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Abstract—In this study, we revisit quadratic discriminant
analysis (QDA). For this purpose, we present a majorize-minimize
(MM) optimization algorithm to estimate parameters for gener-
ative classifiers, of which conditional distributions are from the
exponential family. Furthermore, we propose a block-coordinate
descent algorithm to sequentially update parameters of QDA in
each iteration of the MM algorithm; for each update, we apply a
trust region method, of which each iteration has a simple closed
form solution. Numerical experiments show that: when compared
with conjugate gradient method, the new proposed method is
faster in 9 of 10 benchmark data sets; when compared with other
widely used quadratic classifiers in the literature, QDA trained
with the proposed method is either the best or not statistically
significantly different from the best ones in 8 of 10 benchmark
data sets.

I. INTRODUCTION

Quadratic discriminant analysis (QDA) is a classical gener-
ative probabilistic method for classification problems. Essen-
tially speaking, conditional distributions of QDA are assumed
to be multivariate Gaussian; posterior distributions are derived
via Bayes theorem, and used to classify observations into dif-
ferent classes [1], [2]. Traditionally, parameters of QDA are es-
timated by maximizing the joint likelihood of observations and
their associate class labels. Though computational efficient,
this generative approach does not aim at reducing classification
error, and is not robust to model mis-specification. For recent
studies on QDA, we refer to [3] and references thereof.

Generative and discriminative learning are two commonly
used approaches for estimating parameters of given classifiers.
It is well understood that generative learning is more statisti-
cally efficient when models are well specified; discriminative
learning can achieve better classification accuracy when mod-
els are mis-specified [4], [5]. In the hope of taking advantages
of both generative and discriminative learning, several authors
proposed hybrid generative/discriminative learning for classi-
fication methods [6]–[8].

Motivated by recent works on hybrid learning, we propose
to estimate parameters of QDA by maximizing a convex
combination of the joint log-likelihood and conditional log-
likelihood of given observations and their class labels. Our
main contributions of this study are: 1) we present a general
iterative algorithm for parameter estimation when conditional
distributions of classifiers are from the well known exponential
family; and 2) we revisit QDA, and present a block coordinate
descent algorithm for solving a specific optimization problem
derived for QDA.

The remainder of the paper is organized as follows. In
section II, we give a brief introduction of generative classifiers
and commonly used approaches for parameter estimation. In
section III, we present an iterative optimization algorithm for

parameter estimation when conditional distribution are from
the exponential family. Multivariate Gaussian is a specific dis-
tribution of the exponential family; we revisit QDA and present
a specific block-coordinate descent algorithm for estimating
parameters of QDA in section IV. We present experimental
results in section V, and conclude the study with the summary
of our work, and possible future directions in section VI.

Throughout this paper, we use the following conventions
unless otherwise specified: (1) vectors are column vectors and
are represented as bold small letters, e.g. x; (2) matrices are
represented as bold capital letters, e.g. X; (3) I is an identity
matrix; (4) �

T is the transpose of a vector or matrix �; (5)
det(X) is the determinant of X; (6) X−1 is the inverse of X;
(7)X � Y means that matrix X−Y is positive semidefinite;
and (8) we define the inner product of matrices X ∈ R

m×n

and Y ∈ R
m×n as

〈X,Y〉 =
m
∑

i=1

n
∑

j=1

XijYij .

II. GENERATIVE MODELS FOR CLASSIFICATION

We consider a generative probabilistic model for classifica-
tion problems. For this purpose, we assume, for the k-th class,
a parametric density, p(x|k;Θk), which is described by a set
of parameters Θk; here k = 1, 2, · · · ,K. We intend to keep
the densities abstract at this moment, and will specify them in
section III. Define prior probabilities as follows

p(k) =
eυk

∑K
m=1 e

υm
. (1)

Posterior probabilities can be derived via Bayes theorem:

p(k|x;Θ,Υ) =
p(x|k;Θk)e

υk

∑K
k=1 p(x|k;Θk)eυk

, (2)

where Θ = (Θ1,Θ2, · · · ,ΘK) and Υ = (υ1, υ2, · · · , υK)
are unknown parameters. To minimize classification loss for
0-1 cost, we would assign an observation to a class which has
the highest posterior probability [1]. Formally speaking, the
decision rule to classify x is as follows

ŷ = argmax
k

p(k|x;Θ,Υ). (3)

Consider a given training data set

D = {(xn, yn)|n = 1, 2, · · · , N,xn ∈ R
d, yn ∈ {1, 2, · · · ,K}},

where xn is the n-th observation, and yn is its class label.
Define index set Ck that contains the indices of all observations
of class k in D; that is,

Ck = {n|yn = k, n = 1, 2, · · · , N}, (4)

where k = 1, 2, · · · ,K. Let Nk be the number of observations
of class k in the data set D.



Our main focus is how to estimate the parameters of a
generative model, Θ and Υ, using observations in the data set
D. Let LG and LD be the scaled negative joint log-likelihood
and the scaled negative conditional log-likelihood, which are
defined as follows

LG(Θ,Υ) = −
1

N

K
∑

k=1

∑

n∈Ck

log[p(xn|k;Θk)
eυk

∑K
m=1 e

υm
]

LD(Θ,Υ) = −
1

N

N
∑

n=1

log p(yn|xn;Θ,Υ).

One approach for estimating Θ and Υ is to maximize LG.
Alternatively, Θ and Υ can be estimated by maximizing LD.

Motivated by the recent works on hybrid genera-
tive/discriminative learning [6]–[8], we minimize the following
objective function for estimating Θ and Υ in this study.

L(Θ,Υ) = βLD(Θ,Υ) + (1− β)LG(Θ,Υ), (5)

where 0 ≤ β ≤ 1. As β varies from 0 to 1, we can interpolate
between the two approaches mentioned above.

III. LEARNING FOR EXPONENTIAL FAMILY

In this study, we assume conditional distributions are from
the exponential family. That is,

p(x|k;Θk) = exp{hk(x) + 〈Θk, Tk(x)〉 −Ak(Θk)}, (6)

where Tk(x) is the potential function or sufficient statistics;
hk(x) is a function that does not depend on Θk; Ak(Θk) is
the log partition function. For details about the exponential
family, we refer to [9]. Canonical parameter Θk ∈ Pk needs
to be estimated; Pk is the domain of Θk, which we assume
to be convex in this study. We intend to keep hk(x)’s and
Tk(x)’s, Ak(Θk)’s and Pk’s abstract at this moment, and will
specify them when needed.

Following the definition in equation (5), we can write the
objective function to be minimized as follows

L(Θ,Υ) = −
1

N

K
∑

k=1

∑

n∈Ck

log[p(xn|k;Θk)
eυk

∑K
m=1 e

υm
] (7)

+
β

N

N
∑

n=1

log
K
∑

k=1

[eυkp(xn|k;Θk)
eυk

∑K
m=1 e

υm
].

The optimization problem for estimating parameters Θ and
Υ can be written as

min
Θ,Υ

L(Θ,Υ)

s.t. Θk ∈ Pk k = 1, · · · ,K (8)

We note that the optimization problem is not convex, Thus we
will be satisfied to find local optimums. In the following, we
shall present a majorize-minimize (MM) algorithm in which
we iteratively minimize a convex upper bound of the original
objective function. For an introduction of the MM optimization
method, we refer to [10] and references therein.

We note that, due to log-partition functions Ak(Θk)’s, the
log-sum terms of L are generally not convex. Several lower
bounds of log-partition functions have been proposed in the
literature, for example, [11], [12]. As global bounds, they are
complex and loose. Note that one important property of log-
partition functions Ak(Θk), (k = 1, 2, · · · ,K), is that they are
convex functions of Θk. Therefore we have

Ak(Θk) ≥ Ak(Θ̃k) +

〈

∂Ak

∂Θk

|
Θ̃k

,Θk − Θ̃k

〉

. (9)

Define an auxiliary function for p(x|k;Θk) at Θ̃k as follows,

q(x|k;Θk, Θ̃k) = e
hk(x)+〈Θk,Tk(x)〉−Ak(Θ̃k)−

〈

∂Ak
∂Θk

|
Θ̃k

,Θk−Θ̃k

〉

.
(10)

Consequently, we have p(x|k;Θk) ≤ q(x|k;Θk, Θ̃k). When

Θk = Θ̃k, p(x|k;Θk) = q(x|k;Θk, Θ̃k). Define

L(Θ,Υ; Θ̃) =
1

N

K
∑

k=1

∑

n∈Ck

log[p(xn|k;Θk)
eυk

∑K
m=1 e

υm
] (11)

−
β

N

∑

n=1

log
K
∑

k=1

[q(xn|k;Θk, Θ̃k)
eυk

∑K
m=1 e

υm
]

Then we have L(Θ,Υ; Θ̃) majorizes L(Θ,Υ) at Θ̃:

L(Θ,Υ) ≥ L(Θ,Υ; Θ̃), and L(Θ̃,Υ) = L(Θ̃,Υ; Θ̃).
Moreover, L is a convex function.

Thus we have the following convex optimization problem

min
Θ,Υ

L(Θ,Υ; Θ̃)

s.t. Θk ∈ Pk, k = 1, · · · ,K (12)

Let Θ⋆ and Υ⋆ be optimal solutions of optimization problem

(12). We note that, for any Θ̃ and Υ̃,

L(Θ⋆,Υ⋆) ≤ L(Θ⋆,Υ⋆; Θ̃) ≤ L(Θ̃, Υ̃; Θ̃) = L(Θ̃, Υ̃).

That is L(Θ⋆,Υ⋆) is less than or equal to L(Θ̃, Υ̃). In
principal, we can iteratively find a new point (Θ,Υ) to reduce
the function value of L until a local optimum is reached. We
present in algorithm 1 the pseudo-code of the MM algorithm in
which the hybrid objective function for the exponential family
is minimized. We note that, instead of finding optimums of
the optimization problem (12) in each iteration, we can find a
feasible point that reduces the objective function.

1: τ ← 0 {τ :iteartion count}
2: Initialize feasible Θ(τ), and Υ(τ) for problem (8)
3: while not converge do

4: Θ̃← Θ(τ)

5: Obtain (Θ(τ+1),Υ(τ+1)) by solving convex optimiza-
tion problem (12);

6: τ ← τ + 1
7: end while

Fig. 1. A MM optimization algorithm for estimating parameters of the
exponential family

IV. QDA REVISITED

In this section, we shall investigate how to apply algorithm
1 for estimation parameters of QDA. Define

Θk = (Ωk,θk) = (Σ−1
k

,Σ−1
k

µk), (13)

where Σk and µk are, respectively, the covariance matrix and
the mean for the k−th conditional distribution. In the following
discussion, we shall use Ωk, θk and Σk, µk interchangeably.
In QDA, conditional distributions are specified as multivariate
Gaussian; thus for k = 1, 2, · · · ,K, we have the densities of
conditional distribution expressed in the standard form of the
exponential family

p(x|k;Θk) = ehk(x)+〈Θk,Tk(x)〉−Ak(Θ),

where

hk(x) = −
d

2
log(2π), Tk(x) =

(

− 1
2
xxT , x

)

, (14)



Ak(Θk) =
1

2
θT
k Ω−1

k
θk −

1

2
log detΩk. (15)

Note that

∂

∂Θk

Ak(Θk) =
(

− 1
2
Ω−1

k
θkθ

T
k Ω−1

k
− 1

2
Ω−1

k
, µk

)

.

We thus have the auxiliary function for p(x|k;Θk) at Θ̃k =
(Ω̃k, θ̃k) as following,

q(x|k;Θk, Θ̃k) = e
1
2 〈M̃k−xxT ,Ωk〉+〈x−µ̃k,θk〉+ck , (16)

where

M̃k = Ω̃
−1
k + Ω̃

−1
k θ̃kθ̃

T

k Ω̃
−1
k

ck = −
d

2
log(2π)−Ak(Θ̃k) +

〈

µ̃k, θ̃k

〉

−
1

2

〈

M̃k, Ω̃k

〉

.

The convex upper bound of L(Θ,Υ) is as follows

L(Θ,Υ; Θ̃) =
β

N

N
∑

n=1

log[
K
∑

k=1

eυkq(xn|k;Θk, Θ̃k)] + (1− β) log
K
∑

k=1

eυk

−
1

N

K
∑

k=1

∑

n∈Ck

[〈xn,θk〉 −
1

2

〈

xnx
T
n ,Ωk

〉

]

−
K
∑

k=1

Nk

N
[υk −

1

2
θT
k Ω−1

k
θk +

1

2
log detΩk]. (17)

We require covariance matrices being positive definite; i.e.
Σk ≻ 0. Equivalently, we can have Ωk ≻ 0. In practice, we
can have Ωk � αI, where α > 0.

We can apply algorithm 1 to estimate Θ and Υ. In each
iteration of algorithm 1, we need solve the following convex
optimization problem

min
Θ,Υ

L(Θ,Υ; Θ̃)

s.t. Ωk � αI, k = 1, 2, · · · ,K (18)

where α > 0 is given. To the best of our knowledge, there
is no existing optimization method to solve this problem.
In the following, we will present a block-coordinate descent
algorithm for problem (18) that sequentially updates Υ, θ1,
θ2, . . . , θK and Ω1, Ω2, . . . , Ωk. We will discuss the details
of optimization algorithms for Υ in subsection IV-A, for
θk in subsection IV-B, and for Ωk in subsection IV-C; we
will discuss selecting initial points, early stopping and β in
subsection IV-D.

A. Updating υk’s

We assume Θk’s are fixed: for k = 1, 2, · · · ,K, θk = θ̃k,
and Ωk = Ω̃k. Since q(xn|k; Θ̃k, Θ̃k) = p(xn|k; Θ̃k), we
have the optimization problem for Υ = (υ1, υ2, · · · , υK) as
follows

min
Υ

−
K
∑

k=1

Nk

N
υk+

β

N

N
∑

n=1

log
K
∑

k=1

p(xn|k; Θ̃k)e
υk+(1−β) log

K
∑

k=1

eυk .

B. Updating θk’s

In this subsection, we consider υk’s andΩk’s are fixed; that
is, for k = 1, · · · ,K, υk = υ⋆

k, and Ωk = Ω̃k. Furthermore,
we consider all θk’s but θm are fixed; that is ∀k < m,θk =
θ⋆
k; and ∀k > m, θk = θ̃k. We define f(θm) in this subsection

as follows,

f(θm) = L(θ⋆
1, · · · ,θ

⋆
m−1, θm, θ̃m+1, · · · , θ̃K , Ω̃1, · · · , Ω̃K ,Υ⋆).

(19)

In the following, we will present a trust region method to
minimize f(θm). Due to the space limit, we refer to [13],
[14] for details about trust region method.

Define

φm = θm − θ
(τ)
m , (20)

and

q(τ)(m|xn) =
eυ

⋆
mq(xn|m;Θ

(τ)
m , Θ̃m)

∑K
k=1 e

υ⋆
kq(xn|k;Θ

(τ)
k

, Θ̃k)

where θ(τ)
m is an estimation of θm at τ -th iteration, and

Θ
(τ)
k

=











(Ω̃k,θ
⋆
k), k = 1, 2, · · · ,m− 1

(Ω̃k,θ
(τ)
k

), k = m

(Ω̃k, θ̃k), k = m+ 1,m+ 2, · · · ,K.

We need solve the following trust region subproblem in the
τ -th iteration,

min
φm

λ
2
φT

mφm + gT
mφm (21)

s.t. φT
mφm ≤ ǫ(τ),

where

gm =
1

N
{

N
∑

n=1

βq(τ)(m|xn)(xn − µ̃m)−
∑

n∈Cm

(xn − µ
(τ)
m )},

and λ is the 1−norm of the Hessian matrix
β
N

∑N
n=1 q(τ)(m|xn)[1 − q(τ)(m|xn)](xn − µ̃m)(xn − µ̃m)T + Nm

N
Ω̃

−1
m .

It can be shown that the optimal solution of problem (21) is

φ∗
m = −

gm

max(

√

gT
mgm

ǫ(τ) , λ)

. (22)

To summarize, we present the pseudo code of the trust
region algorithm for finding θ⋆

m in algorithm 2.

1: Specify η0, η1, η2, η3, η4 {see [14]}
2: τ ← 0 {τ :iteartion count}
3: θ(τ)

m ← θ̃m

4: while not converge do

5: φ∗
m = −gm/max(

√

gT
mgm

ǫ(τ) , λ)

6: r =
f(θm+φ∗

m)−f(θm)
gT
mφ∗

m+0.5λ(φ∗
m)Tφ∗

m

7: if r > η0, θ
(τ+1)
m ← θ(τ)

m + φ∗
m; otherwise, θ(τ+1)

m ←
θ(τ)
m

8: if r ≥ η2, update ǫ(τ+1) ∈ [ǫ(τ), η1ǫ
(τ)]; otherwise,

update ǫ(τ+1) ∈ [η3‖φ
∗
m‖2, η4ǫ

(τ)];
9: τ ← τ + 1

10: end while

Fig. 2. A trust-region algorithm for finding θ⋆
m



C. Updating Ωk’s

In this subsection, we consider υk’s and θk’s are fixed; that
is, for k = 1, · · · ,K, υk = υ⋆

k, and θk = θ⋆
k. Furthermore,

consider all Ωk’s but Ωm are fixed; that is ∀k < m, Ωk = Ω⋆
k;

∀k > m, Ωk = Ω̃k. We define h(Ωm) in this subsection as
follows,

h(Ωm) = L(θ⋆
1, · · · , θ

⋆
K ,Ω⋆

1, · · · ,Ω
⋆
m−1,Ωm, Ω̃m+1, · · · , Ω̃K ,Υ⋆).

(23)
So the optimization problem for Ωm is

min
Ωm

h(Ωm)

s.t. Ωm � αI.

To our best knowledge, there is no existing method to
solve this optimization problem. We will present an iterative
trust region method to solve this optimization problem in the
remaining of this subsection.

Let Ω(τ)
m be an estimation of Ωm at τ -th iteration. We

define
Φm = (Ω

(τ)
m )−

1
2 (Ωm −Ω

(τ)
m )(Ω

(τ)
m )−

1
2 . (24)

Then by Ωm � αI, we have

Φm � α(Ω
(τ)
m )−1 − I.

Define

q(τ)(m|xn) =
eυ

⋆
mq(xn|m;Θ

(τ)
m , Θ̃m)

∑K
k=1 e

υ⋆
kq(xn|k;Θ

(τ)
k

, Θ̃k)

where

Θ
(τ)
k

=











(Ω⋆
k,θ

⋆
k), k = 1, 2, · · · ,m

(Ω
(τ)
k

,θ⋆
k), k = m

(Ω̃k,θ
⋆
k), k = m+ 1,m+ 2, · · · ,K,

We need solve the following trust region subproblem in the
τ -th iteration

min
Φm

λ
2
〈Φm,Φm〉+ 〈Gm,Φm〉

s.t. Φm � α(Ω
(τ)
m )−1 − I

〈Φm,Φm〉 ≤ ǫ(τ),

where

λ =
Nm

N
{(θ⋆

m)T (Ω
(τ)
m )−1θ⋆

m +
1

2
}, (25)

and

Gm =
1

2N

√

Ω
(τ)
m {β

N
∑

n=1

q(τ)(m|xn)[M̃m−xnx
T
n ]+

∑

n∈Cm

S
(τ)
n }

√

Ω
(τ)
m ,

(26)

where S
(τ)
n = (Ω

(τ)
m )−1 + (Ω

(τ)
m )−1θ⋆

m(θ⋆
m)T (Ω

(τ)
m )−1 − xnx

T
n .

In appendix A, we show that we can approximately solve this
problem by 1

Φ∗
m =

√

min(
ǫ(τ)

ρ
, 1){C

(τ)
− + α(Ω

(τ)
m )−1 − I}, (27)

where

C(τ) =
1

λ
Gm + α(Ω

(τ)
m )−1 − I

ρ = ‖C
(τ)
− + α(Ω

(τ)
m )−1 − I‖2F ,

1To be precise, Φ∗
m is a solution of the following feasibility problem:

λ
2
〈Φm,Φm〉+〈Gm,Φm〉 ≤ 0,Φm � α(Ω

(τ)
m )−1−I, and 〈Φm,Φm〉 ≤

ǫ.

and C
(τ)
− is the negative semidefinite parts of C(τ); let

C(τ) =
∑d

i=1 λieie
T
i be the eigen-decomposition of C(τ),

then C
(τ)
− =

∑d
i=1 max(−λi, 0)eie

T
i , (see [15]).

In summary, we present in Algorithm 3 the pseudo-code
of the trust region algorithm for finding Ω⋆

m.

1: Specify η0, η1, η2, η3, η4 {see [14]}
2: τ ← 0 {τ :iteartion count}
3: Ω(τ)

m ← Ω̃m

4: while not converge do
5: calculate Φ∗

m as described in equation (27)

6: Ω̂m = Ω(τ)
m + (Ω(τ)

m )1/2Φ∗
m(Ω(τ)

m )1/2

7: r = h(Ω̂m)−h(Ω̃m)
0.5λ〈Φ∗

m,Φ∗
m〉+〈Gm,Φ∗

m〉

8: if r > η0, Ω
(τ+1)
m ← Ω̂m; otherwise, Ω(τ+1)

m ← Ω(τ)
m

9: if r ≥ η2, update ǫ(τ+1) ∈ [ǫ(τ), η1ǫ
(τ)]; otherwise,

update ǫ(τ+1) ∈ [η3‖φ
∗
m‖2, η4ǫ

(τ)];
10: τ ← τ + 1
11: end while

Fig. 3. A trust-region algorithm for finding Ω⋆
m

D. Initial Points, Early Stopping and β

We use the following as our initial points,

Ω
(0)
k

= diag(Σ̂k)
+ + αI θ

(0)
k

= 1
Nk

∑

n∈Ck
Ω

(0)
k

xn υ
(0)
k

= log
Nk

N
.

where diag(Σ̂k) is the diagonal sample covariance matrices
for class k; �+ is the pseudo-inverse of a matrix �.

Early stopping has been shown to be an effective regular-
ization method for boosting algorithms [16], [17]. Motivated
by their works, we use early stopping in algorithm 1. We use
cross-validation to determine β and the early stopping step in
the iterative MM algorithm.

V. NUMERICAL EXPERIMENTS

We downloaded 10 datasets from UCI machine learning
repository [18]. The statistics of the selected data sets are
listed in table I. In our numerical experiments, we followed
the following procedure: for all datasets, we randomly selected
40% of the data as training sets, and the remaining data
are used as test sets; we standardized training data using
the sample mean and standard deviation of training data; all
methods are trained with training sets, and evaluated on the
corresponding test sets unless otherwise specified. We repeated
this procedure 20 times for each dataset.

We examined the influence of β on classification per-
formance by varying β from 0 (discriminative) to 1 (gen-
erative). For Datasets diabetes, heart, ionosphere and sonar,
we showed box plots of test set error rates in figure 4. For
diabetes and heart, discriminative learning (β = 0) gives the
best performance; for ionosphere and sonar, combinations of
discriminative and generative learning gave best performance.

Bouchard and Triggs [6] used conjugate gradient (CG)
method to optimize the same objective function as ours. We
compared the new proposed method against CG for training
QDA. For this purpose, we disabled early stopping in our
method, and performed numerical experiments on an Intel



d N K
Diabetes 8 768 2
Heart 13 270 2
Parkinsons 22 195 2
Ionosphere 33 351 2
Sonar 60 208 2
Thyroid 5 215 3
Vertebral Column 6 310 3
Wine 13 178 3
Splice 60 3175 3
Breast Tissue 9 106 6

TABLE I. DESCRIPTIONS OF 10 BENCHMARK DATASETS (K : NUMBER

OF CLASSES, d: DIMENSION, N : NUMBER OF OBSERVATIONS)

Xeon (3.30GHz) computer with 16GB RAM. CG method
reported local optimums within 3000 iterations for all datasets;
our methods reported local optimums within 3000 iterations
for all datasets except ionosphere. Computational speed and
objective function values for both methods are reported in table
V. In 9 of 10 datasets, our method is faster than CG method;
in 7 of 10 datasets, our method terminates with equal or better
local optimums.

To evaluate the classification performance of the new
proposed method, we compared it with some widely used
quadratic classifiers in the literature: naive Bayes, QDA 2, reg-
ularized discriminant analysis (RDA) [19] 3,Bayesian quadrati-
cal discriminant analysis (BDA7) [3] 4, L2-regularized logistic
regression with quadratic terms (LR), SVM with polynomial
kernel (d = 2) (QSVM). For RDA, we used leave-one-out
approach to select optimal parameters on a (0, 0.1, · · · , 1) ×
(0, 0.1, · · · , 1) grid. For BDA7, we used the same settings as
described in [3], and used leave-one-out approach to select
optimal parameter from 42 parameter choices. For our method,
we let α = 10−6 and β = (0, 0.1, · · · , 1.0), and used 10 fold
cross validation to select optimal β and early stopping iteration.
For CG QDA [6], we used the optimal β selected from our
methods, and trained QDA with 1

2 -, 1- and 2-times of iterations
determined from our methods; we recorded the smallest test
set error rates. For LR and QSVM, we searched regularization
coefficients in [0, 10] by 10-fold cross validation.

Mean error rates for 10 benchmark datasets are reported in
table V. For Naive Bayes and QDA, we reported “−” when
the matlab function classify failed. The smallest mean error
rates are emphasized with bold numbers. We also reported
other mean error rates in bold, which are not statistically
significantly different from the best ones; for this purpose,
we used Wilcoxon signed-rank test with significant level 0.05
to compare error rates. As shown in table V, in 8 of the 10
datasets our method is either the best one, or not statistically
significantly different from the best ones. The experiments
shows that our method is competitive to other widely used
quadratic classifiers in the literature.

VI. CONCLUSION

Quadratic discriminant analysis is a standard tool for
classification problems. Classical QDA sacrifices classification
accuracy for computation efficiency, which is not desired for
classification problems. Motivated by the recent studies in

2We use matlab function classify for naive Bayes and QDA
3We use code from http://www-stat.stanford.edu/j̃hf
4We modified code from http://www.ee.washington.edu/research/guptalab.

CG QDA Our Method

CPU Time (sec.) Obj. Value CPU Time (sec.) Obj. Value

Diabetes 0.19 ± 0.08 5.70 ± 0.05 0.06 ± 0.01 5.70 ± 0.05

Heart 0.18 ± 0.01 8.32 ± 0.10 0.09 ± 0.02 8.32 ± 0.10

Parkinsons 10.46 ± 1.12 −2.47 ± 0.60 2.91 ± 1.35 −9.09 ± 1.70

Ionosphere 10.99 ± 2.18 4.88 ± 1.03 10.13 ± 2.26 5.52 ± 1.01
Sonar 23.24 ± 2.04 −17.29 ± 4.80 3.19 ± 4.24 −92.01 ± 14.37

Thyroid 1.13 ± 0.33 1.04 ± 0.22 0.40 ± 0.23 1.07 ± 0.23
Vertebral 4.01 ± 1.49 1.54 ± 0.13 0.39 ± 0.11 −0.41 ± 0.08

Wine 1.73 ± 0.96 4.67 ± 0.24 0.89 ± 0.22 4.87 ± 0.25
Splice 67.59 ± 31.53 39.38 ± 0.34 84.06 ± 80.61 39.35 ± 0.70

Breast Tissue 10.89 ± 0.67 −3.86 ± 0.62 6.44 ± 0.92 −9.53 ± 2.54

TABLE II. CPU TIME (SECONDS) AND FINAL OBJECTIVE FUNCTION

VALUES OF TRAINING SETS (β = 0.5): CG V.S. OUR METHOD

hybrid generative/discriminative learning, we argue that, in
order to obtain better classification accuracy, parameters of
QDA can be estimated by maximizing a convex combination
joint log-likelihood and conditional log-likelihood of given
observations and their labels. For this purpose, we presented
a MM optimization algorithm to estimate parameters for gen-
erative classifiers, of which conditional distributions are from
the well known exponential family. Furthermore, we proposed
a block-coordinate descent algorithm to sequentially update
parameters of QDA in each iteration of the MM algorithm.
For each update, we used a trust region method, of which
each iteration has a simple closed form solution. Our numerical
experiments show that our method is competitive with other
well-known quadratic classification methods in the literature.

Our method can be easily adapted for linear discriminant
analysis (LDA). Moreover in spirit, our MM algorithm and
block-coordinate descent algorithm can be applied for any
generative classifiers of which conditional distributions are
from the exponential family.

Sparse parameters are desired when handling small sample
problems, e.g. [20], [21]. Though early stopping provides
regularization in our algorithm, we think explicitly adding
sparse constraint via L1 or L0 regularization in the block-
coordinate descent algorithm might provide additional robust-
ness for QDA.

Recently, there is a growing interest in semi-supervised
learning; that is to use unlabelled data in training classification
methods [22]. Part of our future work is to include unlabelled
data and missing data for estimating parameters for LDA and
QDA.

APPENDIX

Let us first consider the following relaxed optimization
problem,

min
Φm

λ
2
〈Φm,Φm〉+ 〈Gm,Φm〉

s.t. Φm � α(Ω
(τ)
m )−1 − I

Following [15], [23], [24], we can show that optimal solution
for the relaxed problem is

Φ̂m = C
(τ)
− + α(Ω

(τ)
m )−1 − I

where C(τ) = 1
λGm + α(Ω(τ)

m )−1 − I. Define

ρ = ‖C
(τ)
− + α(Ω

(τ)
m )−1 − I‖2F ,

If ρ ≤ ǫ(τ), then we can let Φ∗
m = Φ̂m; if ρ > ǫ(τ), then we

can let Φ∗
m =

√

ǫ(τ)

ρ Φ̂m. Therefore, we can let

Φ∗
m =

√

min(
ǫ(τ)

ρ
, 1){C

(τ)
− + α(Ω

(τ)
m )−1 − I},
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(d) Sonar

Fig. 4. Influence of coefficient of β on test set error rates: β = 0 is discriminative, and β = 1 is generative.

Naive Bayes QDA RDA BDA7 LR QSVM CG QDA Our Method

Diabetes 25.61 ± 1.44 26.68 ± 1.88 23.86 ± 1.37 25.75 ± 1.21 23.56 ± 1.38 23.34 ± 1.34 24.39 ± 1.11 24.09 ± 1.06
Heart 17.44 ± 2.68 22.68 ± 3.39 16.56 ± 1.93 17.87 ± 2.31 18.52 ± 2.74 21.64 ± 3.38 20.38 ± 3.66 18.49 ± 2.53
Parkinsons 30.28 ± 3.04 − 17.67 ± 3.29 12.96 ± 3.18 16.41 ± 5.28 14.24 ± 1.90 13.69 ± 2.26 14.68 ± 4.07
Ionosphere − − 6.75 ± 1.60 7.45 ± 2.07 9.02 ± 1.92 14.40 ± 2.73 5.64 ± 1.89 4.90 ± 1.29
Sonar 32.25 ± 5.01 − 25.10 ± 4.47 22.65 ± 4.90 22.11 ± 3.11 22.58 ± 2.98 20.75 ± 3.59 19.85 ± 4.01
Thyroid 3.92 ± 1.00 5.65 ± 2.27 6.01 ± 2.16 4.87 ± 1.54 8.58 ± 2.93 7.86 ± 3.92 4.35 ± 0.97 4.00 ± 1.27
Vertebral Column 19.17 ± 2.80 18.35 ± 2.77 19.15 ± 3.72 16.81 ± 2.04 16.90 ± 2.48 17.71 ± 3.33 17.22 ± 2.42 16.60 ± 2.18
Wine 3.76 ± 1.88 − 2.67 ± 1.37 3.75 ± 2.56 3.88 ± 1.73 4.28 ± 2.18 3.51 ± 2.44 2.85 ± 1.62
Splice − − 11.06 ± 1.00 7.21 ± 1.86 10.88 ± 0.81 11.94 ± 0.75 8.93 ± 2.55 8.16 ± 3.22
Breast Tissue 38.03 ± 5.55 − 41.91 ± 5.95 39.75 ± 6.45 45.51 ± 5.86 48.04 ± 3.68 37.00 ± 5.41 37.49 ± 6.49

TABLE III. MEAN AND STANDARD DEVIATION OF TEST SET ERROR RATES FOR 10 DATASETS (SHOWN IN PERCENTAGE)

Since α(Ω(τ)
m )−1 � I, and min( ǫ

(τ)

ρ , 1) ≤ 1, we have
√

min( ǫ
(τ)

ρ , 1)[αΩ−1
m − I)] � αΩ−1

m − I. Therefore, Φ∗
m �

αΩ−1
m − I.

Note that when ρ > ǫ(τ), Φ∗
m is not an optimal solution.

Since ρ > ǫ(τ), we have

λ

2
〈Φ∗

m,Φ∗
m〉+ 〈Gm,Φ∗

m〉 ≤

√

ǫ(τ)

ρ
(
λ

2

〈

Φ̂m, Φ̂m

〉

+
〈

Gm, Φ̂m

〉

) ≤ 0.

That is Φ∗
m does reduce the objective function value.
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