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Abstract

Computer vision algorithms are composed of differ-
nt sub-algorithms often applied in sequence. Deter-
nination of the performance of a total computer vi-
ion algorithm is possible if the performance of each
f the sub-algorithm constiluents is given. The per-
ormance characterization of an algorithm has to do
vith establishing the correspondence between the ran-
lom wariations and imperfections in the oulpul daia
ind the random variations and imperfeclions in the
nput data. In this paper we tllusirate how random per-
urbation models can be set up for a vision algorithm
iequence involving edge finding, edge linking and gap
illing. By starting with an appropriate noise model for
ke input data we derive random perturbation models
or the oulpul data at each stage of our ezample se-
juence. These random perturbation models are useful
for performing model based theoretical comparisons of
the performance of vision algorithms. Paramelers of
'hese random perturbation models are related to mea-
sures of error such as the probability of misdetection of
feature units, probability of false alarm, and the prob-
1bility of incorrect grouping. Since the parameters of
the perturbation model at the output of an algorithm
are indicators of the performance of the algorithm, one
could utilize these models to automate the selection of
various free paramelers (thresholds) of the algorithm.

1 Introduction

Computer vision algorithms are composed of dif-
ferent sub-algorithms often applied in sequence. De-
termination of the performance of a total computer
vision algorithm is possible if the performance of each
of the sub-algorithm constituents is given. The prob-
lem, however, is that for most published algorithm-
s, there is no performance characterization which has
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been established in the research literature. What does
performance characterization mean for an algorithm
which might be used in a machine vision system? The
algorithm is designed to accomplish a specific task. If
the input data is perfect and has no noise and no ran-
dom variation, the output produced by the algorithm
ought also to be perfect. Otherwise, there is some-
thing wrong with the algorithm. So measuring how
well an algorithm does on perfect input data is not in-
teresting. Performance characterization has to do with
establishing the correspondence of the random varia-
tions and imperfections which the algorithm produces
on the output data caused by the random variations
and the imperfections on the input data. This mean-
s that to do performance characterization, we must
first specify a model for the ideal world in which on-
ly perfect data exist. Then we must give a random
perturbation model which specifies how the imperfect
perturbed data arises from the perfect data. Finally,
we need a criterion function which quantitatively mea-
sures the difference between the ideal output arising
from the perfect ideal input and the calculated output
arising from the corresponding randomly perturbed
input.

In this paper we illustrate how random perturba-
tion models can be set up for a vision algorithm se-
quence involving edge finding, edge linking and gap
filling. By starting with an appropriate noise mod-
el for the input data we derive random perturbation
models for the output data at each stage of our ex-
ample sequence. Due to fact that there are two type-
s of errors, misdetection and false alarm, the output
data consists of true feature entities and random fea-
tures that appear due to spurious responses at the
feature extraction step. Hence we analyze the prob-
lem in two parts, by deriving: 1) perturbation mod-
els for perturbed true feature entities in the output,
and 2) perturbation models for purely random fea-
ture entities that appear in the output. The first part



is directly related to the misdetection characteristic-
s of the sequence. The second part is related to the
false alarm characteristics of the feature extraction se-
quence. These random perturbation models are useful
for performing model based theoretical comparisons of
the performance of vision algorithms. Parameters of
these random perturbation models are related to mea-
sures of error such as the probability of misdetection
of feature units, probability of false alarm, and the
probability of incorrect grouping. Since the param-
eters of the perturbation model at the output of an
algorithm is an indicator of the performance of the al-
gorithm, one could utilize these models to automate
the selection of various free parameters (thresholds)
of the algorithm. We organize this paper into two
parts, one containing the details of the perturbation
model(s) of true feature entities at the output of the
feature extraction sequence and the other containing
the details of the perturbation model for random enti-
ties occurring at the output of the feature extraction
sequence. We then provide theoretical plots of perfor-
mance measures at each stage of our vision algorithm
sequence.

2 Random Perturbation Models for
Boundary Extraction Sequence

In this section we discuss a theoretical model
by which pixel noise can be sucessively propagated
through an edge labeling algorithm, an edge linking
algorithm, and a boundary gap filling algorithm. We
concentrate on describing the idealizations for the s-
patial configurations of interest and the nature of the
random perturbations which affect these idealizations
at each stage.

2.1 Perturbation model at input of edge
detector/linker

Our edge idealization is that of a linear ramp edge.
Our random perturbation model is that each pixel val-
ue is corrupted with additive zero mean Gaussian noise
with known standard deviation. Due to the noise, the
edge labeling process mislabels some true edge pixel-
s as non-edge pixels. We call these misdetected edge
pixels. Our non-edge idealization is that of a flat gray-
tone surface. OQur random perturbation model is that
each pixel value is corrupted with additive zero mean
Gaussian noise with known standard deviation. Due
to the noise, the edge labelling process mislabels some
true non-edge pixels as edge pixels.
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2.2 Edge detection step — Analysis

There are two kinds of errors in the feature extrac-
tion step, namely: misdetection of true feature en-
tities and false labelling of non-feature entities. T-
wo measures of performance of an edge detector are
the probability of misdetection and the probability of
false alarm. In this section we derive expressions for
the probability of misdetection and probability of false
alarm of gradient based edge operators.

2.2.1 Probability of Misdetection of a Gradi-
ent Edge

We assume that the gradient at a particular pixel
is estimated by computing an equally weighted least
squares fit to the gray levels in the pixel’s neighbor-
hood. It is also assumed that the input image is cor-
rupted with additive Gaussian noise with zero mean
and variance o2, If we approximate the image gray-
tone values in the pixel’s neighborhood by a plane
ar+ fe+7, then the gradient value g = /a2 + 82. To
estimate & and 5 we use a least squares criterion. On
the basis of these estimate, we can derive the density
function for the estimated gradient.

Under our assumptions about the noise model in
the input image it can be shown that the fitted pa-
rameters & and f are Gaussian random variables with
means (i, g and variances tri,orf‘; respectively. We
use the notation U; to denote unit normal random
variables with zero mean and unit variance. Under
this notation we can rewrite the expressions for a and
Bas: o= pu,+o,U; and = up + opls. Note that:
0o’ = o3? when a square neighborhood is used in the
fit and they are related to the input noise variance o2
by the expression:o,? = %,— Here X, 2.r? is the
summation of the squared row index values over the
neighborhood used in the least squares fit.

2.i(U; + 6;)% is distributed as a non-central chi-
square distribution with non-centrality parameter

i=162. Now:

G*=a+ 52 = ag.xlz(ég) +0'§.x12(6§-) (1)
where: 6, = £= and 65 = 2. Now, (U + 6,)?
and (U, + 65)? are non-central chi-square distributed
with noncentrality parameters §3 and 63 and 1 de-
gree of freedom. The distribution of the sum of two
non-central chi-square distributed random variables is
also non-central chi-square distributed. Press [3] has
shown that the distribution of linear functions of inde-
pendent non-central chi-square variates with positive

coefficients can be expressed as mixtures of distribu-
tions of central chi-square’s. In the situation where



the input noise is additive zero mean Gaussian noise
we have shown that the ratio G?/¢,? is a non-central
chi-square distribution. with 2 degrees of freedom and
non-centrality parameter C' = (a2 + ps?)/ca®. The
probability of misdetecting the edge is given by

TQE,Ecra)

g = Prob (xgz(C) < 2 (2)

2.3 Edge linking or grouping step — Anal-
ysis

A simple edge linking procedure links adjacent edge
pixels together. A more sophisticated edge linker
would use edge direction estimates. Neighboring edge
pixels would be linked together if their spatial relation-
ship is consistent with their edge directions and their
edge directions are similar enough. Due to misdetec-
tion of some edge pixels, an entire boundary is not ac-
tually detected at the edge detector output. Instead
after edge labelling and linking there are short bound-
ary segments with gaps in between them. The gaps
are caused by misdetected edges. A measure of per-
formance of an edge linking scheme is the probability
of correct grouping of edge pixels. In the next section
we show how the distribution for the edge orientation
can be approximated by a Von Mises distribution. Us-
ing this result, we then derive the expression for the
probability of correct grouping of true edge pixels.

2.3.1 Probability of correct edge grouping

The gradient magnitude is given by /&2 + 2. The
estimated edge direction is given by: 6 = tan~'(3/a).
Now, & and ﬁ are Gaussian random variables with
parameters (Uq,0q) and (up, op) respectively. Hence
tanf is distributed as the quotient of two non-
standardized normal random variables. Springer [5]
gives the derivation of the probability density funec-
tion for this case. Mardia [2] gives the derivation for
the probability density function for the orientation (
by letting & = gcos# and B = gsinf ) in terms of
the bivariate normal distribution for (e, #). The dis-
tribution so derived is called the offset normal distri-
bution and is related to the Von Mises distribution
which is widely used in the literature. The Von Mises
distribution can be obtained from the offset normal
distribution if we assume equal variances for & and
B. Indeed, as shown in Haralick [1], the estimates for
the variances of & and 4 will be the same for square
facet windows. Hence in the discussion that follows
we assume that © has the Von Mises distribution with
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parameters po = tan™'(f/&). and £ = 1/042. A ran-
dom variable © is said to be Von Mises distributed
if:

p(6) =

1 e® cos(6—pq)

0<
o <8 <2r

3

>0, 0< o <21

Here yg is the mean, & is the precision parameter and
In(k) is a modified Bessel function of the first kind,
oo

order zero and is given by:
1 1 2r
I{](R) = Z ;1—2 (EK)

r=0

In the case of an edge linker which links togeth-
er pairs of neighboring pixels if their estimated ori-
entations are similar enough, the difference of the
estimated orientations #; and #, is computed. If
(61 — 62)mod2r is small enough, then the pixels are
linked. To determine what is the probability of link-
ing pairs of edge pixels whose true orientations are
the same, we proceed as follows. Let #; and 5 be
Von-mises distributed random variables with means
p#1 and pp and concentration parameters x; and Ko,
respectively. Then the distribution of the difference
of the random variables (6; — 62)mod2r is derived in
Mardia [2]. It is shown in [2] that the difference is not
Von-mises distributed, but can be approximated by a
Von Mises distribution with mean uz = u; — g, and
concentration parameter k3, where k3 is the solution
to the equation:A(k3) = A(k1)A(k2)

1 1 1
T gm e

2z 8z2 8z3 (5)
When gy = ps = gt and K1 = kg = k then uzg = 0 and
k3 & %, which is accurate for large values of k. The
probability of the correct grouping of two pixels will
therefore be given by the integral of the Von Mises
density function with parameter k3 over the range of
allowable orientation differences.

(4)

Alz)=1

2.4 Perturbation model at edge detec-
tor/linker output — Misdetection

In the above discussion, we derived expressions for
various measures of performance of an edge detector
and linker. In this section we show how these mea-
sures relate to an algorithm employed at a subsequent
stage, such as the gap filling algorithm. We now il-
lustrate how the boundary output obtained can be vi-
sualized as breakages of the ideal expected boundary,
broken by a renewal process. In addition we illustrate
how the various probabilities calculated at the previ-
ous sections relate to the interevent distances of the



renewal process. Imagine that we start from the left of
the ideal arc/line segment and walk along an infinite
line. At each step the probability that the particular
pixel will be labelled correctly as an edge pixel in the
output is p=1— q. A breakage occurs when we first
encounter a pixel that is labelled incorrectly. Simi-
larly, if we continue walking until we again encounter
a pixel that is labelled correctly we would have tra-
versed on top of a gap. If one continues walking until
the end of the ideal segment is reached, one would have
traversed a number of edge segments and gaps. The
instances where an edge segment follows a gap can be
considered as events of a discrete renewal process and
the interevent times are distributed as the sum of edge
segment length and the gap length.

The probability mass function for the length of the
edge segment is given by: Pregmenttengn (I = k) = pq.
This is the geometric distribution which is a special
case of the negative binomial distribution. The distri-
bution of gap lengths between two edge segments is
given by: Pyapiengtn(l’ = k) = ¢*p. The above dis-
tributions assume that the value for the lengths can
theoretically be infinite. Let X; be the length of the
ith edge segment encountered in the walk. Let X'
denote the length of the ith gap along the walk. If we
assume that the true arc/line length is L pixels, we
are dealing with a situation where the lengths cannot
exceed L pixels. Hence the more realistic distributions
would be the truncated geometric distributions. The
probability mass function for the short edge segment
lengths would then be given by:

(P
1— pl+t

(6)

Psegmem!ength (1 = k) =

Similarly the probability mass function for short gap

lengths would be:

(¢*p)
Pyaptengtn(I' = k)= I__qf,_qq (7)
2.5 Perturbation model at edge detec-

tor/linker output — Properties

In order to model the gap and segment lengths eas-
ily, we approximate the discrete distributions used in
the above section by their continuous analogs. We
then derive theoretical expressions for the probabili-
ty density function of the inter-event distances of the
line breaking process. Further, we show that the mean
number of breaks in a given interval is proportional to
the length of the interval, a property that is intuitively
pleasing since longer segments would be more likely to
be broken into pieces than shorter segments.
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2.5.1 Probability density function of interval

between two breaks

We know that the renewal process consists of alternat-
ing edge segments and gaps. The edge segment lengths
and the gap lengths are both geometrically distribut-
ed. Here we approximate the geometric distribution
by its continuous analog, the exponential distribution.
A random variable X is exponentially distributed with
parameter A if: Prob(X = z) = lezp~*%., The ex-
ponential distribution is the continuous analog of the
geometric disribution. The parameter, A, of the expo-
nential distribution can be shown to be equal to the
ratio (¢/p) of the parameters in the geometric distri-
bution. Now we model the breaks by assuming that
the arc segment lengths and the gap lengths are expo-
nentially distributed with rate parameters A1, and Ay
respectively. The parameter \; is an indirect measure
of how often a line or curve of fixed length would break
up since it is related to the mean segment length. The
parameter A; is a measure of how long these breaks
would be.

Let X denote the random variable giving the dis-
tance between two successive starting points of short
edge segments. First we derive the expression for the
probability density function for the random interval
X. Let X; be an exponential random variable, E(;),
with rate parameter A;. Let X, be an exponential ran-
dom variable with rate parameter \,, E(A2). Since Lz
corresponds to the mean gap length, Ay >> A;. We
know that: X = X; + X,. The probability density
function of X is therefore the convolution of the indi-
vidual probability densities of X; and Xsy. Therefore:

Xl

Prob(X =z) = 3 (8)

= (e=217 _ )

2.5.2 Derivation for Expected number of
breaks in a line/curve :

In the discussion that follows we derive expressions
for the mean number of breaks by considering each
break to be an event with the interevent distances
being distributed according to equation ( 8). Let
Y1,Y2,..., Yy be iid random variables with proba-
bility density function given by equation( 8). Let N (t)
denote a counting process which gives the number of
breaks in an interval {. The process generated is a
renewal process with probability density function for
each interval being:

Prob(Y =wy)= (9)

A1Az —Ay —Azy
Yy (e — e~*aY)

The expected number of events in an interval of ¢



is given by: M(t) = N(t) = 2 _peo kProb(N(t) = k)
1 _ e—(;\g-{-)\g)t

It can be shown that:
t 10
) [ AL+ Ay (10}

A1Ag
M) = (Al + A2
From the above expression we can see that if ¢ is zero
M(t) is zero and as ¢ tends towards infinity M(t) also
approaches infinity. Normally A; << A3 and 1 >>
e~*2' and the expression for M (t) becomes:M(t) =
Ait. That is, the mean number of breaks in the true
boundary is a linear function of the length of the
boundary.

2.6 Gap filling algorithm — Analysis

After edge linking, the boundary gaps must be
filled. The boundary gap filling procedure will fill gaps
of length less than a specified length L. The pertur-
bation model for the input data is nothing but the
renewal process, and the questions are: what is the
data model for the output of the gap filling algorithm
? What is the distribution of gap lengths and what
is the distribution of segment lengths? We show here
that the mean number of gaps that are left unfilled in
the output is the product of the mean number of gaps
in the input and the probability that a random gap is
not filled. Due to lack of space we do not include the
results for the distributions of the segment and gap
lengths.

The input to the gap filling procedure is a renew-
al process and the output obtained from the proce-
dure is also a renewal process. We now derive the
expression for the probability density function of the
interval times in the output renewal process. Consid-
er an interval in the output process. This interval was
obtained by deleting multiple events (filling gaps of
length less than some threshold) from the input pro-
cess. The probability of a gap in the input being filled
was (1 — e(=*2L)). Let p = e~*7L. Given that there
are exactly 7 intervals in the input process the prob-
ability that exactly 7 — 1 intervals vanish to produce
the output is given by: p(1—p)~!. Using the fact that
the output process intervals are obtained by random
convolution of the interval times in the input process,
we can show that the expression for the mean number
of breaks in the output of the gap filling procedure is
given by:

Al/\2p —iAL 3)t
M;(t) = (m) [().1 + A}t —(1— e~ +’£ ) ;}
11

Since Ay >> A;, we can approximate the above ex-
pression by setting Ay + A2 = A5 to:

My (t) = M(t)p = M(t)e~?2F, (12)

This means that the mean number of gaps in the out-
put is the product of the expected number of gaps in
the input, A1?, and the probability that a gap is not
filled, p.

2.7 Perturbation Models for Random En-
tities

In the above analysis we modelled the perturba-
tions to the true features we are looking for, namely
curve/line segments. Here we now focus on modelling
false features that are produced in various stages of the
algorithm sequence. At the edge detection step the
input image gray values are assumed to be corrupt-
ed with noise which may be modelled as a Gaussian
distribution with zero mean and standard variance o.
That is: I(r,¢) = I,(r,¢) + n(r,c), where, I(r,c) is
the observed image gray value, I;(r,¢) is the true gray
value and 7(r, c) is the noise component. Often n(r,c)
is assumed to be zero mean Gaussian with a standard
deviation of o. If we had correlated noise in the gray
level image, the edge detector labels non-edge pixels
as edge pixels and the edge linking and fitting step
produces short line segments at the output. We first
illustrate how the noise model in the input propagates
to the output of the edge operator. We model the pro-
cess seen at the input of the edge linker as a random
point process.

2.7.1 Probability of False alarm at the edge
detector output

We assume that the input data at the edge detection
step is a region of constant gray tone values with ad-
ditive Gaussian noise. Since a pixel is labelled an edge
pixel if the estimated gradient value, G, is greater than
a specified threshold, 7", the probability of false detec-
tion is P(G > T). The coefficients o and S of the facet
model described in chapter 2 are normally distributed
with zero mean. If the input noise variance is o2 then
the variance of @, oo? is equal to: ¢2/3 ¥ r?. The
variance of f, o, is equal to: o2/ Y c%.

Note that the summations are done over the index
set for r and ¢. Since G? = o2 + 42, if we assume
a square neighborhood then the G?/s,? is chi-square
distributed with 2 degrees of freedom. So the proba-
bility of labelling of a noise pixel as an edge pixel can
be computed once we know the variance for the pa-
rameter . Note that only when the operator uses a
square neighborhood the estimates of the variances for
a and J are equal. The above simplification is possible
only under this condition. On the other hand when a
rectangular neighborhood is used the only difference



is that G? is distributed as a linear combination of two
chi-square distributed random variables.

2.7.2 Noise process at the input of edge linker

In the analysis that follows we take a look at the s-
patial pattern of these random false labellings over an
image. Since each non-edge pixel in the image gets
labelled incorrectly as a true edge with probability p,
the spatial pattern generated follows a discrete ran-
dom process. The discrete random process we use is
the Bernoulli lattice process, see [6]. The Bernoulli lat-
tice process is the discretized analogue of the Poisson
point process.

2.7.3 Nearest Neighbor distance distribution
of the point process

We have seen that the spatial process seen at the out-
put of the edge detector is the discretized version of
the Poisson point process. Since two points in the
input of the edge linker gets linked in the output if
the distance between the points is less than a speci-
fied threshold the distance distribution between events
in the input is of interest to us. We give expressions
for the nearest neighbor distance distribution for the
events of a Poisson point process here. The general so-
lution is given in [6]. Let D(r) denote the probability
distribution function of the nearest neighbor distance,
then D(r) = 1 — e=(*""), The mean distance can be
shown to be: u, = ﬁx A given edge pixel in the
input has a probability p(L) of getting deleted in the
output, where p(L) is the probability that there exists
no edge pixel within a radius of length L around the
given edge pixel. This suggests that the input Poisson
process is being thinned to produce the output pro-
cess. However, the gap filling algorithm fills the gap-
s and therefore produces segments instead of points.
The process so obtained is a line segment process.

3 Theoretical Plots

In this section we provide theoretical plots for some
of the performance measures derived in the previous
sections. Specifically, we plot the theoretical false alar-
m and misdetection characteristics of gradient based
edge detectors. Figure 1 gives the false alarm vs mis-
detection curve for a gradient based edge detector that
uses equally weighted least squares fit (5 by 5 win-
dow size, Noise variance = 25 ). Figure 2 gives the
theoretical plot of the probability of misdetection ver-
sus squared gradient threshold for various edge slopes.
Figure 3 shows the probability of false alarm versus

526

squared gradient threshold, for various noise variances
and a true edge slope of 4.0. Figure 4 gives the mean
gap length between true edge segments as a function
of squared gradient threshold. A true boundary seg-
ment of length 100 pixels was assumed and the noise
variance was 25.0, window size = 5 by 5, edge slopes
of 2.0, 3.0, and 4.0. It can be seen from this plot that
the mean gap length (for the most part) varies linear-
ly with the squared gradient threshold. Figure 5 is
a plot of the mean lengths of the random short seg-
ments (false alarm) as a function of squared gradient
threshold. It can be seen that the segment lengths are
rather small, this is due to the fact that the plot does
not account for the gap filling step.

4 Conclusion

In this paper we illustrated how one could set up
random perturbation models for an example vision se-
quence involving edge finding, linking and gap filling.
This paper discusses how the models fit together for
the example sequence and does not provide compar-
isons regarding the superiority of one technique over
the other. Following the same methodology, a com-
parison of the performance of gradient based edge op-
erators and morphogical edge operators is done in [4].
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