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In LANDSAT imagery, spectral and spatial information can be used to estimate a 
relative digital terrain model in mountainous areas. To do this, the mixed information 
of direct and indirect illumination, material reflectance, and topographic modulation 
in the original LANDSAT imagery must be first separated. From the direct and indirect 
illumination information, ridges and valleys can be determined. From the material 
reflectance information, big visible rivers can be detected. Finally, a relative 
elevation model can be generated by elevation growing. In elevation growing valley 
pixels are assigned increasing elevations as they become more distant from the rivers 
or other valley pixels already assigned an elevation. It also proceeds in a direction 
perpendicular to valleys climbing up to the ridges assigning elevations to any 
unassigned pixel. 

~. INTRODUCTION 

It is a common task for a photointerpretet to examine the spatial pattern on an 
aerial image and by appropriate interpretation be able to tell the elevation of one 
area relative to another and be able to infer the stream network and the drainage 
network even though some of the streams may be below the resolution of the sensor. 
There is a wealth of information in spatial patterns on aerial imagery but most 
computer data processing of remotely sensed imagery, being limited to pixel spectral 
characteristics, does not make use of it. 

In this paper, we describe a procedure by which the relative elevation model can 
be inferred from a LANDSAT scene of mountainous and hilly terrain. To a first order 
effect, the cause of the intensity value at any pixel is due to whether it is only 
diffusely lit or directly lit. If it is direcly illuminated there are additional 
effects due to the angle at which the sun illuminates the ground patch corresponding to 
the pixel and the reflectance of the surface material on the ground patch. To make 
sense of the spatial pattern first requires separation of these effects. For this 
purpose, we use a clustering technique on ratio images to determine similar reflectance 
classes and then do a subclustering on these classes to determine directly· lit from 
indirectly lit pixels. This subclustering creates a shadow image. Then we modify the 
Eliason, Soderblom and Chavez [1981] technique to create two images from the one 
LANDSAT image (Haralick and Wang, 1983). The first image is a "reflectance" image; the 
second is a topographic modulation image portraging information related to surface 
slope and sun illumination. The details of this technique are given in Section 2. 

As discussed in Section 3, the sun azimuth and the shadow image constitute 
sufficient information for the identification of the ridges and the valleys. With the 
valleys identified, each valley pixel may be assigned a relative elevation which 
increases as the valley path from the pixel to the river it empties in increases. 
Ridges must be assigned elevations higher than their neighboring valleys and each ridge 
pixel can be assigned a relative elevation which decreases on the ridge path from the 
pixel to the saddle point where the ridge crosses a valley. In order to do this, local 
slopes must be known. Some estimated local slopes are assigned initially to generate 
the first version of elevation model. Then the topographic modulation image is used to 
calculate more accurate local slopes to generate better elevation models. Finally, 
Landsat imagery is reconstructed to evaluate our illumination model and elevation 
reconstruction algorithm. 
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1.1 ~~ 

This research examines an area in southeastern West Virginia, shown in Figure 1.1. 
This region is a portion of the Appalachian Plateau's physiographic province, within 
the "unglaciated Allegheny plateau" described by Thornbury £19671. In general, this 
region is a thoroughly dissected plateau-like surface. It receives about 1 meter of 
precipitation each year and, as depicted on topographic maps, has a moderate drainage 
network density. Drainage is through tributaries of the New (Kanawha} River, which 
flows west into the Ohio River drainage system. 

The overall drainage pattern within this region is that of a relatively large 
sinuous channel (the Gauley River} superimposed over the finer texture of a dentritic 
pattern formed by first, second, and third order streams. A number of the small first 
or second order streams flow directly into the large channel. Thus the overall pattern 
is composed of a mixture of many very small stream segments, many with very steep 
gradients, a prominent major channel with a relatively low gradient, and relatively few 
stream segments of intermediate length and gradient. 

Throughout the area, flood plains <when present} are narrow and tend to closely 
follow the course of the stream channel. Valleys are narrow, with steep sides; the 
Gauley River, for example, follows a valley that is typically 150 meters deep but only 
100 meters wide. Uplands often consist only of ridge crests; although plateau-like 
upland regions are present, they are not continuous or extensive. The area is forested 
with a dense cover of deciduous trees (Kuchler's" mixed mesophytic forest"} £1964]. 
Cleared areas for agriculture (chiefly pasture} tend to follow the valleys of 
intermediate-sized streams. Settlements are small and dispersed, usually positioned in 
valleys. 

This region appears on the Charleston, West Virginia/Ohio USGS 1:250,000 
quadrangle (NJ 17-5}. Our investigations include areas in Nicholas County, w. VA and 
neighboring counties. This area was imaged by the LANDSAT-! MSS on April 13, 1976 
(scene id: 5360-14502; path 18, row 34}. This date reflects important qualities of 
the scene. First, at this date the atmosphere was unusually clear--there is no 
evidence of atmospheric CMie} scattering or degradation of the data. Also, at this 
spring date most of the forested areas are without leaves, especially at higher 
elevations. Lower elevations have a cover of newly-emerged leaves and grasses. Within 
a few weeks leaves will have emerged in vegetation throughout the entire region, but at 
this time in April, there is a sharp spectral contrast between the vegetation cover of 
the higher elevations and that of some of the valleys • 

.2.. .'IHE PROBLEM .QF. .M.I..X.ID2 INFORMATION 

Four kinds of information are mixed in LANDSAT imagery: surface reflectance, 
topography, diffuse light and haze. Assuming the ground surface is flat, vegetated 
areas have high reflectance for some spectral regions and appear as bright areas to the 
LANDSAT se,n.sor. On the contrary, water areas have low reflectance and appear as dark 
areas to the LANDSAT sensor. If topography is then considered, there is a pattern of 
directly illuminatedand shadowed slopes due to varied heights and orientations of the 
slopes. HO!Wever, g.raytones for image pixels corresponding to shadowed locations are 
not zero because of diffuse li·ght coming indirectly from the sun. Finally, when light 
is reflected from the ground back to the sensor, there is additive haze due to 
atmospheric scattering~ ~he difficulty of interpreting LANDSAT scenes of mountainous 
areas is due to the mixing of topographic data with reflectance data. To begin to 
separate these individual components we need to begin with an illumination model • 

.2..1 Separating the Information 

The basic data model for a Lambertian surface illuminated by a point source is 

G(x,y> = r(x,y) I cose<x,y> 

where G is brightness value of a pixel within the image, 
x,y are pixel coordinates, 
r is surface reflectance, 
I is the illumination flux from the sun, and 
e is the angle between sun incidence direction and 
surface normal (Figure 2.1}. 

(2.1} 

Adding band number, diffuse light, and haze into this model, one has the general 
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model for LANDSAT data as: 

I. For directly illuminated pixels 

G<x,y,bl = r(x,y,bl I{b) cosa<x,yl + r(x,y,bl D(b) + H(bl 

II. For shadowed pixels 

G(x,y,bl = r(x,y,bl D(bl + H(b) 

where b is the spectral band number, 
D is diffuse light, and 
H is the haze due to atmospheric scattering. 

(2.2) 

Because haze is an additive constant independent of pixel locations, we use the 
Switzer, Kowalik, and Lyon [1981] technique for haze removal. The haze corrected image 
G - H is defined as G'. 

After haze is removed, it can be seen that resolution of the rema1n1ng components 
amounts to extracting diffuse light Df containing the information of r(x,y,b)D(b), 
reflectance data R which contains the information of r(x,y,b)I(b), and topographic 
modulation data Tp which contains the information of cosa<x,yl, 

I. For directly illuminated pixels 

G' (x,y,bl = R(x,y,bl Tp(x,yl + Df(x,y,b) 

II. For shadowed pixels 

G' (x,y,bl = Df(x,y,bl (2.3) 

The first problem to be solved to accomplish this unmixing is the determination of 
which pixels are directly lit from which pixels are in shadow. Once this is 
accomplished the unraveling can begin. For example, for the diffuse light image, 
pixels which are in shadow take their value as the dehazed data value. Pixels which 
are direcly lit take their value as the average dehazed data value taken over all 
shadowed pixels which are likely to be from the same material as they are. 

To separate the shadow pixels 
the images in . a way in which the 
pixels with similar reflectance, 
dark appearing ones. This two 
thresholding technique. (Campbell 

from the directly lit pixels, we seek to 
only effect is reflectance. Then· within 
we can separate the bright appearing ones 

step technique is more accurate than 
et. al, 1981, Wang et. al, .1983) 

transform 
groups of 

from the 
a simple 

One way to transform the data so that the only remaining effect is reflectance is 
to take ratios of one band to another. The ratio image has been widely used by remote 
sensing researchers to subdue surface topographic effects [Vincent, 1973; Raines, et 
al, 1978]. An alternative ratioing procedure is to calculate a ratio of each pixel 
value in band to the total brightness for that pixel, summed over all bands, as 
suggested by Mulder (1982). For our procedure either approach is computationally 
feasible, provided the denominator in the ratio is composed of a linear combination of 
values. For this study, we prefer to use the ratios of individual pairs of bands, as 
ratios of band pairs are known to be effective in distinguishing reflectance of surface 
materials. (Eliason et. al, 1981). From Equation 2.2, the ratio image of two bands 
with band number bl and b2 for directly illuminated pixels after haze is removed is 

G' <x,y,bll r<x,y,bll [I(bllcose<x,yl + D(bl)l 

G' <x,y,b2l r(x,y,b2) [I(b2lcos9(x,yl + D(b2ll 

If one assumes illumination and diffuse light in bands bl and b2 are related by 

I(bll = a I(b2), 
D(bll =a D(b2l, then 

G' (x,y,bl) r(x,y,bl) a [I(b2lcos9(x,yl + D(b2ll 

G' <x,y,b2) r(x,y,b2) [I{b2lcos9(x,yl + D(b2ll 
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Similarly, the ratio image for shadowed pixels is 

G' (x,y,bl) r(x,y,bll 
---------- = a 
G' (x,y,b2) r(x,y,b2) (2.4.2) 

Thus, whether shadowed or 
cose. Three independent ratio 
shown in Figure 2.2. It can 
removed • 

directly illuminated, the ratio image is independ~nt of 
images taken from the 4-band imagery in Figure 1.1 are 
be clearly seen that the effects of shadows have been 

.2. • .2. Clustering 

Because the three ratio images depend upon material reflectance only, regions of 
the same material reflectance can be identified by grouping together pixels of similar 
spectral characteristics. Because we desire to conduct the analysis using a minimum of 
prior information, unsupervised classification is favored over the supervised approach, 
which would require detail knowledge of the number, identify, and characteristics of 
groups. Unsupervised classification permits identification of the natural structure of 
the image with a minimum of prior information. 

In the noisy ratio images of Figure -2.2, there are three major clusters: water 
area, vegetated area, and non-vegetated area. The size of water area is much smaller 
than that of the other two. For this reason, the mode approach [Goldberg and Shlien, 
19781 which uses a fixed threshold ·to get cluster centers does not work. AMOEBA 
[Bryant, 19791 works better, but fails to obtain unbroken river segments. Despite its 
simplicity, it was found that ISODATA modified in such a way that class sizes are also 
taken into consideration works best. 

Each material cluster cl can be defined as a set of pixels (x,y) in which Mc(x,yl = 
cl. 

C(cl) = {(x,yll Mc(x,y) = cl} 

Once the material clusters are defined on the basis of the ratio images, one can 
find directly illuminated and shadowed pixels and define a binary shadow image. To do 
this, we collect together all dehazed 4-band pixel values belonging to a single 
material cluster and subcluster these 4-tuples into dark and bright subcluster classes. 
The next few paragraphs describe this in detail. 

If one overlays the material cluster image Me over any band of the dehazed image, 
one can see, within each material cluster, some pixels are bright and the others are 
dark. These differences are due to topographic variations; the bright pixels are 
directly illuminated pixels, and the dark pixels are in shadow. To separate the shadow 
pixels from the directly lit pixel, for each material cluster cl, one performs a 
subclustering on the dehazed pixel values in the set 

{G' <x,y,b) I Mc(x,yl = cl} 

which is the set of all dehazed values for pixels whose material cluster index is cl. 
This subclustering on cluster cl separates the directly illuminated pixels CO(cl) from 
the indirectly illuminated pixels Cl(cl): 

CO(cl) = {(x,yl (x,yl is directly illuminated on the 
basis of the subclustering} 

Cl(cl) {(x,yl (x,yl is indirectly illuminated on the 
basis of the subclustering} 

The subclustering of getting CO, Cl uses only the basic ISODATA program. In this 
case, the initial class mean for Cl includes all the minimum graytones for four bands, 
and the initial mean for CO includes all the maximum graytones for four bands. 

A shadow image Sw can be defined as 

Sw : X X y --> {0, 1}, 

Sw : (x,yl = 0 if (x, yl e CO(Mc(x,y)) 
1 if (x, yl e Cl(Mc(x,y)) (2.5) 
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The shadow image for Figure 1.1 is shown in Figure 2.3. The correspondence 
between this and topographic map is quite good. Now that directly lit and shadowed 
pixels have been identified, it is possible to use the dehazed image to get the diffuse 
light image Df, the reflectance image R, and the topographic modulation image Tp. 

l. ELEVATION ESTIMATION 

l-l Identification Qf Ridges ~ Valleys 

In the last section, the problem of confounded data is handled in such a way that 
the material information is contained in the reflectance image and the diffuse light 
image. The topographic information is contained in the shadow image and the 
topographic modulation image. In this section, we will show how to detect ridge 
segments, valley segments, and peak junctions from the shadow image. In the next 
section, we will perform an elevation growing to obtain initial raw estimates of 
elevations for all pixels on the basis of these ridge and valley segments. We then 
obtain a refined estimate by making the elevation model have slopes consistent with the 
information on the topographic modulation image. 

Sides of hillsides facing the sun must be directly lit. Sides of hillsides facing 
away from the sun must be indirectly lit. A directly lit to indirectly lit transition 
in a direction moving away from the sun is a ridge. An indirectly lit to directly lit 
transition in a direction moving away from the sun is a valley. Thus, valleys and 
ridges exist on the borders between shadowed and directly lit areas. To find these 
areas we use the binary shadow image. First, a connected components operation 
determines regions on the shadow image. Then small, noisy regions are eliminated. 

Next, the perimeters of these bright and shadowed regions are segmented into 
border segments according to their left regions, right regions, and orientations. A 
border segment is a maximally long sequence of connected pixels which are on the border 
between two given regions. Because the detection of ridges and valleys is highly 
orientation-dependent and the sun illumination comes from east in Figure 1.1, each 
border segment is further broken into several pieces according to orientation; all the 
east-west parts are separated from the north-south parts. 

As the sun illumination is from the east in LANDSAT imagery, those border segments 
which are valley segments or ridge segments can be identified according to the 
brightness of the regions adjacent on the left and on the right. Because most of the 
trees in this area in April are unfoliated, the strongest region boundaries are shadow 
boundaries rather than reflectance boundaries, and the strongest boundaries are those 
at the extremes of steep slopes oriented normal to the sun direction. Because the sun 
illumination is predominantly east-west, a boundary that is dark on the left and bright 
on the right will correspond to a ridge, and the reverse will correspond to a valley. 

East-west region boundaries are classified according to the labeling of 
neighboring north-south boundaries as well as their orientation relative to the 
east-west boundaries. As shown in Figure 3.i, each east-west boundary Bl has a left 
intersecting north-south boundary B2 and a right intersecting north-south boundary B3. 
If the angle between Bl and B2 is smaller than the angle between Bl to B3, then we 
assign the labeling of boundary B2 to Bl; otherwise, we assign the labeling of boundary 
B3 to Bl. The results of ridge-valley finding are shown in Figure 3.!. 

l-2 Elevation Growing 

The detection of the ridge and valley segments as discussed in the last section 
only assigns a ridge or valley label to them and does not assign relative elevations to 
them. This section describes how to estimate their relative elevations. First, a 
model called elevation growing is used to assign initial estimated elevations for all 
ridge and valley pixels. Next, interpolation is used to assign elevations for 
non-ridge and non-valley pixels. 

The cross-sections of valleys are V-shaped, and the cross-sections of ridges are 
A-shaped. If one looks at topographic maps, the elevation contours of valleys such as 
those shown in Figure 3.3 can be frequently found. Thus, if one draws a line ab 
perpendicular to the valley Va, the elevations are increasing from point o to point a , 
and also from point o to point b. If the end point of a valley segment of smaller 
order is encountered during the growing, it is deduced that this end point is the lower 
end of this smaller valley segment. However, if a ridge point is encountered during 
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the process, the increasing has to stop because the elevation starts to decrease. 
Based on this knowledge, an "elevation growing" model can be created. 

These results are shown in Figure 3.4 
J.. CONCLUSION 

Two problems are addressed in this paper: definition of an illumination model and 
computation of an elevation model. First, an illumination model was defined and a 
series of steps was used to extract the shadow image, the diffuse light imagery, the 
reflectance imagery, and the topographic modulation image. The success of the process 
depends largely on clustering. 

Next, knowing the sun azimuths and shadow image the ridges and valleys were found. 
An elevation growing process from valleys to ridges was found to be efficient in 
reconstructing the elevation model. Then an iterative method improved the elevation 
model by making it as consistent as possible with the topographic modulation image. 

The techniques of this research work best for areas having big shadow areas. If 
water areas cannot be found to help identify the lowest valley locations, the elevation 
understanding problem will be more complicated. Other applications of this technique 
include the refinement of a given coarse digital elevation model using higher 
resolution multispectral imagery. In this kind of application, the given digital 
elevation model essentially calibrates the elevation growing process so that the 
resulting refinement constitutes a smart interpolation process. 
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Figure 3.1 - Classifying east-west 
border segments 
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Figure 3.2b Ridge map consisting of thE 
border segments which are identified 
as ridges 

Figure 3.~~- Elevation model by using 
Laplacian mask. 

Figure 3 .'r 1:, - Optimal elevation image. 
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Figure 3.2a Valley map consisting of 
the border segments which are iden­
tified as valleys. 

Figure 3.3 - The elevation of valleys 
and its relation to elevation growing 

Figure 3.~c- Elevation data from digital 
terrain tape. 


