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ABSTRACT 

The Proteus architecture is a highly parallel MIMD, multiple instruction, multiple-data machine, optimized for 
large granularity tasks such as machine vision and image processing. The system can achieve 20 Giga-flops (80 
Giga-flops peak). It accepts data via multiple serial links at a rate of up to 640 megabytes/ second. The system 
employs a hierarchical reconfigurable interconnection network with the highest level being a circuit switched 
Enhanced Hypercube serial interconnection network for internal data transfers. The system is designed to use 256 to 
1,024 RISC processors. The processors use one megabyte external Read/Write Allocating Caches for reduced multipro­
cessor contention. The system detects, locates, and replaces faulty subsystems using redundant hardware to facili­
tate fault tolerance. The parallelism is directly controllable through an advanced software system for partitioning, 
scheduling, and development. System software includes a translator for the INSIGHT language, a parallel debug­
ger, low and high level simulators, and a message passing system for all control needs. Image processing application 
software includes a variety of point operators, neighborhood operators, convolution, and the mathematical mor­
phology operations of binary and gray scale dilation, erosion, opening, and closing. 

1. INTRODUCTION 

There are a variety of parallel architectures that can be used for image processing applications. To cut short the 
review of the variety of these architecture types, we make some political parallels which have been informally made 
by some noted researchers. The array can be likened to a Fascist dictator leading a march. The pipeline can be lik­
ened to a capitalist assembly line. The pyramid can be likened to the cell block hierarchy of Communist dictator­
ships. The multiprocessor systems can be likened to parliamentary committees at work. The network can be likened 
to political anarchy. And the reconfigurable network just cannot get its act together. Particular examples of these 
architectures include processor arrays such as Illiac IV, CLIP4, CLIP7, DAP, MPP, and GAPP, systolic arrays such as 
WARP, pipelines such as Cytocomputer, Genesis, and VAP, multiprocessor systems such as PASM, POLYP, ZMOB, 
GOP, PI CAP, TOSPICS, DIP, FLIP, PM4, and J.'yramid systems. Scholarly reviews of these architectures can be found 
in the papers listed in the reference section. · 

The purpose of this paper is to discuss an architecture by which the act of the reconfigurable network can be put 
together for computer vision in a large grain parallelism mode. We do this in the context of knowing that no use of 
reconfigurable networks for image processing has been made and that there has been little discussion of architec­
tures which are simultaneously suitable for low level image processing, high level computer vision, and the com­
putation tasks required to direct robots and material handlers. All this must be done in near real time in the factory 
setting. 

Our viewpoint will be different from the usual discussions of computer architecture which tend to concentrate 
around hardware design issues in a hardware language. We believe that all paradigms which map image data onto 
processors like the arrays and pyramids or paradigms which map specialized tasks onto different processors like 
the multiprocessor systems, must of necessity create specialized and inflexible systems. We believe that the watch-
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word of computer vision is flexibility. There must be the image in and image out operations of low level vision. There 
must be the image in and data structures out operations of mid level vision. There must be the data structures in and 
data structures out operations of high level vision. And in any computer vision system whose purpose is to be eco­
nomically useful in the factories of the society in which it functions, there must be the capability for performing 
numerical calculations, data formatting operations, communication reporting operations, and real time control of 
external devices such as material handlers and robots. This suggests that the approach needs to be an integrated 
one. To approach the design, we must step back and understand that the low level neighborhood operators dis­
cussed in today's archival literature can be much more complex than the Roberts and Sobel variety. We must under­
stand that the manipulation and processing of the high level vision data structures may be as complex as the 
symbolic processing required by artificial intelligence computation. 

Within our universe, where can we take a stand so that our viewpoint can unravel the inherent complexity of 
this computer vision question? The required flexibility suggests that the architecture should be able to naturally exe­
cute algorithms of a general nature. The quantity of data processed in a computer vision system suggests that it 
seeks to have a higher input data rate and that the architecture must be in some sense optimized to spend a substan­
tial amount of its processing time doing uniform pixel pushing operations. If it can have high efficiency in perform­
ing a regular pattern of operations on a large data set, it can afford to have a lower efficiency in performing less 
regular operations on small data sets. Or said in another way, the architecture must spend its time performing a vari­
ety of activities. If it can configure itself so that it has high efficiency for the most computationally intensive activi­
ties, it can afford the overhead required to reconfigure itself to perform the less computationally intensive and more 
irregular activities. High efficiency for computationally intensive activities suggests the algorithm driven systolic 
network. Flexibility suggests reconfigurability. The combination of the two suggests a data flow architecture, a 
reconfigurable network capable of systolic or non-systolic computation. 

However, the kinds of data units that are processed in computer vision change as the processes proceed from 
low to high level. Pipelines and systolic architectures which are optimized for the pixel data unit will not be efficient 
for mid-level data such as the digital arc, or high-level data units such as a set of corresponding model image feature 
points. This suggests that instead of thinking that the architecture processes small data units such as a pixel, we can 
visualize an architecture which processes more complex data units such as the image, digital arc, sets, and relations. 
Here the idea of systolic computation must dissolve for the units are too large. 

In factory applications of machine vision, the same vision algorithm is applied repeatedly to a succession of 
images. The input is not an image, but a sequence of images. The output to each image processing operation likewise 
is a sequence of images. The clock tick of the systolic array or video rate pipeline gives way to the time chunk taken 
to .process an entire image. The processor, instead of only processing one simple operation such as an add or multi­
ply on the primitive data unit now must perform an arbitrarily complex sequence of operations on the large data 
unit. The code run on the processor now does not have to be the kinds of specialized code used for vector processor, 
pipelines and systolic arrays, or digital signal processors. Rather the code can be the same kind of code written in 
languages such as C or Ada and which can be tested on standard workstations. 

For high input data rate and simple algorithms, such an architecture runs in a single program multiple data 
stream mode. For low input data rate and highly complex algorithms, such an architecture can reconfigure itself to 
function in a pipeline network or full multiple instruction multiple data stream mode. We call this architecture the 
reconfigurable Proteus architecture. 

To understand what must go into the Proteus data flow architecture, we must have a language in which to dis­
cuss its configuration possibilities. Hardware programming languages like VHDL or N2 and graph description lan­
guages are at too low a level. The interesting thing about the data flow in a network is that a high level specification 
of the configuration of the network is a specification of the program the network is executing. This is different from 
von Neumann architectures in which a specification of the architecture tells nothing about what program may be 
executing on the hardware. Now low level specification of a network, or more formally, a graph having labeled arcs 
and nodes, has nothing about it which is sequential or procedural. Likewise, a high level specification need not be 
sequential or procedural. A high level specification of a network is just a specification of the relations which hold in 
the network. So specification of the configuration of a network amounts to specifying relations, and since the spec-
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ification is the program which the network executes, the language used to program a data flow network is naturally 
a language of relations. The language must be inherently non-procedural. From a high level perspective, the seman­
tics of the language specifying a computational network describes the essence of the architecture. 

In section II of the paper we describe what we mean by a reconfigurable computational network and its under­
lying distributed control mechanism. In section III, we describe the language INSIGHT, a language in the LUCID 
family of data flow languages (Wadge and Ashcroft, 1985) which we have developed to be used both for specifica­
tion of data flow architecture configurations, and for the high-level expression and coding of our computer vision 
algorithms. In section N we describe the architecture from a hardware point of view. 

2. RECONFIGURABLE COMPUTATIONAL NETWORK 
In this section, we give a perspective of the reconfigurable computational network which emphasizes those 

aspects of the computation that the network must handle and which a programmer using the network does not have 
to think about. Such a perspective illuminates the division of the hardware domain from the software domain. It 
provides the hardware-software interface conventions by which the semantics of the language INSIGHT can 
describe the essence of the architecture of the reconfigurable computational network. 

The operation of a reconfigurable computational network involves the flow of sequences of high-level data 
units through a network of architectural primitives. Architectural primitives are of two types: processors and con­
nections. Processors have one or more inputs and one or more outputs. They produce high-level data units of the 
same or different kind than the input data units for output lines after some finite execution time. The amount of time 
taken to execute may be proportional to data unit size or it may be worse than linear time as it might be for a search 
algorithm. 

More formally, a network configuration consists of a set of processors P and a specification C of the interconnec­
tions between the processors. Each processor p e P is a pair p=(IP' 0,) where 11' is a named set of input lines and OP 
is a named set of output lines. Each connection c e Cis a quadruple c=(o, Plt t, p2) specifying that output line o of 
processor p1 connects to input line i of processor p2• A top level view is shown in Figure 1. 

Since different processors may take different amounts of time to process their input data structures and produce 
their output data structures, the control insures that a processor will only begin processing its input data when its 
input buffer contains valid data. For this purpose, there is a states associated with each buffer. Legal values for the 
states are: 

1) ready and unconsumed: the buffer has valid new data but not all processors which require it 
have accepted it; 

2) ready and consumed: the buffer has valid data which has already been used by the processors 
that require it and the new data which is to be loaded into the buffer is not yet ready; and 

3) not ready: the buffer has no valid data in it. 

A process can execute when all of its input buffers are in the ready and unconsumed state and the output buffer 
it has been assigned has had its data consumed by every process for which it is an input. 

The execution of the process takes some finite amount of time. When the execution is just starting, each of the 
previous output buffers are in the state ready and unconsumed. As soon as an output buffer reaches this state, it is 
available to the processes that wish to consume it. It reaches the state ready and is consumed only when all of its 
potential consumers have consumed it. 

3. INSIGHT 

Figure 2 illustrates a top level view showing how the software relates to the Proteus hardware. whose proces-
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Figure 1 shows a top level view of the 
reconfigurable computational network. 

sors are partitioned into groups and within groups partitioned into clusters. High-level programs for Proteus are 
written in the INSIGHT programming language. The INSIGHT program describes the flow of a sequence of images, 
and other data structures, and their resultant data structures through the Proteus network. Each process of the net­
work performs one or more operations on its input image(s) and/ or structure(s) to produce output image(s) and/ 
or other data structure(s). 

The most important aspect of the INSIGHT language is that it expresses relationships, not commands. The order 
in which the relationships are stored in the program has no effect on the results. Instead the relationships dictate a 
graph structure that defines the flow of data through the system. Figure 3 illustrates the graph structure for a pro­
gram given in Figure 4. This graph must be mapped onto the Proteus hardware. 

The input to the INSIGHT program shown in Figure 4 is a 256x256 gray scale image GO, and the output is a 
256x256 binary image B4. Intermediate gray scale images Gl, G2, and G3 and intermediate binary images Bl, B2, 
and B3 are also produced during execution of the program. The first relation says that gray scale image GO is to be 
thresholded using threshold Tl (a constant), and the result is to become binary image Bl. The second relation says 
that GO is also to be the input to a morphological closing operation 11· with a structuring element that is a box (rect­
angle) of dimension 5 x 5, with the result becoming gray scale image Gl. The third relation specifies the production 
of another binary image B2 that is the result of performing an opening in Gl, subtracting the opening from Gl itself 
and thresholding the result of the subtraction. The other relations can be analyzed in a similar fashion. 

The INSIGHT translator maps the algorithm onto the hardware. The INSIGHT translator has two main parts: 
the scanner/parser module and the linker/partitioner module. The scanner/parser module uses standard transla­
tion techniques. It employs a finite machine for lexical analysis and a recursive descent parsing mechanism with 
look ahead by one, augmented by a precedence parser for expression. The output of the scanner /parser module 
goes to the linker which replaces single nodes of the graph representing INSIGHT library routines by prestored sub­
graphs that came from previous translations. Also, nodes representing morphological operations which use possi­
bly complex structuring elements may be decomposed into sequences of nodes that use smaller structuring 
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Program Graph Example 

Figure 3. INSIGHT program graph generated automatically 
by the INSIGHT translator 

elements 27·• This decomposition is beyond the scope of this paper. The partitioner is the only nonstandard part of 
the translator. Its job is to map the operations in the final dataflow graph onto the reconfigurable network. The goal 
is to produce the mapping with the highest throughput, so that as much data as possible can be handled by the 
reconfigurable network. 

The problem of the partitioner can be stated as follows. Given a dataflow graph with K nodes with an estimation 
of the amount of processing time each takes, and a multiprocessor shared memory system with Nproc processing 
elements, with a specified interconnection network and interprocessor communication costs, determine how the 
operations be partitioned among the processors to gain maximum throughput. Initially we chose a greedy tech­
nique as in 1·. 

To control the load balancing, each processor has all of the nodes it will process assigned to it. The algorithm 
keeps a list of all nodes that have had all of their ancestors allocated. This is called the ready list. A heuristic is gen­
erated for each of the nodes in the ready list at each step estimating the cost of assigning that node to the current 
processor. The heuristic is based on the expected computation time of the node, the load so far on the processing 
block, and the communication required by assigning this node to this processing block. The lowest heuristic cost is 
assigned to the processor, and a new ready list is determined and the process repeated until no node has a heuristic 
below a threshold value. At this point, nodes are assigned to the next processing block. 

After allocating the nodes in this fashion, a relaxation procedure is used to determine if one or more nodes can 
be shifted between processors to lower the maximum load. The first step of this procedure is to determine which 
processing element has the largest load of computation + communication determined by 
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L(max) = 
n= l~Nproc 

N,. 

L <t;,,. + C;,,.) 
j = 1 

(EQ 1) 

where Nproc is the number of processors, N" is the number of nodes assigned to the nth processor, t i," is the 
computation time of the t-th node assigned to the nth processor, and c; "is the communication time required by the 
nth processor due to the ith node. ' 

When the processor with the largest load has been determined, then each node assigned to that processor is 
checked to see if it can be moved to the previous or the next processor. A node can be moved to the previous pro­
cessor if none of its input arcs are generated by nodes that are on the processor that this node is currently assigned 
to. Similarly, a node can be moved to the next processor if none of its output arcs are consumed by nodes that are 
on the processor that this node is currently assigned to. If a node can be moved, then the new maximum load (see 
Eq. 1) that this new assignment would create is calculated. If this new maximum load is less than the current max­
imum load, then the movement that reduces the new maximum load is taken and the process is repeated. If none 
are found that reduce the maximum load, then the relaxation is complete. Two methods of selecting the modification 
have been used: 1) Maximum Optimization Rule: The node that lowers the maximum load the most is selected, and 
2) Minimum Disturbance Rule: The node that lowers the maximum load the least is selected. 

The low-level software support for the high-level programming environment is the processing library. As an 
example, the image processing library contains the processor code for the operations in the INSIGHT application 
program. Each image processing operation in the following is a verb in INSIGHT. The initial set of functions in the 
library include arithmetic and logical operations on images, geometric spatial transfonns, convolution and morpho­
logical operations, neighborhood operations, connected components, and masking. 

In the Proteus system, users are allowed to choose the number of processors they wish to partition the algorithm 
between. This partition is then replicated with successive inputs images routed to successive processor blocks until 
all processors have been used. 

3.1 System software 

The system software consists of a loader and debugger which run on the Proteus host, message processing and 
control modules which run on the group and cluster controllers, and an interrupt handler which is the only system­
level software resident on the processor. 

As specified by the INSIGHT program and the number of processors the user chooses to use for each task, the 
translator generates an assignment file. Each assignment file defines a set of generic processors and the jobs partition 
between them. Each assignment file defines a task class. The Proteus system can execute multiple instances of a sin­
gle task class or single instances of multiple task classes. 

The user issues a task(s) request to the host to start loading and task execution. A task(s) request indicates which 
task class(es) should be executed, the external data sources for each task class if they need to be defined. As specified 
by the user's task(s) request, the loader retrieves the assignment file(s) produced by the translator. It determines if 
the Proteus hardware is capable of executing the specified assignment. If all is well, the loader performs the map­
ping of the logical processor names in Proteus to the symbolic processor names used by the translator to define the 
generic processor set. The mapping can be many to one or one to one. Physical processors are the true working 
horses for computation. For reasons of flexibility and fault tolerance, the loader does not assign jobs to physical pro­
cesors directly. The cluster controller has that responsibility. At run time it makes a one to one mapping between a 
logical processor name and the true physical processor. 

Throughout the system, the logic and physical mapping is decided hierarchically. The host decides the mapping 
between the logical groups and physical groups. Each group controller decides the mapping between logic clusters 
and physical clusters. Each cluster controller assigns physical processors to logic processor names. The containing 
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A Typical Program 

function Detect 

(integer array[256, 256] GO;) 

(binary array[256, 256] B4;) 

where 

declare 

integer array[256, 256] Gl,G2,G3; 

binary array[256, 256] Bl,B2,B3; 

integer constant T1=195,T2=20,T3=25; 

integer constant W1=5,W2=15,W3=42,W4=126,W5=3; 

relations 

end where 

Bl =GO<Tl; 

Gl = GO closedby box(Wl,Wl); 

B2 = (Gl - (Gl openedby box(W2,W2))) > T2; 

B3 = (Bl or B2) dilated by box(W5,W5); 

G2 = fill(Gl maskedby B3); 

G3 = G2 openedby box(W3,W3); 

B4 = (G3- (G3 closedby box(W4,W4))) > T3; 

. 
Figure 4. An INSIGHT Program 
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relationships between logical processors, logical clusters, and logical groups are predefined, i.e., a logical processor 
belongs to a certain logical cluster which, in tum, belongs to a certain logical group. 

Each logical processor inherits the assignments from its corresponding symbolic processor. According to the 
inheritance relationship, each logical processor has a list of jobs to be executed. Each job contains the following 
attributes: Program_id, input_ arcs, output_arcs, constant parameters. Each job has a uniqe job 10 assigned by the 
loader. Each arc has a unique arc 10 assigned by the loader. Buffers are assigned to each arc. How many buffers 
should be assigned is decided by the translator. The cluster controller assigns actual memory addresses to each 
buffer. 

The loader packs all the schedule information needed by a logical cluster into a scheduling file and all the con­
stant parameters needed by the jobs executing within that logical cluster into a constant file. At run time, the cluster 
controller transfers task scheduling information from the cluster to the pixel processor via a task control block. The 
task control block contains the identification tag, starting address of the program to be executed by the pixel proces­
sor, and pointers to the buffers that will be used for input and output. According to the jobs assigned to the logical 
pixel processors with each logic cluster, the loader determines which programs should be loaded to that cluster and 
assigns memory space in shared memory to each program. Then, the loader creates a transfer request file for each 
group. Each transfer request file has a list of file transfer requests. Each request has the following format: 

<request> := <source><destination list> 

<source>:= <file_name><file_size> 

<file_name> := full path name of the file to be transferred. 

<destination_list> := <destination> I <destination><destination_list> 

<destination> := <logic_cluster_name><physical_starting_address> 

After all the required files are generated properly, the host uses the socket facility of the Unix system to send a 
loading request message to each group via Ethernet. These request messages include two parts. The first part spec­
ifies that the action is loading. The second part is the full path name of the transfer request file. According to the 
received message, each group controller retrieves the transfer request file through NFS from the disk. Each group 
controller reads in its file specified in the request file, writes it to the VME buffer of the destination cluster(s) and 
requests the destination cluster controller to move it to the shared memory starting from the physical address spec­
ified in the request file. The cluster controller uses the check sum stored in each file to check for any transmission 
errors. 

When all the files specified in the transfer request file have been moved to the clusters, the group controller 
sends a file transfer complete message to each cluster in the group. If the file transfer complete messages have been 
received and every file is properly stored and every processor in the group is ready to work, the cluster controller 
sends a ready-to-work message to the group controller. After receiving a ready-to-work message from all the clus­
ters wihin the group, the group controller sends a ready-to-work signal to the host. After receiving the ready-to­
work message from all the groups, the host synchronizes the external data sources and the Proteus system begins 
the task(s) execution. 

The processing and computation in Proteus uses a variety of software and hardware control mechanisms. Each 
pixel processor in a cluster and the cluster controller have shared-memory mail boxes. They also communicate with 
each other via interrupts. At run time, the cluster controller dispatches a job to each idle pixel processor by inter­
rupting the pixel processor to indicate the task control block is ready to be read. When a pixel processor finishes its 
assigned job, it creates a task completion record and interrupts its cluster controller to report the results. After recei v­
ing the interrupt signal from the pixel processor, the cluster controller reads the completion record to get the infor­
mation from the pixel processor, updates the status of data regions due to the task just completed, and continues to 
activate sleeping processors. When busy processors complete a task, they consult their task control block area to 
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detennine their next task. In this manner, busy processes do what they have to do without ever having to be inter­
rupted once they begin their processing. 

The debugger of the Proteus system is implemented as two communicating processes, one on the host and the 
other on the Proteus system. The debugger interacts with the user through the host's window system It has the 
capability to support the development of system and application programs. The debugger provides the user with 
the capabilities to control and monitor the execution of all the pixel processors in the Proteus sytem. Therefore, the 
user must have full knowledge of the system architecture, how the system operates, and its physical sources of input 
images during the run-time. 

On the host, the debugger is simply a front-end interface that interacts with the user, and manages the bulk of 
debugging information (e.g. symbol tables) that allows it to map symbolic information to physical addresses in the 
hardware. However, the physicallaydown of code breakpoints, memory accesses, and modification of processors' 
execution states must be done by system services provided by the cluster controllers and the pixel processors from 
the hardware side. 

Other than the execution of the hardware, the debugger is also in control of three other system applications on 
the host; they are the loader, the high-level simulator, and the low-level simulator. Each of them supports the debug­
ging of image processing application programs at a different level. 

At the application level, the subject language is called INSIGHT. At this level, the debugger allows the user to 
control execution by setting image watchpoints (i.e. data breakpoints) in the INSIGHT data flow graph. When a 
pixel processor picks up a task that will be producing an output image associated with an image watchpoint, it will 
be interrrupted and the debugger will take the control of its execution. At this debugging level, the user may invoke 
the high-level simulator to execute the corresponding INSIGHT program The simulator, which also runs on the 
host, will produce a trace of images that can be compared against those that are generated by the hardware. In order 
to allow the user to visualize the results, the debugger can compare two images and display the corresponding 
images in a window. 

At the system level, the subject language is the assembly language of the i860 pixel-processor. The user may 
trace through the execution of a program by a pixel processor by setting code breakpoints inside the program and 
single-stepping through the program The user may invoke the low-level simulator to execute this program in the 
same sequence that would be executed in the hardware. By comparing the execution states of the pixel processor 
against those generated by the simulator at cPrtain points of the course of execution, the debugger is able to locate 
any error that could occur. 

The high-level simulator, written in ADA and executed on the SparcStation host, is designed to verify that 
INSIGHT algorithms and the Proteus image processing library are correctly implemented in Proteus. Under the 
control of the Proteus debugger, the high-level simulator executes vision algorithms exactly the same algorithms are 
being executed from the Proteus hardware. A comparison between the two results can then provide information 
about the correctness of Proteus's result. 

There are three major components in the high-level simulator: a debugger interface, a controller, and an appli­
cation library. The debugger interface parses the command-line for the simulator passed down from the debugger. 
The controller figures out the appropriate tasks to carry out while the application libary gets accessed by the con­
troller for the number-crunching. The high-level simulator could be instructed to start a new application by loading 
in an INSIGHT program. It is able to find out the exact steps involved to perform the calculation for each node in 
the INSIGHT data-flow diagram. It also provides a session-save feature so that intermediate results and system sta­
tus can be loaded back into the system in a future session with the session-reload capability. Although it functions 
under the control of the Proteus debugger, the high-level simulator is a full-fledged image processing system on its 
own. 

Finally, to provide an aid for execution tracing that can be used in performance monitoring, tuning, and debug­
ging, Proteus system software has been provided with the Portable Instrumented Communication Linrary (PICL) 
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developed by Oak Ridge National Laboratory.8·9· The PICL communication library was originally developed to pro­
vide portability and easy parallel program development. It has a good facility for execution tracing which is its 
major use in Proteus. 

All messages passing between processors consists of copying the message (header and data) from the source 
processor memory to a memory location that the receiving processor can access. This memory is accessed in a syn­
chronized manner to prevent confusion. The sending processor and receiving processors view the buffer in a com­
plementary fashion as shown in Figure 5. 

In Figure 5, processors A and Bare shown sharing a set of message buffers. Notice that Processor B Transmit 
buffer is processor A reception buffer and vice versa. Data from A to B is copied into the buffer shown on the right 
and data from B to A is copied in the buffer on the left. 

The general steps processor A goes through to send a message to Processor B are: 

1. Processor A checks its transmit buffer state and if in the Unread smte waits until a later time to 
send the message. 

2. When the buffer smte is set to Read by processor B, Processor A has control over the contents 
of Processor A transmit buffer. Processor A then copies bother the header and data of the mes­
sage into the Processor A Transmit buffer. 

3. Processor A then sets the buffer state to Unread indicating a new message is in the buffer. 

4. Processor A completes its portion of the message transfer by interrupting Processor B to cause 
it to check its reception buffer. 

When a processor B receives a message, it performs the following processing: 
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1. It receives an interrupt that causes the processor to stop its current processing and check to see 
if it has received a message. 

2. The message check consists of making certain its reception bufer state is in the Unread state. 

3. When Processor B is done with the reception buffer (either by copying it into a local buffer or 
processing it directly) it sets the buffer state to Read. 

4. PROTEUS HARDWARE DESCRIPTION 
As illustrated in Figure 6, our implementation of the Proteus architecture has tightly-coupled processor clusters 

connected in groups. Communication within a cluster is through shared memory. Communication within a group 
is through a circuit switched cross-bar connection. Communication between groups is through a circuit switched 
enhanced hypercube connection. A separate control network of buses within each group, and ethemet among 
groups, allows additional control and communication. A top level view of the system is shown in Figure 6. 

4.1 Circuit Switched Enhanced Hypercube 

The binary hypercube-based computers, cosmic cube, Ncube, and FPS T-Series 5·, use packet switching to com­
municate from node to node. Proteus uses circuit switching. A Proteus node, what we call a group, consists of 9 clus­
ters, each having 4 processors, making a total of 36 processors. The groups are connected in an enhanced hypercube 
structure. An enhanced hypercube contains two links in any one dimension of a regular hypercube, as shown in 
Figure 7. The primary advantage of the enhanced hypercube architecture is the permutation embedding capability. 
A centralized algorithm at the host may route any arbitrary permutation. The 32 groups in a full scale system can 
thus communicate with each other in an arbitrary permutation for rapid exchange of data. By not buffering the data 
at the intermediate nodes, the transmission across the diameter of the hypercube are negligible. 

The enhanced hypercube is scalable from a 3 cube to a 5 cube with 8 to 32 nodes, or groups. The primary advan­
tage of the large number of processors in each group is for large grain parallelism problems which may comm1,1ni­
cate efficiently using large blocks of data. The external input is received on 32 parallel channels which are equally 
distributed to the enhanced hypercube nodes. 

The enhanced hypercube of Proteus is also a special case of the generalized folding cube 2·• Direct application 
to algorithms is provided by trivial embedding of meshes, rings, tori, etc. The general interconnections available 
allow many algorithms to be directly mapped into Proteus with optimal performance. The generalized cube has 
multiprocessors at each node. Studies have shown that efficiently coded algorithms on the hypercube underutilize 
the available bandwidth 13·. By clustering processors at each node the Proteus architecture improves the link utili­
zation. Detailed descriptions of the communication network and the enhanced hypercube are given in section IV.3. 

4.2 Allocating Caches 

Clustering of processors, while cost effective, may cause contention for shared resources. Detailed simulation, 
program studies, and architectural trad~ffs allowed us to optimize the use of the shared memories at clusters. In 
effect, the advantages of local memory and cache memory have been combined by using an innovative implemen­
tation of read and write allocation 25·• Read and write allocation force cache accesses to hit, thereby reducing shared 
memory accesses, and limiting multiprocessor contention. For initial applications read/write allocation has shown 
shared bus accesses to be reduced by 6.6% in the single program, multiple-data stream mode 24·. The allocating 
cache is a high performance interconnect that is much more general than the register memories used in the Orthog­
onal multiprocessor (OMP) 14·, which requires explicit loading and unloading of register variables. Proteus caches 
may be set to different modes by using mode bits in the address, so any combination of modes may be used in pages 
which map to unique positions within the cache. The caches are described fully in the design section. 

4.3 Fault Tolerance 

Initial design goals focused on the incorporation of limited fault tolerance. By requiring general connectivity of 
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Proteus Hardware System 

Image Sequence Source Group 7 

• 32 Parallel Channels for image transfer 

• 8 Groups Expandable to 32 

• Each Group has up to 9 Clusters 

• Each Cluster has 4 Processors 

• Peak input rate of 25 512x512 image frames per second on each channel 

Figure 6. A top level view of the Proteus architecture. 
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Figure 7. Exploded View of Proteus System 
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Host 

Figure 8. Communication hierarchy 

clusters, and the arbitrary assignment of jobs to processors, system level fault diagnosis 21 · can be performed at the 
cluster level. Proteus incorporates a small amount of spare processing capacity which is used for roving tests and 
redundant computation, to create on line fault diagnosis. The fault diagnosis strategy is discussed further in the 
architecture section. 

These unique aspects of Proteus create a research computer that advances current architectural thought. The 
Proteus architecture is a test bed for hypercube communications, allocating caches, and system level fault diagnosis. 
Simulation shows these features give higher performance and reliability than other architectures. 

4.4 Enhanced Hypercube 

The hypercube is an undiJ<=ted graph of 2n vertices where each vertex has n links, or edges to other vertices. 
A 3 dimensional cube has 2 = 8 vertices, and each vertex has 3 links. A permutation in the hypercube is a con­
nectivity set used to represent the communication to occur. For example a 2-cube permutation is [3,2,0,1] so that ver­
tex 0 connects to 3, 1 to 2, 2 to 0, and 3 to 1. Arbitrary permutations may be possible in any dimensional cube, but it 
has not been proven. 

Proteus ·uses the enhanced hypercube static network for which it has been proven that arbitrary permutations 
can be embedded 3·. The Enhanced Hypercube uses two links instead of one in any one dimension of the original 
binary cube for n > 3. This give!? us c9mplete reconfigurability. Figure 7 shows Proteus with n = 4, and the extra 
links connecting all nodes in the vertical dimension. 

The links marked a, b, c, and dare the high speed serial links input and output for one group. Thee link is the 
additional link which allows full permutation capability. The exploded view of the group contains the Unix board 
group controller (GC), the clusters (CO to C8), and the communication interface or crossbar (xBar). Ousters are con­
nected by crossbar to each other and to the enhanced hypercube. I/0 from external sources is fed through the 1/0 
buffer marked as lB. An exploded view of a single cluster is shown, and consists of the cluster control processor 
(CCP), the shared memory (SM), the 1/0 buffer and memory (I/0 DPM), and the RISC processors (or pixel proces­
sors, PP). Pixel processors in a cluster share memory and a serial I/0 link. External caches and control processors 
help ease contention and multiprocessing performance degradation. 

4.5 Communication 

The communication structure, shown in Figure 8, is hierarchical to share resources and distribute control over­
head. Currently, communication through hypercube links is arranged by the host. Communication within groups 
is set up by the group controller, and communication within a cluster is set up by the cluster controller. All links to 
cross-bar are optical serial links which transmit/receive data at 250 Mbits/second. When a path has been set for 
cube communication, data passes directly from the source cluster to the destination cluster in another group. No 
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Figure 10. Crossbar Connections 
store and forwarding is done with the circuit switch connection. 

Within the group, a crossbar connects serial links to and from sources and destinations. In parallel with cube 
communication, additional clusters within the group may be transmitting and receiving data. At any time, k clus­
ters in a group may be using cube connections, so that 9 - k clusters may communicate amongst themselves. The 
cluster's four processors share a serial I/O link which is accessible through a dual port memory buffer. The shared 
memory provides intra cluster communication, and the dual port buffer provides highest 1/0 performance. The 
control of communication, and the control network are described in the following section. 

When a PP i1 in a cluster h in group k1 wants to send a block of data to another PP i2 in cluster h in group k2, 
the path is set up under the control of cluster controller h, h, group controller k1, k2 and host in a tree fashion 
depending on the location of PP(i1, iJ,k1) and PP(i2,h,k2). This is depicted in Figure 7. If h=h (then k1=k2) and cluster 
h arranges for data transfer through the shared memory. If { 1 '1:-/ 2 but k1 =k2 then cluster controller h request group 
controller k1 (=k2) to set up the path through the crossbar. Group controller also informs the receiving cluster h to 
be ready to receive data. If h=h and k1=k2, then the group controller k1 requests to host to set up a path through the 
enhanced hypercube. When the path is available, the host informs all GCs which include GC kv GC k2 and interme­
diate GCs. All GCs set up their X-Bars. GC k1 and GC k2 inform their respective clusters which in tum sets up their 
respective transmission and receive DMAs. 

4.6 Control 

The system is hierarchically controlled as illustrated in Figure 9. Both the Enhanced hypercube and the crossbar 
connections within a group are managed by the generalized communication interface, GCI. The link connections to 
the cube and clusters are provided in a crossbar within each group. The GO consist of a 16 x 16 cross point switch. 
Each input can transmit up to a 1000 Mbits/ sec fiber link but the actual speed to be used in the current system is 250 
Mbits/sec. The 16links on the input side are used by the nine clusters in the group, 32/N input channels and the 
enhanced hypercube links. A block diagram showing the crossbar connection is depicted in Figure 10. 

The group controller is a single processor Unix board equipped with the VMEbus and ethemet interfaces. It 
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operates under a real time UNIX operating system environment. Each group has a single VMEbus accessible to all 
of its clusters. The group controller coordinates all activities within the group. It assigns tasks to each cluster and 
sets up communication paths. Possible paths are from input to cluster within the group, intra cluster within the 
group, and intergroup. Paths are set by writing to the GCI. 

The Proteus host sets initial configurations and manages cube links between groups. It is a general purpose 
Unix work station. It is responsible for system operation, user interaction, and output collection. Algorithms are 
developed at the host and mapped on to the system. Under the host, N = 8 to 32 groups are connected to the Pro­
teus host through ethernet. 

Within the group 8 clusters (with 1 extra for fault tolerance) are controlled via VMEbus. The group controller 
reads sending requests and activates destination clusters through VMEbus control registers. The movement of data 
is synchronized and each image frame transmission is completed within a fixed time. The set-up for all GOs is syn­
chronized. If the communication is to be restricted within a group, then the GCI allows asynchronous communica­
tion under the control of the group controller. 

The lowest level in the hierarchy is the cluster. This is shown in Figure 11. The cluster has a dedicated control 
processor, the Intel i960. The cluster controller schedules tasks on the pixel processors, manages shared memory, 
arranges for receiving and dispatching data by serial I/0, and monitors performance by using a hardware timer. 
The 4 RISC processors, i860s, share memory and have their own cache. The Intel i860 is a high performance 64 bit 
microprocessor. It supports parallel and pipelined execution with a RISC paradigm, using independent core/inte­
ger unit and a floating point/ graphics unit. These units may operate in parallel, and may access on-chip caches in 
a single cycle at 40MHz. 

Custom external caches tie directly to a shared 64 bit data, 32 bit address bus which services the 8 - 32 Mbyte 
shared memory and the 1Mbyte 1/0 buffer. The shared bus allows locked accesses for semaphore, test and set, and 
compare and swap operations, and burst fetches, of four 64 bit words. 

The external cache memory holds both data and instructions. The external cache is organized as a 1 megabyte 
direct mapped cache with a line size of 32 bytes. This matches with the internal line size of the Intel i860. The cache 
is designed for efficient multiprocessing with adaptable modes dependent upon the data: cached locally, cached 
shared, or uncacheable. Normal caching modes include write through and write back. New modes allow for vali­
dation of tags without reading that line from the shared memory 25·• Cache write allocation forces a hit upon a write. 
nus reduces the shared bus cycles and improves the overall performance of the system. In addition to the novel use 
of the above modes, line flushing, flush and invalidate, invalidation, and labelling are used to control individual 
lines in the cache. The cache modes are established by using multiple virtual addresses for the same physical mem­
ory. Software is responsible for cache management. 

For performance monitoring, the hardware provides one 16-bit counter and one 32-bit counter for each cluster 
controller, each driven by a 1 Megahertz clock. 

4.7 Design 

The design process started with initial discussions on approach, performance, and applications. The design was 
to be restricted to one circuit board, if possible, to reduce layout and debugging time. 

Processor Selection. A processor survey was done to determine the most applicable microprocessor. A repre­
sentative algorithm, morphological dilation, was used to "paper'' code programs to compare their performance and 
features. Important features used for comparison were arithmetic speed, number of registers, on chip memory (or 
cache) size, external bus bandwidth, and floating point capability. Processors investigated included the Intel i860, 
the MIPS 3000, the Motorola DSP 96002, the Texas Instruments TMS 320C30, the AT&T DSP 32C, the Motorola 
88000, the Motorola 68040, the Intel80486, and the Inmos T800. The i860 proved to be the clear choice for design, 
because of a combination of a 64 bit data bus and 12K bytes of on-chip cache memory. Analysis by Levy 16· showed 
the i860 to be poor for operating system work, so extra care was taken in design to minimize interruption of the 
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i860' s processing. All system-level functions were put on the control processor whose principle job is to take care of 
scheduling and interrupt handling. 

Interconnection and 110. Investigation into interconnection schemes and 1/0 to handle high input rates 
revealed a variety of options. The basic requirement was to allow data to be sent directly to any of the 256-1024 pro­
cessors. To support processor pipelines and distributed processing data were also to be moved from processor to 
processor. 

The only feasible option to support the high-input data rate was to divide input data over multiple 1/0 chan­
nels. Parallel data transfer would imply large numbers of cables, not a desirable feature. So fast serial l/0 channels 
were considered. Serial to parallel data conversion takes place at the 1/0 interface using recently available gallium 
arsenide derivatives. Input data is stored in shared memory using a DMA. A separate 64/256 bits wide fast parallel 
bus for data exchange within a group was considered. A 64 bit wide bus with available technology could handle the 
average data load, but performance would suffer if a peak load was experienced. A 256 bit width bus was would 
have forced us into a tight design space as it would have required larger board area and wide memory word size. 
Another option was to use switched fast serial lines between clusters. Hi~h speed parallel-to-serial and serial-to­
parallel chips from Gazelle 7· and a fast cross bar chip from Gigabit logic 0· were available from off the shelf. This 
was an attractive design option and these chips form the backbone of the communication network within each 
group. In addition the enhanced hypercube connection could be realized using the same crossbar chip. With 321/ 
0 channels and 8 clusters per group (plus one for fault tolerance), there were 7 ports left for managing input/ output 
channels and enhanced hypercube connections. An enhanced n-cube (n dimensional) requires n + 1 links at each 
node for n > 3 and n links for n :s;; 3. At the same time 32 I/0 channels were to be equally distributed among the 
groups. The distribution of channels is as follows. 

Table 1. Channels 
n 
5 
4 
3 

1/0 channels/node 
1 
2 
4 

Enhanced hypercube link 
6 
5 
3 

This suited us very well, and we used a 16x16 crossbar at each node as shown in Figure 7. 

Cluster Design. The most detailed analysis for design was performed on the cluster board. With the available 
technology, it was reasonable to fit four processors on one board. To support embedding of more general program 
graphs, we searched for a more general design. One possibility was to split the memory into several banks and pro­
vide a crossbar interconnection among processors and memory banks. This could do well with processor pipelines, 
but embedding arbitrary program graphs would cause blocking. Thus other options were considered. These 
included 1) a shared memory with a 256 bit wide bus with 4 x 256 bit data buffers (memory interface unit, MIU); 2) 
shared memory and a local memory with each processor; and 3) a shared memory with processor caches. In each 
case, it was possible to share the memory for 1/0 through DMA, direct memory access, or provide separate buffer­
ing for I/0. The bus could be 64 or 256 bits wide. These alternatives were compared using Network 11.5 simulations 
and then low-level HDL, Hardware Description Language, simulations. 

Several things were learned from the simulation. A high amount of conflict resulted whenever the input data 
was being transferred into shared memory. Because of this, closer attention was paid to the 1/0 design on the board. 
With the use of an 1/0 buffer the input and output data could be removed from the shared bus. Therefore, a dual 
port memory was added to manage the 1/0. The MIU model suffered because the processor could not cache all of 
its data in its on chip cache and higher contention resulted. In addition a 256 bit bus was thought to be an imple­
mentation risk. The local memory model suffered because no processing occurred when the data is being trans­
ferred to shared memory and because the local memory is a fixed size. However, local memory is advantageous 
when processing creates large results which were to be used again by the same processor. The cache solution com­
puted while reading initial data, did not fix the size of programs and data, and allowed a 64 bit bus to achieve accept-
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able performance. However, depending on the algorithm, the bus could still be saturated. 

Additional optimization of caching was investigated. When blocks of data are to be generated as a result of com­
putation, reads do not have to be done for caching. The processing of blocks of data lead to the idea of allowing 
pages of the cache to be controlled in a local memory mode, so local data could be forced to stay off the shared mem­
ory bus. Through allocation a section of the cache was to allow allocated writes. These writes would hit irrespective 
of the address tag present in the cache. If valid data was previously in the cache that needed to be flushed, this 
would be done, and then the write would be performed. 

Further investigation showed that clever coding on the processor allowed results to be cached which dramati­
cally reduced traffic on the bus. Since the i860 allowed 64 bit transfers, using the bus for less than 64 bit transfers 
results in under-utilization. In particular, if the transfer happens to be a byte, which was the case for our first vision 
application, the performance loss is severe. Therefore a scheme in which write data are cached and transferred to 
main memory in chunks of 64 bits yields much improved performance. Table 2· shows the results of this study. Three 
models were studied which are: A) a statistical read/write model, B) a deterministic read/write model, and C) a 
statistical read/write model that caches the writes. The same program was running on all four processors, and pro­
cesses a 64 K byte image and creates a 64 K byte image in an optimistic 45 milliseconds. In the first two models, A 
and B, the byte pixel writes go directly to the shared memory, so that all four processors writes may cause conflicts. 
Model C reduces write traffic by writing words of 8 pixels which would be flushed from the on chip cache. The 
Delay of getting the bus (nanoseconds), the number of processors queued up waiting for the bus (processors), and 
the percentage of time that the bus is busy are shown (average/maximum). 

Table 2. Byte writes vs. reads and flushes 

Model Delay Queue %Busy 

A 15/465 ns 0.11/3 proc. 41.6% 

B 7/701 ns 0.04/3 proc. 30.8% 

c 10/378ns 0.011/2 proc. 12.2% 

One way to force a hit on writes was to modify cache tags, a feature available in the i860. However, that required 
extensive modification in program development. An alternative was to read result locations before writing. This 
happens naturally in many applications where the computation is of the form A ~A ® B where ® is any oper­
ation and A and B are two operands. Otherwise, the compiler (or programmer) could do so for operations like 

A ~ B ® C . In the second case it does not matter what data is read for A as they are overwritten. If possible then 
read allocation 25·, or forcing a hit on reads in external cache, was found to be useful when preparing the processor 
to cache results on chip. The processor reads the buffer from the cache without going to shared memory. This read 
is done to validate the on-chip cache tag, so subsequent result writes hit in the cache. The addition of optional read 
and write allocation further improved the cache solution, and provided a unique solution to the memory bandwidth 
matching without changing the microprocessor itself. 

The final shared memory design prevents byte, 16 bit, and 32 bit writes. This is done so that inefficient use of 
the shared memory bus is not allowed. Programmers must use the external cache and explicitly flush their results 
from the external cache, or use read allocation and flush the on-chip cache to write-through to the shared memory. 

S.SUMMARY 
We have presented an innovative architecture designed for processing applications where large granularity 

may be used. The separate communication and control allows for high communication and 1/0 rates. By utilizing 
Choi's recent theoretical developments in hypercube theory 2·3·4·, Proteus creates complete permutation capability. 
This allows embedding of arbitrary graphs, and the circuit switched links provide guaranteed rates of communica­
tion. Shared memory multiprocessors contention problem is addressed by clustering processors, and by using inno­
vative cache designs to allow for the ideal cache and local memory behavior. With the general interconnections and 
reassignment of clusters, System Level Fault Diagnosis is achieved for all applications running on Proteus 
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We have discussed how the system software easily permits the efficient control of large grained parallelism 
without having to handle the general concurrency problem. We have described how the user can write high level 
algorithms which get efficiently mapped to the Proteus hardware by the INSIGHT translator. We have shown how 
the reconfigurable computation network can get its act together. 

Our first image processing application will be running by the Fall of 1991. As soon as this occurs, we will expand 
the application software to include higher-level computer vision operations as part of the INSIGHT language. 
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