algorithms are applicable to other kinds of imagery that follow the
degradation model we describe.

2 Split Beam Sonar Imaging

Underwater acoustic imaging is a well developed field in its own right, references [18]-[20] are some of the many textbooks on
the subject. The purpose of underwater acoustic imaging is to estimate quantities about underwater objects, such as location,
orientation, shape, and speed, all by use of sound, rather than light. In this summary we concentrate on the split beam sonar
model, the setup is that of Burdic ([18]). Split beam sonar, like all active sonars, broadcast a pulsed signal s(t), then listens
for the returned signal. Information about the underwater object must be inferred from the reflected signal after propagation
through the water.

Before beginning a more detailed description of the fundamentals of split beam sonar, we first discuss qualitatively the
reason for the large number of dropouts in a “typical” image (shown in Figure 1). The image was produced with the aid of the
software package described in [22].

The large number of dropouts is explained by differences in dimensionality of the raw data versus the underlying three
dimensional object. The raw data comes in 4-tuples of the form of (R, 8, ¢, I), i.e. a location in spherical coordinates and
an intensity but the data is only taken along a single line in three dimensional space. With noise effects, this means that a
single discretized line is scattered among three dimensions. The relatively small number of data points of a single line in three
dimensional space accounts for the sparseness phenomenon. An additional contributing factor is that when the intensity value
is low then the data at that point is discarded as unreliable,

2.1 Split Beam Sonars

Split beam sonars provide a way to to estimate shape, location, and orientation of underwater objects. From the active sonar
viewpoint, an underwater object is a collection of point scatterers, each acting like an individual point source when ensonified
with pulse s(¢). In order to simplify the geometry we will describe the estimation procedure only for range and one angle, the
extension to the other angle being similar. We will label the output of the three hydrophones (see Figure 2) 7(t), r(¢), and
7 (t) corresponding to the left, middle, and right “bearms.”

For the particular split beam sonar model we are describing, sinusoidally modulated pulse s(t) is assumed to be isotropic
and emanate from center of the array (unlike light sensors, acoustic transducers can transmit as well as receive), After
broadcasting, the received signals (after some preprocessing) are in the form of a “baseband complex™ signal (see [23]),
information about the sinusoidal carrier having been removed. In the split beam configuration the center channel will be used
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Figure 2: Illustrating split beam geometry. Top: The left hydrophone spans (-3L/2,-L/2), the middle hydrophone (-1./2,1./2),
the right (L/2,3L/2). Bottom: A plane wave is incident on a single hydrophone. Consider a point along the y axis designated
as the origin, and a displacement y, along that axis, then at the origin, the signal is delayed as compared to the signal received
at yp, by an amount d = yo sin(¢).

to estimate range (intensity) while the left and right channels will be used to to estimate angle. The range and angle estimates
are only declared “valid” when the amplitude is above a preset threshold (I > T').

2.2 Angle Estimation

For this derivation (taken largely from Burdic, [18]) we will make the simplifying far field assumption that the returned
spherical wave is approximately a plane wave by the time it reaches the sensor. We also initially assume only one receiver,
See Figure 2.

Let the signal at the origin be R(t), then the received signal at any pointon the y axisis given by R(t, y, ¢) = R(t+ m’iﬂ)
The output of the sensor (hydrophone) is given by

Ro(t,@ﬁ):/_mg(y)R(Hy (¢))d

[o.0]
in general, where aperture function g(y) describes the sensitivity of the hydrophone along the y axis. For the special case
where R(t) is a pure sinusoid we can write (using complex exponentials without any loss of generality) R(t) = e/?"/o* | For
this case
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corresponds to the Fourier transform of g(y) with frequency variable Mcﬂl. The complex baseband version of the signal is

given by )
r(t, @) = [Ro(t, 8)e™ > Lp = [G(fo, 8)lp = G(fo, $)

The complex baseband signal is formed by multiplication with a complex number corresponding to broadcast frequency, then
low pass filtering the result. Note that low pass filtering a constant (or zero frequency component) leaves it unchanged.

At this point we “split” the hydrophone into two channels and adopt the geometry at the top of Figure 2. g(y) is effectively
split into a left channel g;(y) = g(y -+ L) and a right channel g (y) = g(y — L). The corresponding Fourier transforms are
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Gi(f,8) = G(f, §)e™"
Ge(f,4) = G(f, $)e=I2r L

since the effect of translation in one domain is frequency scaling in the other. The complete signal at each hydrophone is then
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A new signal can be formed by combining the left and right channels as
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Upon taking the ratio of the real and imaginary parts of r;(t, ¢)r; (¢, ¢) we have
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provided that |G(fy, ¢)|*> # 0 (itis not a null location in the window function).
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Performance of this estimator under noisy conditions is discussed in [18] and [24].

2.3 Image Formation

The image shown in Figure 1.a was formed in the following way. First the split beam sonar processing model was applied to
the output of a run of the SST simulator (reference [22]). The R and ¢ components of the original data vector were then used
toform X and Y components which was then discretized into row and column positions on the image. The reason that ¢ rather
than 6 was used can be understood in terms of the variances of the angle estimates, in particular Var{@} < Var{8}. The
angles estimates are better in the left/right direction than the top/bottom direction because of interference and reverberation
from the sea surface and sea bottom. Another contributing factor is change in the speed of sound with depth.

An alternative approach to image formation (not followed) would be to convert from spherical coordinates to rectangular
coordinates. This would produce a list of 3-tuples of the form (X, Y, Z). An orthographic projection coule then be performed
by dropping the Z coordinate. However this neglects the effects of the vertical angle component.



3 A Mixed Noise Model for Split Beam Sonar Imagery

The model, which describes the degradation process from an ideal image A to a random image C can be succinctly stated in
terms of two equations:

plz=1z€R,) = ae (1)
#R,
p(21 € Rr,22 € Rr,...,z4r, €R) = [[p(zi€Ry) 2)
i=1
where
Ry = R.(A) = {z|r — 1 < d(z, A) < r}
with

d(z, A) = min d(z,a)

defines a set of points that form a ring around object A. Equation 1 states that the probability of pixel located at x turning on
is proportional to the negative exponential of its distance r to its closest point in A while equation 2 states that probabilities
of pixels within the same ring turning on are independent from each other. R, is easily computed in practice through the
use of morphological distance transforms. In particular we shall use the “CHAMFER-5-7-11" distance transform structuring
element described in [27]. With this approach, the computed distance is always within 2% of the Euclidean. For more details
concerning model validation and estimation of model parameters see [21].

4 Maximum A Posteriori Estimation

A key feature of the noise model is being able to calculate p(C = C|A) which is the probability of a particular random image
occuring, given the noise model (dependence on the noise model parameters is suppressed here, if not known they may have
to be estimated from training data). On the other given a particular C, we would like to estimate which A it came from.
Following Bayes rule we write,

p(ClA)7(A)

p(C)

where p(C) = 3 , p(C|A)w(A). The posterior distribution of A completely describes our state of knowledge of A. If A
were a continuous random variable, then a reasonable estimate of A could be obtained by the expected value. However, since
A is a discrete random set, we prefer to estimate it by the mode of the distribution, i.e. select that value of A which maximizes
p(A|C). This is known as maximum a posteriori (MAP) estimation. For the specific case of the noise model of the last chapter
(with parameters «, 6, and L) and assuming that A is random in the sense in the sense of unknown location and assuming
uniform priors (in practical situations it may be known with higher probability where A is on the image),

p(4|C) =

A = argmaxp(4|C)
A

p(ClA)r(A)
p(C)
= argmax p(C|4)

= argmax
A

= argmaxp(C]A,)
Ay

= argmax H (ae—ré)#(R..nC) « (1 _ae—ré)#R,——#(R,ﬂC)
r=0

where R, is the ~** ring around A;.
The optimum estimation procedure in this scheme is found by a sort of template matching. The shape A is moved around
on the image and the probability of its occuring is calculated according to the noise model,



S5 Generalized Set Symmetric Difference Based Estimation

At this point we switch to making our estimation based on an entirely different set of principles. We suppose that we are trying
to minimize

E{d(A,¥(C)}

where algorithm ¥ is under our control. In the most general setting d is primarily a cost function rather than being a distance
measure. The value of d( A, A) determines the cost we will assign to estimating A as A We propose the following form:

d(A,C)= > dlc,A)+ Y d(a,A%)
ceC—-A aEA-C

where
d(a,B) = mmd(a b)

returns the distance from a point to a set.

The first term of the cost function penalizes excessive pixels by their distance from the true underlying object. The second
term of the cost function penalizes missing pixels by their distance from the object boundary. In effect, pixels near the center
of the object are considered more valuable in terms of restoration than those right near the edge. The proposed cost function
is a compromise between the set symmetric distance metric

dsa(A,C) =#(C — A) + #(A - O)

which operates point wise and takes no account of shape and the Hausdorf metric ([5],[6],[1]) metric which takes into account
the shape of two sets when assigning a distance between two sets. Since the second term of the cost function is not symmetric
to the first it is apparent that the cost function is not at metric except in the special case thatd(a, ¢) = 1 — §[a, ¢] which reduces
the cost function to the symmetric set difference distance. Before proceeding, we note that the generalized set symmetric
difference measure can be expressed in term of the symmetric set difference as follows:

d(A,C) = dea(C U (A @ disk(i)), A @ disk(i)) + ) d.a(C N (A © disk(i)), A © disk(i))

i=1 i=1

In terms of minimizing the expected distance if

1. A= Ay (A is random only in the sense of unknown location)

2. p(C|A) = p(C:|A;) (the noise model is translation invariant)

3. ¥(C;) = ¥(C); (the restoration algorithm is translation invariant)

all hold then,
E{d(A, ¥(C))} = E{d(A,¥(C))}

which says that during minimization knowledge of A is allowed.
Distributing expectation over sums produces:

E{ > d(c,A+ > d(a, A%}

E{d(A,¥(0)}

ce¥(C)-4 acA-¥(C)
= > ple € ¥(C))d(e, A) + Y _ p(c & ¥(C))d(a, A%)
c€Total(A,¥)-A acA

The pointwise probabilities that the noise model must provide are the probability a pixel is on (off) after filtering with ¥
and knowledge about the spatial extent of the noise with respect to A, denoted by T'otal(A, ) after filtering with V.
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Figure 3: Ilustrating filtering based on nearest neighbor distance. In the example pixels with a chessboard distance of more
than three are removed.

6 Nearest Neighbor Distance Algorithm

Given the noise model of the previous chapter, we might intuitively expect that points in the outer rings, are a long distance
away from nearest neighbors. One filtering approach would be to remove points in C that are more than a certain distance
from their nearest neighbor, specifically,

¥(C; k) = CN(NN(C) < k)

where N N(C) returns an image with each foreground pixel labeled with its nearest neighbor distance. Note that small
values of & correspond to more severe filtering. See Figure 3 for an illustration of nearest neighbor based filtering.

With ¥ in the above form, a pixel is in C' after filtering if it was in C' before filtering, and if it had a neighbor within a
distance of k. Therefore,

p(c € ¥(C; k) = p(c € C and (disk_o(k)). NC # ¢)

Here disk_o(k) = disk(k) — {0} is the disk of the corresponding size with the origin removed. The equation simplifies to

plee¥(Gk)=plceQl- J] Q-pdeQ))
de(disk_o)e

where p(c € C) = ae~44)? is calculated in terms of the noise model parameters e and §.

Figure 4 shows the performance curves of this sort of filter. We note the rather good agreement between the threshold
value predicted from the model, and that obtained from the data. As the cost function has two terms that correspond to under
and over filling and sum to the overall error, so too these performance curves are presented in Figure 5,

6.1 Computation of Nearest Neighbor Distance

The distance from each pixel to its nearest neighbor is computed as a variant of recursive morphological distance transform
algorithm. During each of the four passes, each pixel broadcasts its distance in one of four quadrants. The passes are made
in the top-bottom-left-right, top-bottom-right-left, bottom-top-right-left, and bottom-top-left-right, order which respectively



Experimental versus Predicted Error

for Nearest Neighbor Filter
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Figure 4: Illustrating theoretical versus experimental performance of the nearest neighbor filtering algorithm on the split beam
sonar image data set. Small values of & correspond to more severe filtering.

broadcast in the fourth, third, second, and first quadrants. In turn, each foreground pixel also records the smallest distance it
received during each of the four broadcasts.

Let K be the structuring element that determines choice of distance and let K, K7, K3, and K4 represent subsets of K
used during each pass, defined as follows:

K, = {ké€Kl|krow<0,k.col <0,k#0}
Ky, = {keKlkrow<0kcol>0k+#0}
K3 = {keKlkrow>0,k.col <0,k# 0}

Ky = {keKlkrow>0k.col >0,k+#0}

Let the dimension of input image 7 be {0,..., M — 1} x {0,..., N — 1} and let J be a temporary work image with domain
I@ K and

if(r,¢) € {(-1,0),(-1,N = 1),(M,0), (M, N — 1)}

. - dmaa:
J(r,c) = { 0 otherwise

initially where dmq. is the length of the image diagonal. Setting a pixel near each corner to this value ensures that if image
I consists of only two foreground pixels in each corner, it will still be correctly labelled. At the end of the four passes, each
foreground pixel in I will be labelled with the distance to its nearest neighbor; this result will be in image D.

1. For each pixel (r, ¢) € I in top-bottom-left-right order:
e= i:Iel}?l{J(r’ e) + Ki(r,c)}

ifI(r,c) =0then J(r,c)=e
else

J(r,e)=0

D(r,c)=e

2. For each pixel (r, ¢) € I in top-bottom-right-left order:
e= gg{r?:{,](r, ¢)+ Ka(r, c)}
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Figure 5: Illustrating theoretical versus experimental performance of the nearest neighbor filtering algorithm on the split beam
sonar image data set. The overall error is the sum of an underfill error term and an overfill error term, This is shown in the top
row. The bottom row shows nearest neighbor distance histograms for both the “inside” part of C' (C N A) and the “outside”
part of C' (C' — A). The effect of thresholding at nearest neighbor distance k& is to remove all nearest neighbor values to the
right of £ in the histograms.



if I(r,c) =Othen J(r,c) =e
else

J(r,e)=0

D(r,c) = min{D(r,c), e}

3. For each pixel (r, ¢) € I in bottom-top-right-left order:
e= glé}g{‘](r, ¢) + Ks(r,e)}

if I(r,c) = O then J(r,c) = e
else

J{r;e) =9

D(r,¢) = min{D(r, ¢), e}

4. For each pixel (r, ¢) € I in bottom-top-left-right order:
e= ;32}?4{J(T’ ¢)+ Ka(r,c)}

ifI(r,c) = Othen J(r,c) = ¢
else

J(#, 2] =0

D(r,¢) = min{D(r,¢), e}

7 Dilation with Toroid Shaped Structuring Element Algorithm
The previous algorithm generalizes to dilation with a toroid or ring shaped structuring element.
‘P(G, l’!l, k’z) =CnN (C @ tOT’Oid(k’l i kg))

With ¥ in the above form, a pixel is in C' after filtering if it was in C before filtering, and if it had a neighbor within the
toroid shape centered at that point. Therefore,

plc € W(C; k1, k2)) = p(c € Cand (disk(k1) — disk(k2)). NC # )
The equation simplifies to

p(c € ¥(Cik)) = p(c € O)(1 - 11 (1-p(d€(C)))
de(disk (k) —disk(k2))e

where p(¢ € C) = ae~4(®4)? ig calculated in terms of the noise model parameters « and 6.

8 Conclusions

We defined an image degradation model which described how noise corrupts split beam sonar binary images and turns them
into the kinds of images actually observed. After describing the model we proposed two different algorithms for image
restoration of these kinds of images. The experimental results were in close agreement to those predicted by the model.
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Figure 6: Illustrating theoretical versus experimental performance of the dilation followed by intersection algorithm on the
split beam sonar image data set. The x axis corresponds to the outer diameter parameter k; of the toroid shape structuring
element. The error values for toroids with corresponding inner diameter k3, 1. ..k; — 1 are plotted for each k;.
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