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Abstract

The opening transformation on N-dimensional dis-
crete space ZV is discussed. The transform is effi-
cient to compute the binary opening (closing) with any
sized siructuring element. It also provides a quick way
to calculate the pattern spectrum of an image. The
pattern spectirum is found 1o be nothing more than a
histogram of the opening iransform. An efficient two-
pass recursive opening transform algorithin is devel-
oped and implemented. The correctness of the algo-
rithm is proven and some experimental resulls are giy-
en. The results have shown that the execution time of
the algorithm is a linear function of n, where n is the
product of the number of binary one pizels in the mnput
binary image and the number of points in the structur-
ing element. When the input binary image size is 256
X 256 and 50% of the image is covered by the bing-
ry one pizels, it takes approzimately 250 milliseconds
to do an arbitrary sized line opening and it takes ap-
prozimately 500 milliseconds to do an arbitrary sized
boz opening on the Sun/Sparc IT workstation (with C
compiler optimization flag on).

1 Introduction

The mathematical morphology has drawn much at-
tention in the computer vision community since the
initial work by Serra [1]. The technique is proven to
be a very powerful tool in shape analysis. There is
a large body of literature addressing the theoretical
aspects of the morphological operators [2] as well as
their various applications [3].

However, one of the challenging problems remain-
ing in this area is to develop efficient algorithms to
perform the morphological operations. This kind of
development will have a great impact on many real-
time vision systems where the morphological opera-
tions are computationally intensive, especially when
the size of the structuring elements becomes large.
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One way out of this dilemma is to develop recursive
morphological filters. The recursive morphological op-
erator is one type of morphological operator whose
output depends not only on the input pixels which
are covered by the domain of the structuring element,
but also on one or more breviously computed output
values. The recursive filters are generally computa-
tionally more efficient than their non-recursive coun-
terparts. Haralick [5] and Bertrand [6] described one
such type of a filter, the generalized distance trans-
form (GDT) which is a generalization of the distance
transform first developed by Rosenfeld and Pfaltz [4].
The GDT is very efficient in performing the binary
erosion with an arbitrary sized structuring element.
For a N-point structuring element, the required max-
imum number of operations per pixel is N + 2.

In this paper, we will first review some of the mor-
phological operations and the GDT. Then we will in-
troduce the concept of the opening transform (OT)
and show how it can be used to calculate the binary
opening with an arbitrary sized structuring elemen-
t. The opening transform also provides a quick way
to compute the pattern spectrum of an image. It is
found that the pattern spectrum is nothing more than
a histogram of the opening transform [3]. An effi-
cient two-pass recursive opening transform algorithm
requiring about 14N operations per pixel for an N-
point structuring element is described in detail. The
theoretical proof of the alogrithm is not given due to
the lack of space. Finally, some experimental results
are provided.

2 Definitions and Notations
In this section, some of the morphological opera-
tions and the generalized distance transform are re-

viewed. Let 4, K are sets in ZV,

Definition 1: The dilation of A by a structuring ele-
ment K is denoted by A® K and is defined by A K =



{c€eZN|c=a+bforsomea€ Aandbe K}

Definition 2: The erosion of A by a structuring el-
ement K is denoted by A © K and is defined as
AoK ={ze€ZN|z+be Aforeverybe K}.

Definilion 3: The opening of a set 4 by a structuring
element K is denoted by Ao K and is defined as AcK =
(A6 K)® K.

Definition 4. The closing of a set A by a structuring
element K is denoted by Ae K and is defined as Ae K =
(A K)B K.

Definition 5: The n-fold dilation of a set K is de-
noted by (@,X) and is defined as

{0}

KeKo - oK
it i

n

ifn=0

(®nK) = ifn=1,2--

Definition 6: The translation of a set K by an el-
ement t € ZV is denoted by (X); and is defined as
(K)e = K & {t}.

The generalized distance transform is based on suc-
cessive morphological erosions of an image. The GDT
of an image A with respect to a structuring element
K puts in each binary one pixel z € A the largest pos-
itive integer n such that £ € A©,-7 K. The largest
integer n satisfies the constraints that z € A9,_; K,
butz ¢ Ao, K.

Definition 7: The generalized distance transform
of a set A C ZV with respect to a structuring element
K C ZN is denoted by GDT[A, K] and is defined as

GDT(A, K)(x) = { i lrlee At KF B ; &

where A6, K = A (®.K).

The following proposition shows that once the GDT
has been computed, it only requires a simple thresh-
olding to compute a binary erosion with any sized
structuring element. The GDT and its subsequent
thresholding processes are illustrated in Figure 1.

Proposttion I: Let n be a non-negative integer. If
A C ZV is aset, K C Z¥ is a structuring ele-
ment, and B, = {z€A|GDT[A, K](z) > n}, then
B, = A6(8.K).
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Figure 1: illustrates an instance of the generalized dis-
tance transform. (a) a 2-D binary image; (b) a diamond
shaped structuring element; (c) the GDT of the binary
image; (d) the thresholded GDT image (n = 0); (e) the
thresholded GDT image (n = 1); (f) the thresholded
GDT image (n = 2).

An efficient two-pass recursive GDT algorithm is
described in [5][6]. By careful accounting, it shows
that the algorithm requires N + 2 operations on each
binary one pixel and 2 operations on each binary zero
pixel.

Our implementation of the recursive GDT algorith-
m on the Sun/Sparc II workstation shows that when
the C compiler optimization flag is set and the 2 x 2
box structuring element is applied, it takes approxi-
mately 60 milliseconds to perform the GDT on a 256
X 256 binary image (assuming 50% of the image is
covered by binary one pixels).

3 Opening Transformation

The definition of the opening transform is given in
an analogous way to the GDT. The opening transform
of an image A with respect to a structuring element
K puts in each binary one pixel £ € A the largest
positive integer n such that z € Ao (®,-1K), which
means that the (@,_1K) can be translated so that it
covers ¢ and is contained in A.

Definition 8: The opening transform of a set A C
ZN by a structuring element K C Z¥ is denoted by



OT[A, K] and is defined as

. [ maz{n|z€Ao(@,_1 K)} ifxec A
OTPLRKX)—{ 0 ifx g A
Based upon the above definition, it is easy to prove
the following properties of the opening transform. The
first proposition shows how we can use the opening
transform to compute the binary opening with an arbi-
trary sized structuring element. The next proposition
indicates that the opening transform does not depend
upon the origin of the K. The opening transform and
its subsequent thresholding processes are illustrated in
Figure 2.

Proposition 2: Let n be a non-negative integer. If
AC ZN isaset, K C Z" isastructuring element, and
B, = {z€A|OT[A, K])(z) > n}, then B, = Ao(®,K).

Proposition 3: If AC ZN isaset, K C ZV is a struc-
turing element, X' = (X); is a translation of K by ¢ €
ZN| then OT[A, K'](z) = OT[A, K](z),for all x € A.

! EE|
T olejejee -
EEEEREEEERE an
“e[o/elololoelolole] | a9
olclolelele[o] | |
ololo I
(a) (b)
(ool olololol3l1]ololalo INEEE
o[ o] o[ 3[3]3]3]3{ofo] do ElEEEE
ol 1[3[3[3[3]3]3[3[1[1]0] [leleleleleleleeele
LHMEEEHEEBEIUREEREEERERRE
olo3[3[3[3[3[2[2]0[0[0 olojeloleo/e
o o[ ol a[a[alo[o] ool o]0 AEE l
(c) (d)
1] & | e |
0/6/010/0 BEEEE
olojojolo[ole] [clelelelelole
@@eobkgge olejo[olo[o]e
olojojojo/elo AREER
ololo| olo/e
(e) (f)

Figure 2: illustrates an instance of the opening trans-
form. (a) a 2-D binary image; (b) a diamond shaped
structuring element; (c) the OT of the binary image; (d)
the thresholded OT image (n = 0); (e) the threshold-
ed OT image (n = 1); (f) the thresholded OT image
(n=2).

The OT of an image can be computed via a brute
force iterative OT algorithm, but the large amount of
computation involved poses a serious problem to the
application of the algorithm. Suppose the input image
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Iis M x M and K is a N-point structuring elemen-
t. The algorithm requires first successively eroding
the input image I (in the worst case, the number of
erosions is [M/2]) and then successively dilating each

intermediate eroded image Ig‘) for ¢ number of times
(i =0,1,2,---). Let I = I and IO = I @, K.
The OT image OT[I, K] can be obtained as:

OT(I, K|(x) = max{(i+ DID(x)|i = 0,1,---,[M/2]}.

The number of operations per pixel required to per-
form this calculation is M (M N + 6N + 8)/8 since we
assume each erosion and dilation involves N opera-
tions per pixel. In comparison, the following two-pass
recursive algorithm takes about 14N operations per
pixel on the basis of our experimental results.

4 A Two-pass Recursive Algorithm for
Opening Transform

The binary opening operation can be accomplished
via successively eroding and dilating a set by a struc-
turing element. It is reasonable to conjuncture that
the OT algorithm will also consist of such similar pro-
cesses suitably done recursively.

The GDT provides the transformation from the bi-
nary image space to the GDT image space. The GDT
value at a given image point is defined as the gener-
alized distance of the point to the image background.
Accordingly, the value also defines the extent that one
can dilate the given image point subject to the con-
straint that the dilated pattern still contains in the
image. From the definition of the OT, it is not diffi-
cult to see that the process of the OT requires each
point in the GDT image space to be dilated to its max-
imum limit and then combines the dilated patterns in
the same way as the brute force algorithm does. This
kind of process can be well described in terms of the
label propagation process. The OT algorithm we de-
velop is thus composed of the following two sequential
modules:

e The GDT distance transform module;
e The OT propagation module.

To facilitate the discussion of the propagation algo-
rithm, we need first introduce some basic concepts.

4.1 Basic Definitions and Concepts

Definition 9: A propagator on ZV is defined as a
triple, denoted by ¢ = (I, f,z), where [ is a label



that ¢ propagates (called the propagating label), f
is a positive integer number with the number (f — 1)
specifying the number of times left that ¢ can still
propagate (called the propagating factor), and z is a
point in Z% that indicates the location of ¢ (called
the propagating point).

The label function L(p) = I returns the propa-
gating label of the propagator. The factor function
F(p) = f returns the propagating factor of the prop-
agator.

Definition 10: The propagation P of a propagator
w = (I, f,z) by a structuring element KX is denoted by
Plp, K] and is defined as P[p, K](z) =

(LGDT[(®f-1K) s, K)(2),2) if2€(@5-1K)z
(0,0,2) otherwise,

where the operator (@;_,K), means translating
(®f-1K) by the element z.

Figure 3 illustrates the process of the propaga-
tion. The propagation P[p, K] generates a set of non-
dummy propagators in the domain of (®;_; K),. The
original propagating label ! of ¢ is propagated all the
way to the extent of (@;_; K),; while the propagating
factor at z is GDT[(®s-1K),, K](z).
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Figure 3: illustrates an instance of the propagation pro-
cess. z is (2, 2) in this case. The propagation Plp, K]
generates a set of non-dummy propagators in the domain
of (B@f_1K)g.

The following proposition directly relates the OT
to the GDT and the above propagation operation.

Proposition 4: Let A C ZV¥ be aset, 0 € K e I
be a structuring element containing the origin, the
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GDT of the set A with respect to K be denoted by
GDTI[A, K]. If we define:

-

and

(GDT[A, K)(2), GDT[A, K|(2),2) ifze A
(0,0, 2) ifz g A,

Ble)= { Snaz'{L{P[soz,K](m)},for all z € A} ji: i

then B(z) = OT[A, K](z), for all x € A.

An explanation of the Proposition 4 is that when
given the GDT of a set 4 with respect to a structur-
ing element K, we first create a propagator ¢, at each
point zEA. Then we propagate each of ¢, in the do-
main of A and stack these propagations on top of each
other according to their own origin z. This will gen-
erate multiple propagators at each point z€A4. In the
last step, we choose B(z) to be the maximum propa-
gating label among all the propagators at z. The re-
lationship B(z) = OT[A, K](z) will hold for all z€A.

The following Proposition 5 shows the relationship
between the propagations of two or more propagators
located at the same point.

Proposition 5: If o1 = (I}, fi,z) and @, = (12, f2,2)
are two propagators at point z, l; > Il and f; > f,,
then for all z € A,

L{Plp2, K](2)} < L{P[p1, K](2)}.

The proposition shows that to calculate the OT, it
is not necessary to propagate all the propagators of
the same point. It is, therefore, useful to introduce
the following concept of the propagator list.

Definition 11: The propagator list at a propagating
point z is defined as an ordered list of propagators
that satisfies the following constraints:

Suppose ®(z) is a propagator list,

{(IOJ fU: :L‘), (Il;flr :C)J ey (Im) .fm)x)}

o l; >1;,if i < j, where i,j = 0,1,...,m;

&(z)

o fi < fj,ifi < j, whereij =0,1,....m.

The propagators in ®(z) are propagatable and the se-
quence of the propagators in ®(z) indicates the prop-
agation sequence of the propagators. The foremost
propagator propagates first.



4.2 A Recursive Propagation Algorithm

In this section, we shall show that the propagation
operation Plyp, K] can be computed recursively.

We shall consider one special case that the ori-
gin O of the structuring element X C ZV is the
top-most left point in the domain of K. In the 2-
D case, the top-most left point of K can be de-
fined in the following way: O = (zg,yo), wWhere yp =
min{y|(z,y)€K} and zo = min{z|(z,y0)EK}.

Under this assumption, the next proposition estab-
lishes that the propagation of a propagator can be
done through a one-pass recursive algorithimn.

Proposition 6: Let ¢ = (I, f,z) be a propagator on
Z¥ | K be astructuring element with its origin O being
the top-most left point of K and K = {-z | z €
K and x # O} be a reflection of K. If Rlp, K] is
defined as:

’,z)
1 2)

if 2 € (®7-1K)

. L f
Rlp, K](2) = { §0,o ifz & (@-1K),

where f' = maz{f - 8(z,z), maz{F{R[p, K](z +
b)},b € Kb} — 1} and 6(z,z) is a §-function in ZV,
ie.

1 ifz==z

5("""):{ i 5 s,

then for all z € Z¥, Plp, K](z) = Rp, K](2).

The proposition states that the propagation
Py, K] can be computed by scanning a propagator ar-
ray which at first contains only one propagator . At
each point other than the z on the scanning path, we
assign the propagating factor to be the maz {0, f"—1},
where the f” is the maximum propagating factor at
those points covered by the K* (the origin of the K?®
is centered on the point). If the resulting propagating
factor is non-zero, we assign the propagating label to
be [; otherwise assign the propagating label to be zero.
Figure 4 shows an example of the recursive propaga-
tion process.

4.3 Two-pass Recursive OT Algorithm

Suppose A C Z? is a set, and K C Z? is a structur-
ing element. Choose the scanning S to be left-to-right
and top-to-bottom.

Algorithm: Recursive Openning Transform—2D Case

1. Set the origin O of K to be the top-most left point
in the domain of K.
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Figure 4: illustrates an instance of the recursive prop-
agation process.  is (0, 2) in this case. ¢ is used to
identify that the current point has not been scanned.

2. Decompose the K with respect to the scanning S:
the forward filtering structuring element K/ will
be the empty set ¢ (origin excluded); the back-
ward filtering structuring element will be K* (o-
rigin excluded).

3. Boundary initialization: assume binary zero pixel
replication on the input binary image boundary.

4. The first pass of OT (backward scanning S*): ex-
ecute the GDT algorithm described in Haralick [5]
and Bertrand [6] on the input binary image.

5. Flip the backward filtering structuring element
K*®, let it be K?.

6. The second pass of OT (forward scanning S): for
each point z on the scanning path, do the follow-

ings,
o Let ®(z) be the propagator list at point z;
e If GDT[A, K](z) = 0, set &(z) = {(0,0,2)};
o If GDT[A, K](z) # 0, perform the following
steps:
(a) Let S, Sy be propagator set;
(b) So {(lo, fo,z)|lo
() Ss={(Lf-Lz)|[(LLfiz+b) €D(z +
b),b € Kb and f > 1}
(d) @(z) = MakePropagatorList(Sy U S;);
The MakePropagatorList is a proce-
dure used to make a propagator list out



of a given propagator set. The proce-
dure can be efficiently implemented by
using a linked list data structure.

o OT[A, K](z) = L{TopPropagator[®(z)]};
The L is the label function and the
T'opPropagator is a function to get the top
propagator in the propagator list.

e Go to the next point z € A.

5 Results and Discussions

The correctness of the recursive OT algorithm was
also confirmed by the experimental results. To do this,
an experimental system was setup in such a way that it
will be able to generate random test images, compute
the OT images via the recursive OT algorithm as well
as the iterative brute force algorithm, and compare
their results. More than 2,000 test images have passed
through such verification.

The timing performance of the recursive OT algo-
rithm was also measured on the Sun/Sparc II work-
station (Figure 5). The OT modules were compiled
with the optimization flag on. The image sizes were
chosen to be 256 x 256.

The algorithm’s execution time is proportional to
the product of the number of binary one pixels in the
input binary image and the number of points in the
structuring element. If we perform linear regression-
s to the experimental data, the ratio of the slopes of
the two fitted timing curves of the OT and GDT is
approximately 14:1 in the 4-point box structuring el-
ement case. It is known that the GDT requires N + 2
operations per binary pixel. Thus, the OT will require
on average 14N operations per binary pixel.

6 Conclusion

In this paper, we define the opening transform of
a binary image. A two-pass recursive algorithm was
developed to compute the OT. With the recursive
GDT and OT algorithms, we can compute the bi-
nary erosion, dilation, opening and closing with any
sized structuring element in a very efficient way. This
will have great significance to real-time vision system-
s. The opening tranform offers a solution to some
vision tasks needing to perform an opening operation
but where the structuring element size of that opening
has to be determined after an analysis of the open-
ing transform. The opening transform also provides
a quick way to compute the pattern spectrum of an
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Figure 5: summarizes the timing performance of the
two-pass recursive OT algorithm. ‘e’ is for 2-point di-
agonal line structuring element; 'A' is for 4-point box
structuring element. The timing of GDT for 4-point box
structuring element is also plotted for comparison ('V").

image for the pattern spectrum is nothing more than
a histogram of the opening transform [3].

References

(1] J. Serra, Image Analysis and Mathematical Mor-
phology, Academic Press, London, 1982.

(2] R.M. Haralick, S.R. Sternberg and X.Zhuang, “Im-
age Analysis Using Mathematical Morphology”,
IEEE Transactions on PAMI, Vol. 9, No. 4, Ju-

ly 1987, pp. 532-550.

P. Maragos, “Pattern Spectrum and Multiscale
Shape Representation”, IEEE Transactions on
PAMI, Vol. 11, No. 7, July 1989, pp. 701-716.

A. Rosenfeld and J.L. Pfaltz, “Distance Functions
in Digital Pictures”, Pattern Recognition, Vol. 1,
1968, pp. 33-61.

R.M. Haralick and L.G. Shapiro, Computer and
Robot Vision, Addison-Wesley, 1991

G. Bertrand and X. Wang, “An Algorithm for
a Generalized Distance Transformation based on
Minkowski Operations”, 9th ICPR, Rome, Novem-
ber 1988, pp. 1163-1167.



