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Abstract

Standard radiographs are documents that provide
a significant amount of information for the orthopedic
surgeon. From the radiographs, surgeons will make
many measurements and assessments. A major prob-
lem 1s that measurements are performed by hand and
most often by the operating surgeon who may not be
completely objective. The evaluation of the spine ra-
diographs includes progression of scoliosis (curvature
of the spine), spondylolysthesis (malalignment of the
spine), and progression of degenerative disc disease
(such as a "slipped disc”) or certain spine fractures.

While there are other factors that contribute to the
variation from one radiograph to the next, there is an
inherent imprecision in hand made measurements. To
the extent that a computer could increase the accuracy
and precision of these measurements, diagnostic accu-
racy would be increased, exposure to radiation would
be decreased, therapies appropriately assigned. To
alleviate the burden of manual measurements, which
must be made by trained professionals, and make them
more objective, we have initiated a program to aunto-
mate certain radiographic measurements.

This work concentrates on the edge detection step.
we present an edge detection model for standard radio-
graphs, which will be the basis for the measurements
step. In particular, we model the edges of interest as
a linear combination of basis functions. The problem
of edge detection is then presented as a supervised
pattern recognition problem in which the parameters
of the basis functions are learned during the training
phase, and the recognition phase uses these learned
parameters to locate pixels that belong to edges. Since
edges may appear in any direction, we develop the
mathematical tools to determine the gradient direc-
tion of the edge. Finally, we discuss future work in
this project.

1 Introduction

Today, an orthopedic examination is rarely con-
sidered complete without radiographs. The orthope-
dic surgeon is therefore interpreting radiographs on

a daily basis, and assigning treatments according to
the interpretations. Part and parcel of the process of
interpretation are measurements made on the radio-
graphs. For example, the decision regarding the choice
of brace treatment versus surgical treatment for sco-
liosis is based upon measurements on radiographs of
the spine.

Certainly, no such decision is based entirely on mea-
surements from the radiographs. However, the sig-
nificance of these measurements is not limited to the
initial evaluation. Every treatment, operative or non
operative, has its risks and benefits. The medical com-
munity is obliged to review the results of the various
treatments and, as the results dictate, revise the guide-
lines for treatment.

2 [Edge detection techniques

Edge detection is the identification of the inten-
sity changes corresponding to the underlying physical
changes. To achieve radiograph understanding, com-
puter systems must relate the raw input data to the
physical structure that cause it, i.e., the objects be-
ing radiated. Edges are very likely to be projected as
changes in the intensity data received by the sensor.

Over the last 20 years, several types of edges detec-
tors have bheen develeped.

A related  operation, the “gradient,”
proposed by Roberts [3]. It detects either a horizontal
or vertical edge when g(7, 7) is the gray level at point
(7,7). This operator involves only four points and is
therefore extremely sensitive to noise and surface ir-
regularities.

Hueckel’s model [3] of an edge is a step function F in
a circular disc. Hueckel’s operator is an efficient solu-
tion to the minimization problem. The technique used
is series expansion and truncation in the frequency do-
main. Specifically, the functions that are used as a
basis are separable into a product of an angular and
radial component, i.e. it applies Fourier analysis in
polar coordinates.



More claims of optimality have been made by Marr
and Pogio. The basic approach of Hildreth [8] is
to convolve the image with a rotationally symmet-
ric Laplacian of (Gaussian and to locate zero crossings
of the convolution. The Nevatia-Bavu [9] technique
consists of determining the edge magnitude and direc-
tion by convolving the image with a number of masks
and thinning and thresholding these edge magnitudes.
Torre and Poggio [11] judiciously point out that better
results may be obtained by using two directional filters
with directional derivatives especially in the neighbor-
hood of corners.

Haralick [4] locates edges at zero crossings of the
second directional derivative in the direction of the
gradient. Derivatives are computed by interpolation
of the sampled intensity values. The occurrence of a
digital step edge is detected if the zero crossings of
the second directional derivative in the direction of
the estimated gradient is negatively sloped. On some
images, the resulting edges are visually better than
the ones from the Marr-Hildreth detector.

Canny [2] defines certain desirable criteria for edge
detection. He shows that in 1-D, the optimal filter
is a linear combination of four exponentials well ap-
proximated by a first derivative of a Gaussian. In
2-D images, he proposes to use a combination of such
filters with varying length, width and orientation .
Shen and Castan [10] proposed a linear filter, in which
images are convolved with the smoothing function

f(z) = —1 In(b)ble! prior to differentiation.

3 A pattern-recognition approach to
edge detection

Edges in radiographs present a more complicated
problem than identifying a step function. Even apply-
ing the most advanced techniques still does not yield
results that enable us to advance to the level of higher
image understanding. We therefore propose here a
basis for a model for detection of bone edges.

We model the edges of interest analytically as the
linear combination of a number of basis functions
Bi(z1), Ba(z2), Ba(zs) ... Bn(z,) as follows.

I(:L‘) = Z b;B;(.’L‘,‘) —
i=1
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The problem of edge detection is then presented
as a supervised pattern recognition problem in which
the parameters of the basis functions are learned dur-
ing the training phase, and the recognition phase uses
these learned parameters to locate pixels that belong
to edges. Since edges may appear in any direction, in
the next section we develop the mathematical tools to
determine the gradient direction of the edge.

Figure 1 depicts the edge model in 3D space, where
(r,c) is the image plane (rows and columns of pixels)

I(r.c)

Figure 1: Radiation intensity through a schematic sec-
tion of a bone

and the third dimension is the image intensity for each
pixel. In figure 1, the edge is parallel to the ¢ axis,
therefore it can be modeled using equation 1 with « =
r. Here, the gradient direction 8 is zero.

However, either the normal curve in the wall of the
vertebrae or curvature in the spine may result in an
alteration in the orientation, making an angle § with
the r axis, as shown in Figure 2.

4 Determining the bone edge direction
By substituting z = rcos(8) + csin() in equation

1 we generate a 3D surface that is a sweeping of the
edge curve perpendicular to the gradient direction of

I(r.e) = Z b; Bi(rcos(8) + csin(6)) (2)
i=1

The partial derivatives of [ with respect to r and ¢
are therefore:

Qf%_’_i) = ¢os(8) ; bi By (rcos(6) + csin(8))  (3)

and

“—aIg;’ %) sin(6) ZE bi B{'(rcos(6) + csin())  (4)

A unit vector is:

aI(r,c
afagf:,c)
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_ ] cos(8)
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where the denominator was taken to be positive
because the gradient direction is set to go upwards.
To estimate the edge direction, we assume that the

neighborhood of a pixel can be approximated as a
plane described in equation 6.




I(r,c) = ar+Be+v+e(r,c) (6)

Here, ¢(r, c) is the error function, the difference be-

tween the observed intensity values I(r,c) and the ex-

pected ones, so we wish to minimize it. To this end,
we convert equation 6 into a least-square problem:

€= 3 3 [I(rc) - (ar+Be+7+e(r, o))

r=—mc=—m
e
where (—m, —m) and (m, m) are the coordinates(o)f
the lower left and upper right corners of the (2m +
1% * (2m + 1) mask used as an approximation for the
plane patch of the pixel under consideration, located
at (0,0). We are looking for «, # and ¥ which minimize
€2 . To find o that minimizes €2 we take the partial

derivative of €2 with respect to o and equate it to zero.
P !

= 2 3 2 (ar+ Pt 7l (1) =0

re—mc=—m (8)

Opening the parentheses in equation 8 we get:

—-ZI(r,c)r+Zar2+Zﬁrc+Z7r= 0 (9)

where ) . is
)

Z:'nz—m E;rl:—m ¢
f(r) is an odd function, because f(r) = —f(—r).
Since f(r) = r is taken from —m to m, it is a function
taken over even limits (i.e., limits of the same size m).
v?% is an even function since it is constant. Zr,c yr

is an odd function taken over even limits because it is a
product of an odd and even function, both taken over
even limits. Since the summation of an odd function
taken over even limits is identically zero, 3. yr =10

shorthand notation for

Equation 9 then can be written as follows:

ZI(?, e)ir= zgrz—t-Zﬁrc (10)

The last term can
be written as B(} )(3-T _.. ¢) where both of

r=—m r
the last two elements are identically zero.
Hence, we get:

I(r,c)r
a = M (11)
o
where the denominator is a fixed number 2(2m +

1)> i, k? for a given m. For example, if m = 2, we
ave:

3 m m
azm(m+1)(2m+l)2 Z Z I(r,e)r  (12)

r=—mc=-m

Figure 2: Inclination and gradient directions of unit
vector

A similar development for 8 yields:

Tty

or

3 m m
ﬁ:m(m+1)(2m+l)2 Z E I(r,c)e (14)

r==mc=-—m

v? is the elevation of the plane, therefore it may
be taken as zero without loss of generality. To deter-
mine the relations between «, 3, r, and ¢ in the plane
f(r,¢) = ar+Be+v, we find (r, ¢) such that r+c? =1
(a unit vector) which maximizes f(r,¢) . The direc-
tion of the vector will be the gradient direction, as
depicted in figure 2.

Using Lagrange multipliers, we get:

e(ric)=ar+fe+y— A(r2+c?-1)

de _ = —
a—j—a—2r)\—0:>r_%

E=p-2A=0>c=4

-g§- =r4+c¢2-1=0

Substituting 7 and ¢ in 2 4+ ¢ =1, we get
(&)? 4 (£&)? = 1 which yields

A=1/24p5?,

o

r= Jore and

R
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Substituting r and ¢ in the plane f(r,¢) = ar +
Bc + v and taking ¥ = 0 we get:
o? B2 _ /oy 32
\/az_'_ﬁz + \/az.hgz =va’+p
which is the amount we rise by taking a unit step
in the gradient direction, as can be seen in figure 2.

The actual way we traverse is \/1 + a? + 52 and the

gradient direction 8 is found as:

e L(rie)e

tan~™! =t~ (15)

ore L(rie)r

while the angle of the plane of inclination is:

0 = tan

B
-



¢ =tan"! /a2 4 §2 =
tan~! (E I(r,e)r)? + (ZI(r, c)c)? (16)

Having found 8, the adjustment of our edge model
is done by using equation 2 rather than 1.

5 Modeling the edge detection as a su-
pervised pattern recognition prob-

lems: future work

Research must be done in order to select the set of
basis functions which will most closely represent the
observed edges of interest. We are currently work-
ing on a linear combination of a shifted Gaussian and
hyperbolic tangent, which seem to be adequate. An-
other problem will be to determine the parameters of
these functions. We represent the problem as a super-
vised pattern recognition problem, where during the
learning phase the system is shown a number of pix-
els that are edges, and the parameters are calibrated
accordingly. Then, in the recognition phase, these pa-
rameters are substituted in the basis function and are
used to determine for each pixel whether or not it is
an edge.

The pixels thus identified constitute the contour of
the cortical bone and any orthopedic implants. These
points may serve many functions. First, they may
as anchors for traditional orthopedic measurements.
The angle of curvature of the spine is one such mea-
surement. Alternately, objective measurements such
as cortical area may made where previously subjec-
tive interpretation was thought to be adequate. In
both cases, great precision is brought to bear upon
the decision process. The numbers obtained from the
computer radiograph may be at odds with those deter-
mined by the physician by hand. Hence, inter-observer
variation will still exist. However, the issue of intra-
observer variation is essentially eliminated,

As the computer can be taught to recognize land-
marks, there are two additional benefits that may ac-
crue. First, standard measurements will require less of
the physicians time. Additionally, new measurements
may be tested for their clinical utility. In this sense,
we hope that our measure of cortical area will largely
replace the subjective measure of bone quality. Ulti-
mately, the quality of medical care will be improved.
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