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Abstract

This paper describes an approach to do relational matching mor-
phologically with a computational complexity proportional to the num-
ber of pixels. We give a description of the theory for binary images
and illustrate this theory with an example from handwritten numeral
recognition.

1 Introduction

There are a variety of approaches to matching models, approaches as
simple as template matching to those as complex as relational match-
ing. The template matching approaches are simple to implement but
are rather unforgiving for moderate perturbations, missing parts, or
extraneous parts. The relational matching approaches are more ro-
bust in this regard but have a higher computational complexity. In
this paper we describe an approach which is intermediate between
template matching and relational matching. It has a computational
complexity proportional to the the computational complexity of tem-
plate matching and yet it can tolerate moderate perturbations. We
illustrate the approach in the two-dimensional domain of handwritten
character recognition.
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2 Definitions and Notation

In this section we define all the necessary terms and give the nota-
tions used in this paper. The definitions of the basic morphological
operations based on the tutorial by Haralick et al. [HSZ87] have been
restated below for easy reference.

Dilation is the morphological transformation which combines two
sets using vector addition of set elements. If A and B are sets in VAS
the dilation of A by B is the set of all possible vector sums of pairs of
elements, one coming from A4 and one coming from B.

Definition 2.1 The dilation of A by B is denoted by A@® B and is
defined by

A@B:{cezz’c:a+bforsomea€Aandb€B}.

Erosion is the morphological dual of dilation. If A and B are sets
in Z X Z, then the erosion of A by B is the set of all elements of z for
which z + b € A for every b € B.

Definition 2.2 The erosion of A by B is denoted by A© B and is
defined as

AeB:{zeZ2|z+bEAforeverybEB}.

Opening an image with a disk structuring element smooths the
contour, breaks narrow isthmuses, and eliminates small islands and
sharp peaks or capes.

Definition 2.3 The opening of a set B by a structuring element K
is denoted by B o K and is defined as

BOK:(BSK)GBK.

As in the binary case, there are two primitive greyscale mathe-
matical morphology operations, dilation, denoted by “@®” and erosion,
denoted by “©.”

Definition 2.4 The grayscale dilation of f by k is defined by

(f & k)(z) = maz{f(z — 2) + k(2)|((z € K), (z - z) € F)}



The result is the maximum value of the sum between the ima
and the structuring element value within the local neighbor
defined by the spatial extent of the structuring element. In
case, where all the values of the structuring element are zero, (
height) the equation is reduced to:

(/@ k)(=) = maz{f(z - 2)|((z € k), (= - z) € F)}

In a zero height greyscale dilation, the result is just the m.
value of the image within the local neighborhood, as defined
spatial extent of the structuring element. Thus, a zero height g
dilation is an operation which tends to blur local bright regic
the remainder of this paper, zero height structuring elements
assumed for greyscale dilations.

Definition 2.5 The grayscale erosion of f by k is defined by
(f© k)(2) = min{f(z + 2) - k(z)|(z € K)}

The result is the minimum value of the difference between the
value, and the structuring element value within the local nej
hood, as defined by the spatial extent of the structuring elemen
special case, where all the values of the structuring element ar
(i.e. zero height) the equation is reduced to:

(f©k)(e) = min{f(z + 2)|(z € K)}

In a zero height greyscale erosion, the result is Jjust the mir
value of the image within the loca] neighborhood, as defined |
spatial extent of the Structuring element. Thus, a zero height gre
erosion is an operation which tends to blur local dark regions
the remainder of this paper, zero height'structuring elements v
assumed for greyscale erosions,

The greyscale closing, which is a dilation followed by an e
using the same structuring element, tends to i valleys (i.e. re
local dark areas). The greyscale opening, which is an erosion fol
by a dilation using the same structuring element, tends to cl
peaks (i.e. remove local bright areas.)
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3 Part Detection

In this section we illustrate some example ways in which a part on a
binary image can be detected. A model part having a minimum width
can be detected by opening the binary image with a horizontal line
segment of this minimum width.

Iy = Iy o Horz_Line(min_width)

Such an opening might select other kinds of parts as well. Indeed
all sections of parts which have a horizontal width greater than the
length of the horizontal line segment would be selected. Oumly if the
horizontal width was a distinguishing feature would the opening only
select the part. Distinguishing feature in this case would mean that no
pixel of any other part is in a horizontal extent of length min_width.
A model part having a maximum width can be selected by the
complement of the opening intersected with the original image.

I = Iy— (Ipo Horiz_Line(maz width))

The intersection of these two operations can be used for a part de-
scription distinguished by a width range.

Ii=IiNnI

Similarly, for a part criteria of height, the same operations would
be used, but with a vertical line as the structuring element. A class
criteria that involves both a width and height component simultane-
ously, is done by combining both dimensions into a single structuring
element. The combination is accomplished by a dilation, specifically
dilation of the horizontal line by the vertical line, which results in a
rectangle.

Iy = Horz_Line(width) ® Vert_Line(height)
= rectangle(width, height)
The combination of two 1D structuring elements of lines into a

single 2D structuring element of a rectangle can be extended again to
generate a 3D structuring element. For a part criteria that has a given
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minimum, length width, and height a rectangular parallelepiped can
be used.

Is = Line(z,0,0)® Line(0,y,0)® Line(0,0, 2)
= parallelepiped(z,y, z)

Structuring elements are not restricted to those made up of linear
segments, for any shape can be used. For a class criteria of minimum
diameter at all 2D angles, a disc can be used, while for 3D, a sphere
would be used. For objects that have a minimum diameter in 2D and
a minimum extent in a third, the dilation of a disc by the extent would
be used, namely a cylinder.

For a less restrictive criteria which specifies the part to be of a min-
imum length in any of one or more directions, a generalized opening
can be used. The generalized opening is the union of all the individu-
al openings using the same structuring element, but which have been
rotated at different angles. For example, if the part criteria is for a
minimum diameter in any 2D multiple of 45 degree direction, the form
of the generalized opening would be as follows.

Is = U Io o Rotate( Line(min_diam), §)
6€(0,45,90,135)

The known spatial relationship between two parts can be used in
locating one part based on the location of the other part. The detec-
tion algorithm for the second part can be expressed morphologically
in three steps. The first step is to dilate the detected first part to
account for the distance uncertainty and to account for the size differ-
ence in the parts. The second step is to translate the dilated first part
so that its center covers the second part. This translation would be
the difference in translation of each part’s center from the origin of the
model coordinate reference frame. The third step is to intersect the
translated dilated first part to detect the second part. As an example,
consider two disks, R; and Rj, of known diameters, r; and T2, T1 > To,
which are separated by a distance D 4 d. Given an image, IRy, of the
Just isolated first disk and an image, Ip, of both disks, the region of
the second disk, Ir; can be found as follows:

Ir, = Ign (qu S d‘isk(d-l- Ty — rz))p
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4 The Relational Morpology Approac}

The idea of relational morphology is as follows. Like relational match-
ing, a model is composed of parts, called primitives, which stand in
spatial relation to each other. This spatial relation is translation.
Recognizing a model Tequires identifying the primitives and verifying
that they stand in the correct spatial relation. The theory we will give
will provide a way of being able to produce morphological recognition
algorithms with guaranteed correct classification rates under specified
noise conditions.

Explaining the basis for how relational morphology works with
binary images is simple. A mode] M consists of an ordered pair of two
components identical in form. One component is a model F for the
foreground and the other component is a model B for the background:
M = (F,B). The foreground part F consists of set P of parts, each
of which contains the origin, and a function s defined on P giving the
translation of each part with respect to the model coordinate system:
F = (P,s). Likewise the background part B consists of a set Q of
parts, each containing the origin, and a function ¢ defined on Q giving
the translation of each background part with respect to the model
coordinate system: B = (Q,1).

When a model appears in an ideal image, the model will be trans-
lated into the image. This means that each part will be translated by

When a model appearsin a non-ideal image, the situation js more com-
plicated. Due to clutter, occlusion, and other variations, not all of the
foreground or background parts will in fact occur in the image. Some
may be missing. Furthermore, when parts appear in an non-idea] jm.-
age they do not appear in the ideal form or position. Foreground and
background parts will appear larger. And the position they occur in
is perturbed by a small amount from their idea] Positions. Finally, a
real image may have many other things of non-interest in the image.
This constitutes the clutter. The job of model recognition is to be
able to identify each instance of a perturbed model in the image and
not hallucinate any of the clutter as being an instance of the model.
Since if a part appears in a non-ideal image, it appears larger, the
meaning of a part needs to be explained. A part in the model is not
what should be considered to be an idealized model part. It is not in
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any way the nominal or ideal part. Rather, it is the smallest shape
that would appear in the non-ideal image if the part indeed appears
in the image. Thus, a model part is like a lower set bound on the
nominal or normal part shape.

If a model appears in the ideal image, then each of its parts that
appears in the image will be translated the same way into the image.
For an non-ideal image, the random perturbation process prevents
some parts from showing up in the image, makes those parts that
do show up in the image larger, in the sense of set containment, and
perturbs the translations of those parts that do show up in the image.
Hence, for each number m of foreground parts and each number n of
background parts, the random perturbation model has a parameter
Pmn Which is the probability that at least m foreground parts and n
backgound parts occur in the image at position z if the model occurs
in the image in the image at their positions z plus their translation
plus a small translational perturbation.

Therefore, if  is the translation of the model to the image, thenifa
perturbed foreground part P occurs in the non-ideal image, instead of
occuring as the ideal Py, ,(p) it occurs as [P UP(P)]zy 4(p)16(p)- Here
9 (P) is the subset of points added to the lower set bound P due to the
random perturbation process and 6(P) is the additive perturbation on
the translation for the part P. Similarly if a perturbed background
part @ occurs in the non-ideal image, instead of occuring as @ ;4(q) it
occurs as [Q U{(Q)]z+4Q)+n(q)- In this discussion we will assume that
for every foreground part P, || 6(P) ||< r and for every background
part @, || n(Q) [I< 7.

Let I denote a nonideal image, P* C P denote a subset of P having
exactly m parts, Q* C Q denote a subset of Q having exactly n parts.
Then we can say that with probability pmn

U [PUS(P)otapysspy C I
PeP+

and that

U (@ U (Q)]yq)nq) CI°
QeQr
Now suppose that for every foreground part P there is detection
procedure K(*; P) such that P is detected by K(*; P) And that for
every background part @ there is a detection procedure L{x; Q) such
that Q is by L(*; Q). If the model occurs in the image I at position
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¢ and if part P of the model does indeed show up on the image, then
if the image I is processed with K(x; P), it will certainly be the case
that

P_14P)+sp) C K(I; P)

Similarly if the complement of the image is processed by L(x; Q) and
part @ of the model does show up on the image, it will certainly be
the case that

Qz+(@)+¢(Q) € L(I5Q)

To determine if a part appears on the image then amounts to do-
ing a detection and compensating for the relative translation of the
part and compensating for the random perturbation of the relative
translation. Compensating for the relative translation amounts to just
translating the detection. Compensating for the random perturbation
amounts to doing a dilation. More precisely, if the model is translat-
ed onto the image with translation z and if part P of the model is
one of the model parts that indeed does show up on the image, then
K(I; P)_,p) ® Disk(r) must contain P;. Therefore, since P contains
the origin, it must be the case that

¢ € K(I; P)_yp) ® Disk(r)

The number of foreground parts which appear for a model translated
into the image by translation z can then be written as

n() = #{Plz € K(I; P)_y(p) ® Disk(r)}

Likewise the number of background parts which appear for a model
translated into the image by translation z can be written as

m(z) = #{Q|z € L(I% Q)_yq) ® Disk(r)}

Each of these sums is easily determined by doing a detection on
the binary images, translating and dilating the detections, and then
adding up the results. Recognition of the model at a translation = can
be done by computing n(z) and m(z) and testing whether m(z) > mq
and n(z) > no. Given that the model is translated into the image at
z, the probability that m(z) > mo and n(z) > ng is precisely Pmgng,
guaranteed.
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5 Handwritten Number Recognition

When recognition needs to be done among different shapes, pairs of
which have common parts, it is possible to make the recognition com-
putation more efficient by not using all the model parts. Rather, the
recognition can proceed sequentially examining differences in the p-
resence of the parts permiting the required distinctions to be made.
For example, the numerals 1, 4, 7 and 9 havea near vertical stem that
differentiates them from 0, 2 » 35, 6 and 8. But only 4 and 9 have
a “blob” towards the upper left part of the stem. Thus, detection of
this part distinguishes 4 and 9 from 1 and 7. Further, the “blob” of 4
usually has a concavity facing north where as the “blob” of 9 does not
have such a concavity. Thus, 9 and 4 can be distinguished by using
this concavity feature.

In this section, the recognition of handwritten numerals is done
sequentially with a morphological decision tree. At each node of the
tree a sequence of operations is performed which distinguishes one
group of numerals from another. We have just begun the task of
developing this decision tree and in this section we describe what we
have completed for distinguishing the numerals of 4, 6, 9 from each
other. No attempt of character size normalization has been used.
This may be necessary to add in at a later time. The work has been
mainly concerned with understanding the shape characteristics of the
numerals in morphological terms and has not reached the stage where
we have begun evaluation. The methodology we are following is to
do all our design work on the training set and when the design has
been completed, we will then evaluate on a test set which has not been
worked with during the design phase. So at this point we are not able
to discuss meaningful error rate characteristics except what we have
on the training set.

5.1 Morphological Sequences for Extracting
Features

In this section we describe the morphological sequences for extracting
features that characterize shapes of characters. Some of the primitive
features we have looked at are are stems, blobs, vertical bars, and
concavities.
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5.1.1 Blobs

Blobs are formed in the image when loops or a configuration of pen
strokes get connected into an “ink blot” when we close the image with
a big structuring element. Thus if the image of the character is I,
then the blob can be formed by the operation:

Iblob:I.K

where K is a structuring element big enough to connect the strokes.
For example, if we have the image of numeral nine, the loop of the
nine can be morphologically closed by a structuring element bigger
that the diameter of the loop. The loop will thus get filled and form
a blob.

5.1.2 Stems

Stems are the ascending or descending lines in a character. It is the
part of the line that is not also a part of a blob. For example, the
numeral nine has a loop and a near vertical line at its right. The part
of the line that extends below the loop is the stem. Similarly, the
numeral six has a stem that extend above a loop.

Stems can be extracted by subtracting the blob portion from the
character. Care must be taken while doing the closing for connecting
up the blob. It must be done in a manner so that the concavity
between the stem and the blob does not get filled. In the case of the
numeral nine we used the following sequence to get the stems:

I, = Ie Kwedge

Iy = I,oKg

I = L& Kaquarc
Lisn, = 9701

Here the structuring element K. wedge 15 @ wedge that fits into the cavity
between the stem and lower part of the loop but does not fit into the
gap in the north east corner of the loop. Thus the closing by the
wedge converts loops of size smaller than a wedge to a blob. Therefore,
opening with the disk selects pixels which are not stem pixels. The
structuring element Kg,x is a disk with diameter bigger than the
stem thickness. Therefore opening with the disk selects pixels which
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are not stem pixels. The structuring element K aguare 15 @ square with
side equal to the diameter of the disk used in the opening. This
dilation compensate for the random perturbation of the loop’s relative
translation. The origin of the square should be at the bottom one
third of the height of the square so that the small tails that sometimes
appear in the numeral 6 does not confuse the algorithm and thereby
make a 6 get detected as 9. The last operation, the residue operation
then selects the stem pixels.

5.1.3 Vertical Bars

Vertical bars are detected by opening the image with one pixel wide
lines oriented at near vertical angles and then taking a union of the
results. In our experiments we used lines of length 21 pixels and
orientations ranging from 50 degrees to 110 degrees, measured coun-
terclockwise from the horizontal axis, in steps of 10 degrees. The dif-
ference between vertical bars and stems is that stems are the portions
of the vertical bars that extend above or below the blobs.

IVertBara = (IOKﬂl) U (IO KQQ)U "'U(IDKgn)

where Kg; are the line structuring elements at various near vertical
orientation.

5.1.4 Concayvities

Concavities are regions of the background that are enclosed by the
foreground in three of the north, west, south and east directions. The
east, west, north and south concavities can be found using the follow-
ing relations:

NORTH-CAVITY = (IeN)n{IeS)n(IeE)n(Iew)nT
SOUTH-CAVITY = (IeN)N(I®S)N(ISE)n(IeW)nT
EAST-CAVITY = (IeN)Nn(I&S)N(ISE)n{TawWinT
WEST-CAVITY = (IeN)n(IsS)nTeE)n(Tew)nT.

Here E, W, N, and S are line structuring elements. & is a vertical line
with the the origin at the bottom, $ is also a vertical line structuring
element but with the origin at the top of the line. E and W are
horizontal line structuring elements. E has its origin at the left end
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of the line and W has its origin at the right end of the line. Further
details can be found in [MG89].

5.2 Recognition Algorithm

In this subsection we analyze the characteristic features of the numer-
als belonging to group {4, 6, 9} and how to recognize them. The most
salient features of the numerals belonging to this group are their stem-
s, concavities facing the north direction, and “blobs”. To distinguish
among them, we notice that:

Numerals 4, 6, and 9 have stems, vertical bars, blobs, and north
concavities.

Numeral 4 has a north concavity or a blob to the west of its
vertical bar.

Numeral 6 has a blob to the southeast of its stem.

Numeral 9 has a blob or a north concavity to the northwest of
its stem.

Numeral 6 has a north concavity to the east of its stem.

Numeral 4 has a north concavity to the west of its stem.

Hence, the following algorithm can be used to distinguish the nu-
merals 4,6, and 9 from each other:

Algorithm:

Find stems.

Find blobs.

Find vertical bars.

Find north concavities.

Dilate the stems in the northwest direction.
If the dilated stems intersect the blobs,

(a) If the vertical bars dilated west intersect a north concavity,
recognize the numeral as 4.

(b) Else recognize it as 9.

. Else:
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(a) If the vertical bars dilated west intersect a north concavity,
recognize the numeral as 4.

(b) Else recognize it as 6.

5.3 Experimental Protocol

The algorithms were tried out on a data base having hand written
numerals zero through nine obtained from C. Y. Suen. There were
200 samples of each numeral. These samples were of isolated numerals
and were stored in a runlength encoded form. The characters were
.converted into binary raster scan formats and stored in matrices of
size 65 X 60. The 200 matrices thus obtained were put in one image
with 20 matrices in one row and 10 such rows. Thus the final image
was of size 650 x 1200.

The structuring elements required for the morphological operations
in various steps of the algorithms were judiciously chosen in order to
accomplish the task specification of that step.

The morphological image processing was done using the GIPSY
image processing software package. The machine used was Sun 4
running UNIX operating system.

This data set constituted the training data set and as our work
is still in the exploratory stage we have not looked at our tried out
anything on a test data set.

5.4 Results and Discussion

In figure 1 we give the sequence of morphological operations performed
on for the group I numerals. The processing shown is for the numeral
nine. Figure 1(b) is obtained by closing Figure 1(a) with a wedge
pointing south west. On opening Figure 1(b) with a disk of diameter
9 we get Figure 1(c). Notice that there is no stem in the image. Now
Figure 1(c) is dilated with a square such that it covers the loop of nine
completely. The result is shown in Figure 1(d). In Figure 1(e) we get
the stems by intersecting Figure 1(a) with the complement of Figure
1(d). To check if the blob is northwest to the stem, we first dilate the
stem with a horizontal line 10 pixels in length and 10 pixels above the
origin so that it is shifted up and smeared. This is shown in Figure
1(f). This takes care of the tolerance needed because of the variability
in the positions of the stem and the loop. The shifted stem in Figure
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Figure 1: Morphological processing is shown for the numeral 9.

1(f) is then intersected with Figure 1(c). A non-empty intersection
says that there is a blob to the northwest direction of the stem. Figure
2 is similar to Figure 1, only it shows the 9 recognition procedure being
applied to a numeral 6. Of course, the 6 is not recognized as a 9.

We obtained the following result for the training data set: Two
hundred samples of 4, 6, and 9 each were considered.

Numeral 4: 186 were recognized correctly as 4. Four were classified
wrongly as 6 and ten others were Tecognized as 9.

Numeral 6: 189 were recognized correctly as 6, and eleven were rec-
ognized as 4.

Numeral 9: 191 were recognized correctly as 9, one was recognized
as 6 and eight others were Tecognized as 4.
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Figure 2: The 9 recognition procedure on the numeral 6.
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It is important to note that the recognition procedure uses infor-
mation in in the foreground as well as in the background. For example,
for the numeral three we can either try and detect two semi-circular
curves in the foreground or three wedges in the background due to the
foreground,

6 Conclusion

We have described a general technique for recognition of a model, bi-
nary or gray scale, in which the spatial relation between the model
parts is a translation. We have illustrated these ideas in the domains
of handwritten character recognition. We have also done similar work
in the extraction of biologic structure from MRI data with good suc-
cess. Space has forced us not to say much about this work in this
paper. We will report it in the near future, Our future work must
concentrate on how to optimally estimate the parameters for all the
processing sequences. We believe that this can be done since we have
been able to put the entire process in the setting of a well-defined
random perturbation model.
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