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Abstract

This paper describes an image dependent two=dimen=
sional non=linear spatial filter designed to be a resolution
preserving textural feature extractor for image data. The tex=
tural transform is based on the neighboring grey tone co-occur=
rence properties of the image to be transformed. Classification
experiments with the textural transform on satellite multi-
spectral scanner imagery over forrested areas show that higher
identification accuracy can be achieved when using combined
spectral and textural information than when using only spectral
information.

Introduction: What is Texture?

Spatial environments can be understood as being spatial
distributions of various area-extensive objects having charac=
teristic size and reflectance or emissive qualities. The spatial
organization and relationships of the area=extensive objects
appear as spatial distributions of grey tone on imagery taken of
the environment. We call the pattern of spatial distributions of
grey tone, texture.

Figure 1, taken from Lewis (1971), illustrates how tex—
ture relates to geomorphology. There are some plains, low hills,
high hills, and mountains in the Panama and Columbia area
taken by the Westinghouse AN/APQ97 K-band radar imager
system. The plains have apparent relief of 0-50 meters, the
hills have apparent relief of 50-350 meters, and the mountains
have apparent relief of more than 350 meters. The low hills
have little dissection and are generally smooth convex surfaces
whereas the high hills are highly dissected and have prominent
ridge crests.,

The mountain texture is distinguishable from the hill
texture on the basis of the extent of radar shadowing (black
tonal areas). The mountains have shadowing over more than
half the area and the hills have shadowing over less than half
the area. The hills can be subdivided from low to high on the
basis of the abruptness of tonal change from terrain front slope
to terrain back slope.

Figure 2, taken from MacDonald (1970), illustrates how
texture relates to geology. There are some igneous and sedi-
mentary rocks in Panama taken by the Westinghouse AN/APQ97
K=band radar imagery system. Figure 2 i, k, | show a fine
textured drainage pattern which is indicative of non-resistant
fine—grained sedimentary rocks. The coarser texture with
rugged and peaked divides (Figure 2a, b, ¢, d, e,)is indicative
of igneous rocks. When erosion has nearly base-leveled an
area, the texture takes on a hummocky appearance of Figure 2c.

Figure 3, taken from Haralick and Anderson (1971),
illustrates how texture relates to land use categories. Here,
there are six land use categories as they appear on panchromatic
aerial photography. Notice how the texture of the wooded area
is coarser and more definite than the scrub area. The swamps
and marsh generate finer textures than those generated from
wood or scrub areas. The swamp texture is finer than and shows
more gradual grey tone change than the marsh generated textures.

Figure 4 is taken in the Pisgah Crater area and shows
some examples where the same type of terrain generates a variety
of textures within the same texture family. Here, the texture
changes are due to the way the vegetation increases in size and
disperses.
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Techniques of Quantifying Texture

There have been six basic approaches to the measurement
and quantification of image texture: autocorrelation functions
(Kaizer, 1955), optical transforms, (Lendaris and Stanley,
1970), digital transforms, (Gramenopoulos, 1973; Hornung and
Smith, 1973; Kirvida and Johnson, 1973), edgeness (Rosenfled
and Thurston, 1971), structural elements, (Matheron, 1967;
Serra, 1973), and spatial grey tone co—occurrence probabilities,
(Haralick et al., 1973). The first three of these approaches are
related in that they all measure spatial frequency directly or
indirectly. Spatial frequency is related to texture because fine
textures are rich in high spatial frequencies while coarse
textures are rich in low spatial frequencies.

An alternative to viewing texture as spatial frequency
distribution is to view texture as amount of edge per unit area.
Coarse textures have a small number of edges per unit area.
Fine textures have a high number of edges per unit area.

The structural element approach uses a matching proce=
dure to detect the spatial regularity of shapes called structural
elements in a binary image. When the structural elements
themselves are single resolution cells, the information provided
by this approach is the autocorrelation function of the binary
image. By using larger and more complex shapes, a more gen-
eralized autocorrelation can be computed,

The grey tone co-occurrence approach characterizes
texture by the spatial distribution of its grey tones. Coarse
textures are those for which the distribution changes only
slightly with distance and fine textures are those for which the
distribution changes rapidly with distance.

Optical Processing Methods and Texture

Edward O'Neill's (1956) article on spatial filtering
introduced the engineering community to the fact that optical
systems can perform filtering of the kind used in communication
systems. In the case of the optical systems, however, the filt=
ering is two-dimensional. The basis for the filtering capability
of optical systems lies in the fact that the light amplitude dis-
tributions at the front and back focal planes of lens are Fourier
Transforms of one another. The light distribution produced by
the lens is more commonly known as the Fraunhofer diffraction
pattern. Thus, optical methods facilitate two=dimensional
frequency analysis of images. .

The paper by Cutrona et al. (1960) provides a good
review of optical processing methods for the interested reader.
More recent books by Goodman (1968), Preston (1972), Shulman
(1970) comprehensively survey the area.

In this section, we describe the experiments done by
Lendaris and Stanley, Egbert et al., and Swanlund using
optical processing methods in aerial or satellite imagery.
Lendaris and Stanley (1970) illuminated small circular sections
of low altitude aerial photography and used the Fraunhofer
diffraction pattern as features for identifying the sections. The
circular sections represented a circular area on the ground of
750 feet. The major category distinction they were interested
in making was man-made versus non man-made. They further
subdivided the man-made category into roads, road intersections,
buildings, and orchards. '

The pattern vectors they used from the diffraction
pattern consisted of 40 components. Twenty components were
averages of the energy in 9° wedges of the diffraction pattern.
They obtained over 90 per cent identification accuracy.

Egbert et al. used an optical processing system to
examine the texture of ERTS imagery over Kansas. They used
circular areas corresponding to a ground diameter of about 23
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miles and looked at the diffraction patterns for the areas when
they were snow covered and when tﬁey were hot snow covered,
They used a diffraction pattern sampling unit have 32 sector
wedges and 32 annular rings to sample and measure the diffrac-
tion patterns. (See Jensen (1973) for a description of the
sampling unit and its use in coarse diffraction pattern analysis).
They were able to interpret the resulting angular orientation
graphs in terms of dominant drainage patterns and roads but were
not able to interpret the spatial frequency graphs which all seem
to have had the same character: the higher the spatial frequency,
the less the energy in that frequency band.

Swanlund (1969) has done work using optical processing
on aerial images to identify species of trees. Using imagery
obtained from Itasca State Park in northern Minnesota, photo-
interpreters identified five (mixture) species of trees on the
basis of the texture: Upland Hardwoods, Jack pine overstory,/
Aspen understory/Upland Hardwoods understory, Red pine over-
story/Aspen understory, and Aspen. They achieved classifica=
tion accuracy of over 90 percent.

Texture and Edges

The autocorrelation function, the optical transforms,
and the fast digital transforms (FFT and FHT) basically all
reference texture to spatial frequency. Rosenfeld and Thurston
(1971) conceive of texture not in téms of spatial frequency but
in terms of edgeness per unit area. An edge passing through a
resolution cell is detected by comparing the values for local
properties obtained in pairs of nonoverlapping neighborhoods
boarding the resolution cell, To detect microedges, small
neighborhoods must be used. To detect macroedges, large
neighborhoods must be used.

The local property which Rosenfeld and Thurston
suggested was the quick Roberts gradient (the sum of the abso-
lute value of the differences between diagonally opposite
neighboring pixels). Thus, a measure of texture for any sub-
image is obtained by computing the Roberts gradient image for
the subimage and from it determining the average value of the
gradient in the subimage. Triendle (1972) uses the Laplacian
instead of the Roberts gradient.

Sutton and Hall (1972) extended Rosenfeld.and Thurstorls
idea by making the gradient a function of the distance between
the pixels. Thus, for every distance d and subimage I defined
over a neighborhood N of resolution cells, they compute

g(d) = 116G, ) =16 +d,50 + G, D) = 1(-d, j)
(ilj eN
+[1G5,§) = 1G5, § + o)+ [1G, §) = 1G,§ = d)}.

The graph of g(d) is like the graph of the minus autocorrelation
function translated vertically,

‘Sutton and Hall applied this textural measure in a pul-
monary disease identification experiment using radiographic
imagery and obtained identification accuracy in the 80 per-
centile range for discriminating between normal and abnormal
lungs when using a 128 x 128 subimage.

Digital Transform Methods and Texture

In the digital transform method of texture analysis, the
digital image is typically divided into a set of non=overlapping
small square subimages. Suppose the size of the subimage is

n x n resolution cells, then the n” grey tones in the subimage

can be thought of as the n“ components of an n“~dimensional
vectors, In the transform technique, each of these vectors is
re—expressed in a new coordinate system. The Fourier Transform
uses the sine-cosine basis set. The Hadamard Transform uses the
Walsh function basis set, etc. The point to the transformation
is that the basis vectors of the new coordinate system have an
interpretation that relates to spatial frequency (sequency) and
since frequency (sequency) is a close relative of texture, we
see that such transformation can be useful .

Gramenopoulos (1973) used a transform technique using
the sine=cosine basis vectors (and implemented it with the FFT
algorithm) on ERTS imagery to investigate the power of texture

and spatial pattern to do terrain type recognition. He used
subimages of 32 by 32 resolution cells and found that on Phoenix,
Arizona ERTS image 1049-17324~5 spatial frequencies larger
than 3.5 cycles/km and smaller than 5.9 cycles/km contain

most of the information needed to discriminate between terrain
types. The terrain classes were: clouds, water, desert, farms,
mountains, urban, riverbed, and cloud shadows. He achieved
an overall identification accuracy of 87 percent.

Hornung and Smith (1973) have done work similar to
Gramenopoulos but with aerial multispectral scanner imagery
instead of ERTS imager. Maurer (1974) used Fourier series
analysis on some color aerial film to obtain textural features to
help determine crop types.

Kirvida and Johnson (1973) compared the fast Fourier,
Hadamard, and Slant Transforms for textural features on ERTS
imagery over Minnesota, They used 8 x 8 subimages and five
categories: Hardwoods, Conifers, Open, Water, City. Using
only spectral information, they obtained 74 percent correct
identification accuracy. When they added textural information,
they increased they identification accuracy to 99 percent,
They found little difference between the different transform
methods.

Spatial Grey Tone Dependence: Co~occurance

One aspect of texture is concerned with the spatial
distribution and spatial dependence among the grey tones in a
local area. Darling (1968) used statistics obtained from the
nearest neighbor grey tone transition matrix fo measure this
dependence for satellite images of clouds and was able to
identify cloud types on the basis of their texture. Read and
Jayaramamurthy (1972) divided an image into all possible (over-
lapping) subimages of reasonably small and fixed size and
counted the frequency for all the distinct grey tone patterns.
This is one step more general than Darling but one that requires
too much memory if the grey tones can take on very many values,
Haralick (1971) and Haralick et al. (1972, 1973) suggested an
approach which is a compromise between the two. He measures
the spatial dependence of grey tones in a co~occurrence matrix
for each fixed distance and/or angular spatial relationship and
uses statistics of the matrix as measures of image texture.

The co~occurrence matrix P = (pij) has its (i,j)H1 entry

pij defined as the number of times grey tone i and grey tone j

occur in resolution cells of a subimage hdve a specified spatial
relation, such as distance 1 neighbors. The textural features
for the subimage are obtainable from the co-occurrence matrix

by measures such as
.. log p..
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Haralick et al. (1973) list 14 different kinds of measures.

Using statistics of the co~occurrence matrix, Haralick
performed a number of identification experiments, On a set of
aerial imagery and eight terrain classes (old residential, new
residential, lake, swamp, marsh, urban, railroad yard, scrub or
wooded), he obtained 82 percent corrent identification with
64 x 64 subimages. On an ERTS Monterey Bay, California image,
he obtained 84 percent correct identification using 64 x 64 sub-
images and both spectral and textural features on seven terrain
classes: coastal forest, woodlands, annual grasslands, urban
areas, large irrigated fields, small irrigated fields, and water.
On a set of sandstone photomicrographs, he obtained 89 percent
correct identification on five sandstone classes: Dexter-L
Dexter-H, St. Peter, Upper Muddy, Gaskel.

The wide class of images on which they found that grey
tone co~occurrence carries much of the texture information is
probably indicative of the power and generality of this approach.
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A Textural Transform

Each of the approaches described for the quantification
of textural features had the common property that the textural
features were computed for subimages of typical sizes such as
8x 8, 16 x 16, 32 x 32, or 64 x 64 resolution cells. To deter-
mine the textural features for one pixel we would naturally
center a subimage on the specified resolution cell and compute
the textural features for the subimage. If we had to determine
the textural features for each pixel in an image we would be in
for a lot of computation work and would significantly increase
the size of our data set. Thus, the usual approach has been to
divide the image into mutually exclusive subimages and compute
the textural features on the selected subimages. Unfortunately,
this procedure produces textural features at a coarser resolution
than the original image.

In this section we generalize the grey tone co—occur-
rence textural feature exiractor to the textural transform mode
and show how by only doubling or tripling the computation time
required to determine the grey tone co-occurrence matrix it is
possible to produce a resolution preserving textural transform in
which each pixel in the tranformed image has textural informa-=
tion about its own neighborhood derived from both local and
global grey tone co-occurrence in the image. This kind of
textural transform is in the class of image dependent non-linear

spatial filters.
Let Z x Z_ be the set of resolution cells of an image I

(by row=colum coprdinates). Let G be the set of grey tones
possible to appear on image I. Then I: Z x Z_ - G. Llet

R be a binary relation on z":r X Z-c pairing together all those

resolution cells in the desired spatial relation. The co-occur-
rence matrix P, P: G x G = [0,1], for image I and binary
relation R is defined by

PG,j) = * {(a,b),(c,d)eR]|1(a,b)=iand (c,d)=j}
R
The textural transform J, J: Z-rx Z—c (=,®), of image I relative

to function f, is defined by

-z

R(y,x) (a,b) €R(y,x)
Assuming f to be the identity function, the meaning of

J(y,x) is as follows. The set R(y,x) is the set of all those reso-

lution cells in Z x Z_in the desired spatial relation to resolu-

tion cell (y,x). For any resolution cell (a,b)€R(y,x),

P (1(y,x), 1(a,b)) is the relative frequency by which the grey
tone 1(y,x), appearing af resolution cell (y,x), and the grey
tone I (a,b), appearing at resolution cell (a,b), co~occur
together in the desired spatial relation on the entire image.

Thesum 5> b (1(y, ), 1(a,b)
(a,b)eR(y,x)
is just the sum of the relative frequences of grey tone co-occur-

rence over all resolution cells in the specified relation to

resolution cell (y,x). The factor 1, the reciprocal of the
R (v, x)

number of resolution cells in the desired spatial relation to (yx)

is just a normalizing factor.

Figure 5 illustrates a series of -areas of an ERTS image
taken over Michigan. These 100 x 100 images were transformed
using the textural transform for spatial relation R consisting of
all pairs of resolution cells whicE are 8-neighboring. These
are shown in Figure 6. Grey tones which are white are indica=
tive of frequently occurring textural patterns in the correspond-
ing spatial locations on the original subimage. Grey tones
which are black are indicative of infrequently occurring textural
patterns in the corresponding spatial locations on the original
subimage.

f[P(I()"x)l I(d,b))]

J (YIX) =#
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To test the discrimination ability of the textural transform,
we selected six land use categories in the forested Leeds region
in South Dakota:

(1 pP-w Wet pasture

(2) P-D Dry pasture

(8) C2-SH Type 2 conifer in shade
(4) C2-sU Type 2 conifer in sunshine
(5) Ci1-sU Type 1 conifer in sunshine
) TR Transition region

Figure 7 shows a contingency table of identification
results on a SKYLAB image taken over the Leeds region.
Spectral bands 0.68-0.76 and 0,98-1.08 um were used. When
the textural transform of band 0,68-0,76 nm was added as an
additional feature, the results of the contingency table in
Figure 8 were obtained. This is an improvement of 11%.
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MOUNTAINS

PLAINS

Figure 1 illustrates the texture generated by plains, hills, and mountains

on K-band radar imagery, (taken from Lewis, 1971).
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Figure 2 illustrates the texture generated by igneous and sediment rocks

on K-=band radar imagery, (taken from MacDonald, 1970).
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MORE NATURAL-ENVIRONMENTAL TYPES OF SCENES

No. 1, SCRUB ‘ No. 66, MARSH
(ETL NO. 815 - N2) (ETL NO. 43 - T3B)

No. 41, SWAMP No. 56, MARSH
(ETL NO. 43-TB) (ETL NO. 53 - T3A)

No. 7, HEAVILY WOODED No. 27,RIVER
AREA
(ETL NO. 697 - NIA) (ETL NO. 88 - R)

Figure 3 illustrates how environmental clutter relates to land-use categories,

(taken from Haralick and Anderson, 1971).
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Figure 4 illustrates how the size and spacing of vegetation can cause texture

to change from a fine texture to a coarse texture.
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Figure 6 illustrates a series of 100 x 100 images that were transformed
using the textural transform for spatial relation R consisting of all pairs

of resolution cells which are 8-neighboring.
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COL. = ASSIGN CAT ROW = TRUE CAT

P-D C2-SH C2-SU CI-SU TR TOTAL ERR %ERR 7SD

R DEC P-W
UNKWN 4727 474 1160 2238 10976 6895 659 27129 0 0 0
P-w 19 47 8 0 0 0 0 74 8 15 3
P-D 22 12 114 0 0 0 0 148 12 10 2
C2-SH 21 0 0 92 11 5 0 129 16 15 2
C2-suU 30 1 2 4 238 16 0 291 23 9 1
C1-suU 46 6 3 3 25 229 11 323 48 17 1
TR 5 0 0 0 0 0 31 36 0 o 0
TOTAL 4870 540 1287 2337 11250 7145 701 28130 107 11 0
ERR 0 19 13 7 36 21 1 107
% ERR 0 29 10 7 13 8 26 15
Figure 8 shows the contingency table of identification results on the SKYLAB
image of Figure 7 using the same spectral bands plus the textural transform of
band 0.68-0.76 um.
COL. = ASSIGN CAT ROW = TRUE CAT
R DEC - - - =
P-w P-D  C2-SH C2-SU CI-SU TR TOTAL ERR  %ERR %SD
UNKWN 0 h
P-wy o =2 1212 4010 11238 8806 1624 27129 0 0 o
P-D 0 6 116 1 . 0 26 74 38 51 5
C2-SH 0 0 0 105 17 0 24 148 32 22 3
C2-su 0 0 16 > 247 ; 0 129 24 19 3
Cl-sU 0 3 2 7 95 2 2291 50 17 2
R 0 0 1 0 0 26]‘ 52 3%3 62 19 2
TOTAL 0 2 6 2 6 3
ERR 0 7; 133? 41?3 ”535 9o§e]3 17;; 28; (3)0 208 22 0
% 8
o ERR 0 20 21 14 15 11 69 25

Figure 7 shows the contingency table of identification resulison a SKYLAB image
taken over the Leeds region. The spectral bands were 0.68~0.76 and 0 98-1.08 um
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A COMPARATIVE STUDY OF TEXTURE MEASURES FOR TERRAIN CLASSIFICATION

Joan S. Weszka

Azriel Rosenfeld
Computer Science Center
University of Maryland
College Park , MD 20742

SUMMARY

Three standard approaches to automatic texture classifi-

cation make

use of features based on the Fourier power spec-

trum, on gray level co-occurrences, and on statistics of local

properties, respectively.

In this paper, features of these

types are applied to a set of 54 picture samples taken from
aerial photographs of nine terrain types (Lake, Marsh, Orchard,

Railroad, Scrub, Suburb, Swamp, Urban, and Woods).

Classifi-

cation results are compared for individual features and pairs

of features within each feature class.

In general, the

Fourier based features performed poorest, while those based on
statistics of gray level differences performed best.

Introduction

The problem of automatic texture classification
has been studied for at least 15 years. One of the
earliest applications to be investigated was that of
terrain analysis. A recent review of work on texture
classification can be found in Haralick et al.!

A number of approaches to the texture classifica-
tion problem have been developed over the years. One
approach makes use of features derived from the tex-
ture's Fourier power spectrum. Another uses statis-
tics derived from the probability densities of values
of various local properties measured on the texture.
A third approach is based on gray level co-occurren-
ces, i.e., on joint probability densities of pairs of
gray levels in the texture.

In this paper, features belonging to the three
classes just mentioned are applied to a set of 54 pic-
ture samples taken from aerial photographs of nine
terrain types. Classification results are compared
for individual features and pairs of features within
each class.

The terrain samples used in these studies, which
were provided by Prof. R. M. Haralick of the Univer-
sity of Kansas, are shown in Figure 1. These samples
are 64 by 64 arrays whose elements have 64 possible
gray levels (0,...,63). The samples have been sub-
jected to a grayscale "histogram flattening" trans-
formation to make each gray level occur equally often.
This was done in order to remove the effects of un-
equal overall brightness and contrast in the original
images; these effects might otherwise have dominated
the measured feature values. A discussion of histo-
gram flattening transformation can be found in!.

Section 2 of this paper defines the classes of
features that were used, and Section 3 summarizes the
results.

Features Used

Fourier Power Spectrum

Let lF(u,v)I2 be the discrete Fourier power spec-
trum of the given picture f. The features used here
were of the form

62

2

':P(r] sr299'| 962) = z ‘F(U,V)l

2 2,2 2
rys UtV <,

b= tan'](v/u) < 0,

for (ry,r,) = (2,4), (4,8), (8,16), and (16,31), and
(81.6,) = (0+225°) with 6 = 0°, 45°, 90°, 135°.

Gray Level Co-occurrence

Let Mg be the matrix whose (i,j) entry p(i,j) is
the number of times that a point having gray level i
occurs in position =8 = +(Ax,Ay) relative to a point
having gray level j in the given picture. Haralick!
has defined many useful texture features_in terms of
such matrices, e.g., the quantity )Y(i-j)ép(i,j), which
measures the spread of the values of M6 about its main
This feature was used here for
(ax,ay) = (1,0), (2,0), (4,0), (8,0), (0,1), (0,2),
(0’4)’ (058)’ (-I’])! (2’2)! (3’3)’ (6S6)! (]’-])3
(2,-2), (3,-3), and (6,-6). Note that the diagonal

distances are vZ, 22, 3/2 = 4, and 6/2 = 8.

diagonal.

Differences of Averages

Let ?ﬁ(x,y) be the average gray level of the pic-

ture f in a square region of side m+1 approximately
centered at (x,y). We can use differences of these
averages, for pairs of horizontally, vertically, or
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