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ABSTRACT

A robust algorithm to estimate 3-D motion
parameters from a sequence of extremely noisy images
is developed. The noise model includes correspondence
mismatch errors, outliers, uniform, and Gaussian noise.
More than one hundred thousand controlled experiments
were performed. The experimental results show that
the error in the estimated 3-D parameters of the linear
algorithm almost increases linearly with fraction of
outliers. However, the increase for the robust algorithm
is much slower indicating its better performance and
stability with data having blunders.

1. Introduction

The estimation of three-dimensional motion
parameters of a rigid body is an important problem
in motion analysis . Its applications include scene
analysis, motion prediction, robotics vision, and on
line dynamic industrial processing. There has been
much literature contributed to 3D parameter estimation,
but few of these contributions systematically discuss
the effect of noise. Thompson (1959) developed the
nonlinear equations using the form resulting from the
correspondence of 2D perspective projection points on
one image with 2D perspective projection points on
another image. He gave a solution which determines a
rotation matrix guaranteed to orthonormal. His method
was to linearize the non-linear equations and iterate.
Roach and Aggarwal (1980) developed a nonlinear
algorithm and dealt with noisy data. Their results
show that accuracy can be improved by increasing the
number of corresponding point pairs; but the number

of corresponding point pairs in their experiments is .

too few (15 corresponding point pairs). The linear
motion parameters estimation algorithm was developed
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by Longuet -Higgins(1981) , extended by Tsai and
Huang(1984), unified by Xinhua Zhuang, T.S. Huang,
and R. M. Haralick(1986), and simplified by Xinhua
Zhuang and R. M. Haralick. The linear algorithm
has an advantage of being simple and fast over the
nonlinear algorithm. Furthermore, it can always find
a unique solution except in degenerate cases. The linear
algorithm works very well when there is limited noise
and no corresponding point matching errors. However,
the algorithm is highly sensitive to noise and matching
errors. Experiments show that when combined with real
world image corresponding point data produced by a
vision systems, a disaster occurs. Because the nature of
linear algorithm, increasing the number of corresponding
point pairs can only to some extent suppress the noise
effect. The main problem in linear algorithm is the least
squares estimation.

The method of least squares is based on evalu-
ation of the magnitude of residuals and is sensitive to
matching errors and outliers. Unlike the least squares
estimator the robust estimator has good resistance and
robustness to gross matching error and outliers. In sec-
tion 2 a simplified linear algorithm presented by Zhuang
and Haralick (1986) is used to get the baseline noise be-
havior of the linear algorithm. The principle of robust
computation is presented in section 3. In the last sec-
tion the experimental design is discussed and the results
shows that robust algorithm has better performance and
stability.

2. Simplified Linear Algorithm

As shown in Fig. 1 we assume that the
coordinate system is the camera reference frame, the
origin being the center of the lens. A rigid body is in



motion in the half-space z < 0. Let P = (z,y,2)}
represent a set of object points coordinate before motion
and P! = (x’, y',2')! represent the same set of object
points coordinate after motion. The superscript { means
the transpose of matrix will be used in the paper. The
point coordinate [.’L‘,’, Yis z;] € p is corresponding to
[l,yl,2]] € P'. Let (X,Y), (X', Y’) represent the
perspective coordinate of P and P’ onto the image plane
z=1. These give

X=z/z
Y=y/z
X' =z/
Y'=y/z. (1)
The rigid body motion equation is given as follows:
P'=R,P+T,. (2)

where R, is an 3 x 3 rotation matrix (orthnormal) ; T,
is 3 x 1 translation vector. In terms of Euler angles 2,8,
and ¢ the rotation matrix can be represented as follows:

R, =
cosycosé sin cos § ~sin@
—sintcos ¢ + coswsingsind  cosycoso + sinvwsinfsing cosfsing
siny'sing + cos ¥sinfcos ¢ —coswsing + sin y¥sinfcosd cosbcos P

The problem is to estimate rotation matrix R,
and translation matrix 7.

2.1 The Two View Motion Equation

Choosing any nonzero vector T which is
collinear with T, and taking its cross-product with both
sides of Eq.(2), we obtain

ZTx (X, Y1) =T x [R(X, V1)) (3)

Taking inner product of both sides of Eq.(3) with
(X', Y",1) yields

(XY 1)(T x R)(X,Y, 1) =0.  (4)
where T x R, = [T x 11, T x 72, T x 13}, and 71,73, 73
are the columns of R,. Define the motion parameter
matrix E by

E=TxR,. (5)

For any image corresponding pair [(X,Y),(X’,Y")] the
matrix E satisfies the following linear homogeneous
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equations w. r. t. nine elements of E:

(X', Y", 1)E(X,Y, 1) =0. (6)
Relation of Eq.(6) was originally shown by Thomp-

son(1959). Suppose that we have N correspondences.
Let

XX, XY X YXN ovynm Y XYl
XiX, X X) VX, ¥ ¥ X; Ya ol
A=
X.X, X\Y, X, YIX. YYo Vi Xn Yo 1
hy ha hs
E=|hy hs hg
h7 hB h9

h= (hla hz, ha, hh h5, hs, h7, hsa h9)t

Then the Eq.(6) can be transformed into the overcon-
straint linear equation for h

Ah

=0. M
Solving Eq.(7) in the least squares sense we seek an
estimator h which minimizes ||Ah|>. The 9 component
vector h is found to be the right eigenvector of A having
smallest singular value. Any T' x Rg with T'x Tp = 0
satisfies Eq.(6). Moreover, such a colinear vector T has
one degree of freedom when T # O or three degrees
of freedom when Ty = 0. Thus the general solution of
the Two-View Motion Eq.(6) has at least one degree
of freedom when Ty # 0 or three degrees of freedom
when 75 = 0. When T # 0, the nine elements of
E must have a rank 8, and Ty = O the nine elements
of E must have rank 6. Under the surface assumption
(Zhuang, Haralick, and Huang, 1986) the number of
image corresponding point pairs must be at least 8 when
Tb # 0, or greater than or equal to 6 when Ty = 0. The
geometry interpretation we use assumes that the object
is stationary and the camera is moving. Let the origin
of the camera system be O and O’ respectively before
and after motion. Then the surface assumption holds if
and only if the 3D points corresponding to the observed
image points do not lie on a quadratic surface passing
through O and O’ when Ty # O or a cone with its apex
at O when Ty = 0.



2.2 Decomposing E

E has two decompositions; T x R and (-T") x
R, with Ry being an orthonormal matrix of the first
kind. In order to determine the correct decomposition
we note that E = [T x r,T x r3,T x r3]. Hence, its
three columns span a 2D space and also || E|| = v2||T.
Therefore we can get three constraints as follows:

Rank (E) =2
IEl = 2T
E'T=0
We can use the least square method to solve Eq.(8) for
T and obtain the value of the T' vector from the other
two constraints. Since T is colinear with Tp, Ty should
have the same orientation as T or —T'. Taking a cross-

product with both sides of Eq.(2) by (X", Y1) we
obtain

z(X, Y, 1) x[Ro(X, Y, 1) ]+(X", Y, 1)*xTp =0

(9).
Since z < 0, it implies that To has the same orientation
asT or (=T ifand only if (X', Y”,1)*x[Ro(X, Y, 1)*]
has the same orientation as (X', Y",1)* x T or
[-(X’,Y",1)! x T]. This implies that it has the same
orientation if and only if

(8)

Zﬂ:(x.’y Y/, 1)! x [Ro(X:, Y;, 1)'(X],Y{,1)! x T > Oor < 0. (10)

i=1

Once the correct T is determined, the true Ry
could be uniquely determined through E =T x Ry as
follows:

Ro= [Ez XEa,EaXEl,El XEZ]—TXE (11)
where E = [El,Ez,Eal

3. The Robust Algorithm

As mentioned in the previous section the Eq.(7)
can be solved by least-squares estimator. However, it
is sensitive to gross errors. In this section the robust
algorithm is presented. The robust algorithm is an
iterative reweighted least squares estimation procedure
where the weights are recomputed each iteration and
are computed as a biweight. The difference between
the biweight estimator and the least-squares estimator
is briefly discussed.
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3.1 Biweight Estimator

Let z; be the 1*» observation and I be estimated
mean value of the observations.
method minimizes the residual error

The least squares

n

e =) (z:- &)

i=1

(12)
and the object function, p, is expressed as follows

(13)

- plzi ) = (z:i - 1)

" To find the solution of the problem we differentiate p

w.r.t. Z, the derivative 9 satisfies

z":(:c.- et .’AE) =0.

=1

izp(z;; 5) = (14)

As discussed in Hoaglin the least-squares estimator is
linear and unbounded with an increase in any of the
observed values.

The 9 function of the biweight estimator can be
represented as follows

lul <1
otherwise

p(w) = { - w” (15)

where
. Ji(e

ui — csa

fi(€) : residual error function
Sn : median value of f;(€)

¢ : tuning constant

Unlike the least-squares estimator, the t- func-
tion of the biweight estimator is bounded. When the
value of tuning constant is small it will delete a lot of
useful data. On the other hand, when the value is large
the outliers can not be removed from the images. Hence,
the tuning constant depends on the value of gross errors.
A reasonable value range for tuning constant is from 4
to 12. In here we let c=4. Let ¥(u) = w(u)u. Thus,
the weight function w(u) can be represented

[1 - u2]27
0,

if lul <1
otherwise.

w(u) = { (16)



3.2 Robust Estimation of E

From Eq. (16)we can see that the biweight
estimator is a weighted least square estimator. With
the weight matrix we rewrite the Eq.(7)

WAh=0. (17)

To find the value of h which minimizes ||W Ah||? the
singular value decomposition can be used

WA=US V. (18)
where
S1 0 0
0 Sa 0
mZx" - 0 0 Sg
0 0 0
Vin = [v1,v2.,04]

Unxm = [uh u2"'aum]

The index n is 9 and m is the number of correspond-
ing point pairs. The right eigenvector of V which corre-
sponds to the smallest nonzero eigenvalue in 3 is the so-
lution of weighted least squares. Here it will be denoted
by vg. Multiplying the current solution for h by A to
get the new residual. Gross errors are not necessarily ac-
companied large residuals as explained in Huber(1981).
Hence, the residual errors need to be adjusted according
to the following

o) = =5

where h;; is the diagonal element of the projection
matrix H

H=WA)(WA)(WA)(WA).  (20)

We can simplify the above equation by substituting
U3 V' for WA. After some linear algebra manipulation
Eq.(20) becomes

(21)

(19)

H=U,U:.
where
Uamxo = [u1, Us...., Ug]
It is trivial to obtain hy; = 3",_, u%. Once hy;
are obtained, then they can be substituted into Eq.(19)
to get the new residual error function and to update

the weight matrix. The initial weight matrix is identity
matrix. The iterations continue until some criteria are
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satisfied. In our experiments when the error €2 is less
than 0.001€2 of first iteration or the iteration number is
larger than 25, then the iteration process stops. Usually
it will converge after a few iterations. The value of vg at
the last iteration is the robust solution.

4. Simulation Result and Discus-
sion

In this section we discuss the experimental
results of a large number of controlled experiments using
the linear algorithm and the robust algorithm under a
varying amount of noise, gross errors and corresponding
point pairs. As shown in Fig. 1, the image frame is
located at 2 = 1. By mapping 3D spatial coordinates
into image frame, and then adding noise to the points
before and after motion, we obtain

z(t) n
(39)= (459 3% ) () + (Gl

Signal is related to object image size, and
noise may come from camera error, digitization, or cor-
responding point extraction error. Define SNR =
20 log 2i22eldb, where o is the standard deviation. In
the simulation experiments , the 3-D spatial coordinates
before motion (x,y,z), true matrix R,, and true transla-
tion vector T, are generated by a random number gen-
erator. The 3-D data are generated within the (-2,-2,-2)
to (2,2,2) cube. The rotation angles ¢,0,% are gener-
ated within the the range of [-15, 15] degree and transla-
tion vectors are chosen within the range (-0.5,-0.5,-0.5)
to (0.5,0.5,0.5) cube. Then the 3-D spatial coordinates
after motion (:c’,y’,z’) can be calculated in the nat-
ural way. Projecting the 3-D spatial coordinates into
the image frame we get perspective coordinates. Noisy
image data is obtained by adding Gaussian or Uniform
noise with zero mean to the image coordinates. Outliers
are generated by randomly moving some corresponding
points position in image frame after motion. The num-
ber of outliers are chosen as a percent of corresponding
point pairs. Following the linear algorithm or the ro-
bust algorithm as described above we can get the calcu-
lated rotation matrix and translation vector. From the
calculated rotation matrix the calculated ¢, 6, 1) are
obtained. We compare the difference between the cal-
culated ¢, 8, 1 and the true ¢, 6, 1 in terms of mean



absolute error. For each experimental condition a thou-
sand trials are done. Mismatching noise is simulated by
randomly swapping one component from a pair of corre-
sponding points. The percent of mismatch is the ratio of
mismatching points to number of corresponding points.

In our experiments, the number of correspond-
ing point pairs varies from the 8-point pairs to 110-point
pairs in 4 steps. Figure 2-5 show the translation error
and rotation degree error, which can define an average of
mean absolute error of three Euler angles, versus the sig-
nal to noise ratio for different numbers of corresponding
point pairs for both Gaussian noise and Uniform noise.
When noise-free, the linear algorithm has excellent per-
formance with zero error for all cases and the error in-
creases as the noise level increases. Furthermore, de-
pending on kind of noise and number of corresponding
point pairs, the error increases very rapidly when the
signal to noise ratio gets below a knee value. Table 1
shows the minimum signal to noise ratio to guarantee
a less than 1 degree error as a function of numbers of
corresponding point pairs and kind of noise distribution.

The robust experiments show that the robust
estimators can protect from outliers almost up to a
fraction of 50 percent. The linear algorithm breaks
down when only a small percent of outliers is present.
Similar results occur in the mismatch experiments. Fig.
6 a.b.c.d. shows the effect of outliers to both the linear
and robust algorithm. The error of the linear algorithm
almost increases linearly, but the robust algorithm shows
much better performance and stability. The error of
is approximately twice less than the error for # and ¢
The azimuth and tilt angle are more vulnerable to noise

Step 1. Use singular value decomposition to
solve Eq.(17)

Step 2. Update the weight matrix by Eq.(16)
and Eq.(19)

Repeat Step 1. and 2. until the criteria
satisfied.

Step 3. Determine the translation vector from
Eq.(8), Eq(9), and Eq.(10)

Step 4. Obtain true R, from Eq.(11)

6. Conclusion

The noise behavior for the general linear motion
algorithm and its robust version was determined from
over hundred thousand experimental trials. The exper-
imental results indicated that the robust algorithm can
extract the 3-D motion parameters with one degree ro-
tation mean absolute error from image sequences which
contain 30 percent of outliers. This is much better than
the linear algorithm which has more than ten degree ro-
tation mean absolute error. The robust algorithm can
detect the outliers, mismatching errors, and blunders up
to 30 % of observed data. Therefore, it can be an effec-
tive tool in estimating 3-D motion parameters from mul-
tiframe time sequence imagery. It should prove equally
effective when applied to image flow data.

Table 1. SNR (db) for mean absulute error in 1 degree.

than swing angle. Rotation Angies T Translation vector

No. of Point Pairs 3 20 30 110 3 20 50 110

In Fig. 7 ab.cd. we fix the percent of rerTrTeTT 37 52 50 05 78 3 68

outliers and increase the number of corresponding Uniform T % 31 ¥ 10678 72 58

points. Because the outlier percentage is constant, the
mean error is approximately constant as the number
of corresponding points increase. The mismatch error
results are shown The mismatch error results are shown
in Fig. 8 a.b.c.d. They show results similar to the outlier
results. Fig. 9 shows the standard deviation of the points
plotted in Fig. 6, Fig. 7, and Fig. 8. The behaviors of
the standard deviation of the three rotation angles are

similar, hence we put them together and take average. References
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Figure 2: Mean angle error between the estimated rotation angles
and the true rotation angles versus the Gaussian noise level for four
corresponding point data set sizes of 8 to 110 pairs. Each point on
the graph represents 1,000 trials.
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Figure 5: Mean angle error between the estimated translation vector
and the true translation vector versus the Uniform noise level for
four corresponding point data set sizes of 8 to 110 pairs. Each point
on the graph represents 1,000 trials.

Figure 3: Mean angle error between the calculated translation vector
and the true translation vector versus the Gaussian noise level for
four corresponding point data set sizes of 8 to 110 pairs. Each point
on the graph represents 1,000 trials.
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Figure 6: a.b.c.d. Compares the ¢, ¥, 8 angle error and translation
angle error between the linear algorithm and robust algorithm for
different percent of outliers. The noise is uniform with 100dB SNR.

The number of points is 50. Each point on the graph represents 1,000
trials.
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