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Abstract 

This paper describes how to propagate approximately additive random 
perturbations through any kind of vision algorithm step in which the appro­
priate random perturbation model for the estimated quantity produced by the 
vision step is also an additive random perturbation. We assume that the vi­
sion algorithm step can be modeled as a calculation (linear or non-linear) that 
produces an estimate that minimizes an implicit scaler function of the input 
quantity and the calculated estimate. The only assumption is that the scaler 
function have finite second partial derivatives and that the random pertur­
bations are small enough so that the relationship between the scaler function 
evaluated at the ideal but unknown input and output quantities and the ob­
served input quantity and perturbed output quantity can be approximated 
sufficiently well by a first order Tayl"or series expansion. 

The paper finally discusses the issues of verifying that the derived statis­
tical behavior agrees with ~he experimentally observed statistical behavior. 

1 Introduction 
Each real computer vision problem begins with one or more noisy images 
and has many algorithmic steps. Development of the best algorithm requires 
understanding how the uncertainty due to the random perturbation affecting 
the input ima.ge(s) propagates through the different algorithmic steps and 
results in a perturbation on whatever quantities are finally computed. Perhaps 
a more accurate statement would be that the quantities finally computed must 
really be considered to be estimated quantities. 

Once we have the perspective that what we compute are estimates, then 
it becomes clear that even though the different ways of estimating the same 
quantity typically yield the same result if the input quantities are not affected 
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by a random perturbation, it is certainly not the case that the different ways 
of estimating the same quantities yield an estimate with the same distribution 
when the input is perturbed by a random perturbation. It is clearly the case 
that the distribution of the estimate depends on the distribution of the input 
random perturbation and the method or type of estimate. 

With this in mind, it is then important to understand how to propagate 
a random perturbation through any algorithm step in a vision problem. The 
difficulty is that the steps are not necessarily linear computations, the random 
perturbations are not necessarily additive, and the appropriate kinds of per­
turbations change from algorithm step to algorithm step. Nevertheless, there 
are many computer vision and image analysis algorithm steps in which the 
appropriate kind of random perturbation is additive or approximately addi­
tive. And for these kinds of steps one basic measure of the size of the random 
perturbation is given by the covariance matrix of the estimate. 

In this paper, we describe how to propagate the covariance matrix of an 
input random perturbation through any kind of a calculation (linear or non­
linear) that extremizes an implicit scaler function, between the input quantity 
and the calculated estimate. The only assumption is that the scaler function 
have finite second partial derivatives and that the random perturbations are 
small enough so that the relationship between the scaler function evaluated 
at the ideal but unknown input and out quantities and the observed input 
quantity and perturbed output quantity can be approximated sufficiently well 
by a first order Taylor series expansion. 

As a related case, the given propagation relationships also show how to 
propagate the covariance of the coefficients of a function for which we wish to 
find a zero to the covariance of any zero we can find. 

The analysis techniques we employ are well-known in statistical and en­
gineering communities, although they are perhaps not so well known in the 
computer vision community. 

The paper concludes with a discussion of how to validate that the software 
which we use to accomplish the calculation we desire actually works. We 
argue that this validation can be done by comparing the predicted statistical 
behavior with the experimentally observed statistical behavior in a set of 
controlled experiments. 

2 The Abstract Model 
The abstract model has three kinds of objects. The first kind of object relates 
to the measurable quantities. There is the unobserved N x 1 vector X of the 
ideal unperturbed measurable quantities. We assume that each component of 
X is some real number. Added to this unobserved ideal unperturbed vector 
is an N X 1 unobserved random vector /:::,.X of noise. The observed quantity 
is the randomly perturbed vector X+ /:::,.X. 

The second kind of object relates to the unknown parameters. There is· 
the unobserved K X 1 vector 0. We assume that each component of 0 is some 



real number. Added to this ideal unperturbed vector is a K x 1 unobserved 
vector .60 that is the random perturbation on 0 induced by the random 
perturbation LI.X on X. The calculated quantity is the randomly perturbed 
parameter vector 0 = 0 + .60. 

The third kind of object is a continuous scaler valued function F which 
relates the vectors X and 0 and which relates the vectors X +LI.X and 0+.60. 
The function F has finite first and second partial derivatives with respect to 
each component of 0 and X, including all second mixed partial derivatives 
taken with respect to a component of 0 and with respect to a component of 
X. 

The basic problem is: given X = X + LI.X, determine a 0 = 0 + .60 to 
minimize F(X,0) given the fact that 0 minimizes F(X,0). 

Of course, if 0 is computed by an explicity function h, so that 0 = h(X), 
the function F is just given by f(X, 0) = (0- h(X))'(0- h(x )). 

3 Example Computer Vision Problems 

There is a rich variety of computer vision problems which fit the form of the 
abstract model. In this section we outline a few of them, specifically: curve 
fitting, coordinated curve fitting, local feature extraction, exterior orientation, 
and relative orientation. Other kinds of calculations in computer vision such 
as calculation of curvature, invariants, vanishing points, or points at which 
two or more curves intersect, or problems such as motion recovery are all 
examples of problems which can be put in the abstract form as given above. 

3.1 Curve Fitting 
In the general curve fitting scenario, there is the unknown free parameter 
vector, t/J, of the curve and the set of unknown ideal points on the curve 
{x1, ... ,xN }. Each of the ideal points is then perturbe.d. If Ll.xn is the 
random noise perturbation of the nth point, then the observed point nth point 
is Xn = Xn + Ll.xn. The form of the curve is given by a known function f which 
relates a point on the curve to the parameters of the curve. That is, for each 
ideal point Xn we have f(xn,t/l) = 0. We also assume that the parameters of 
the curve satisfy its own constraint h( t/J) = 0. The curve fitting problem is 
then to find an estimate tfo to minimize 'E;(=tf2(xn,'fo) subject to h({fo) = 0. 

To put this problem in the form of the abstract problem we let 

X 

x 
0 

F(X,0) = 

(x1, ... ,xN) 

(x1 + Ll.xt, ... ,xn + Ll.xN) 

(t/l,A), 0=(-lfo,.\) 
'E;:=d2(xn,t/J) + Ah(t/J) 

Then the curve fitting problem is to find 0 to minimize F(X,0) where 
F(X,0) = 0. 
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3.2 Coordinated Curve Fitting 
In the coordinated curve fitting problem, multiple curves have to be fit on 
independent data, but the fitted curves have to satisfy some joint constraint. 
We illustrate the discussion in this section with a coordinated fitting of two 
curves and a constraint that the two curves must have some common point 

at which they are tangent. 
Let (x

1
, ... ,xJ) be the ideal points which are associated with the first 

curve whose parameters are 1/JI and whose constraint is h1 (,PI) = 0. Each 
point x; satisfies ft(x;,,PI) = 0, i = 1, ... ,1. 

Likewise, let (Yl, ... , YJ) be the ideal points which are associated with the 
second curve whose parameters are t/J2 and whose constraint is h2( th) = 0. 

Each point Yi satisfies h(Y;, th) = 0, j = 1, ... , J. 
The coordinated constraint is that for some unknown z, 

The observed points :i:; and fl; are related to the corresponding ideal points 

by 

:i:; = x; + D.x; 

fl; = Yi + D.y; 

To put this problem in the framework of the abstract model, we take 

X = (:i:t. ... ,:i:J,fJI, ... ,fJJ) 

0 (.J,t. 1h, z, At. A2, A3, A4, As) 

and define 

F(X,0) 

The coordinated curve fitting problem is then to determine a 0 to minimize 
F(X,0), where the pertnrbed·e is considered are related to the ideal 0 by 

0 = 0 +D.0. 

3.3 Local Feature Extraction 
There are a variety of local features that can be extracted from an image. Ex­
amples include edges, corners, ridges, valleys, flats, saddles, slopes, hillsides, 
saddle hillsides, etc. Each local feature involves the calculation of some quan­
tities assuming that the neighborhood has the feature and then a detection is 
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performed based on the calculated quantities. For example, in the simple gra­
dient edge feature, the quantity calculated is the gradient magnitude and the 
edge feature is detected if the calculated gradient magnitude is high enough. 
Here we concentrate on the calculation of the quantities associated with the 
feature and not the detection of the feature itself. 

To put this problem in the setting of the abstract problem, we let e be the 
vector of unknown free parameters of the feature and X be the unobserved 
neighborhood array of noiseless brightness values. We let X be the perturbed 
observed neighborhood array of brightness values, X =X+ !::;.X, and 0 be 
the calculation ofthe required quantities from the perturbed brightness values 
X. The form the of feature is given by the known function f which satisfies 
that f(X, 9) = 0 The feature extraction problem is then to find the estimate 
0 to minimize F(X,e) = J2(X,0). 

3.4 Exterior Orientation 

In the exterior orientation problem, there is a known 3D object model having 
points (xn,Yn,Zn),n = l, ... ,N. The unobserved noiseless perspective pro­
jection of the point (xn,Yn,zn) is given by (un,vn)· The relationship between 
a 3D model point and its corresponding perspective projection is given by a 
rotation and translation of the object model point, to put it in the reference 
frame of the camera, followed by a perspective projection. So if 1/J represents 
the triple of tilt angle, pan angle, and swing angle of the rotation, t represents 
the x-y-z-translation vector, and k represents the camera constant (the focal 
length of the camera lens), we can write: 

= ~(pn, qn)' where 
Tn 

= R(,P)(xn,Yn,Zn)'+t 

and where R( 1/J) is the 3 x 3 rotation matrix corresponding to the rotation 
angle vector 1/J. 

The function to be minimized can then be written as: 

( _ k(l,O,O)(R('ifJ)(xn,Yn,zn)' + t)]2 
Un (0, 0, l)(R( 1/J)(xn, Yn, Zn)' + t) 

( _ k(O, l,O)(R('ifJ)(xn,Yn,zn)' + t)]2 
+ Vn (0,0, l)(R('ifJ)(xn,Yn,Zn)' + t) 

To put this problem in the form of the abstract description we take 

X = (ut,Vt,••·,un,vn) 
x = ( U~, Vt, ... Un, Vn) 
e ( 1/J, t) 
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e = c~,i) 

and define 

F(X,~) = l:~=d~(un,iin,e) 

The exterior orientation problem is then to find a e to minimize F(X,S), 
given that F(X,E>) = 0. And because F is non-negative it must be that E> 
minimizes F(X,E>). 

3.5 Relative Orientation 
The relative orientation problem can be put into the form of the abstract 
problem in a similar way to the exterior orientation problem. We let the 
perspective projection of the nth point on the left image be (unL,VnL) and 
the perspective projection of the nth point on the right image be ( UnR, VnR)· 
Then we can write that 

where (pn, qn, rn) is the rotated and translated model point as given in the 
description of the exterior orientation problem. 

The observed perspective projection of the nth model point is noisy and 
represented as ( Un, iin) = ( Un + .C:.un, Vn + .C:.vn)· Then taking 

X ( UJL, VIL, UIR, VIR,.··, UNL, VNL, UNR, VNR) 

X ( UIL, VIL> UIR, VIR, ... ' UNL> VNL, UNR, VNR) 

0 (xt,yi,ZI,···>XN,YN,ZN,t/J,t) 

S (xl>fit,zi,···•xNfJN,ZN,~,i) 

the relative orientation problem is to find e to minimize 

F(X' e) = l:~=I/( UnR, VnR,Xn, Yn> Zn, 1/>, t) + f(unl, VnL, Xn, Yn> Zn, o, 0) 

4 Zero Finding 
Zero finding such as finding the zero of a polynomial in one or more variables 
occurs in a number of vision problems. Two examples are the three point 
perspective resection problem and some of the techniques for motion recovery. 
The zero finding problem is precisely in the form required for computing the 
covariance matrix l:.o.e as described in the solution section. Let X be the 
ideal input vector and X be the observed perturbed input vector. Let E> be a 
K x 1 vector zeroing the K x 1 function g( X, E> ); that is, g(X, E>) = 0. Finally, 
let e be the computed vector zeroing u(x,e); that is, u(X,e) = o. 



• 

5 Solution 
For the purpose of covariance determination of the computed 0 = 0 + Ll.0, 
the technique used to solve the extremization problem is not important, pro­
vided that there are no singularities or near singularities in the numerical 
computation proceedure itself. 

To understand how the random perturbation LI.X acting on the measur­
able vector X propagates to the random perturbation Ll.0 on the parameter 
vector 0, we can take partial derivatives ofF with respect to each of the K 
components of 0 forming the gradient goff. The gradient g is a K x 1 vector 
function. 

8F 
g(X,0) = 

80
(X,0) 

The solution 0 = 0+LI.0 extremizing F(X +LI.X, 0), however it is calculated, 
must be a zero of g(X + LI.X,0). Now taking a Taylor series expansion of g 
around (X, 0) we obtain to a first order approximation: 
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8gKxN 8gKxK 
9Kxt(x +LI.X, 0 +L1.0 ) = 9Kxt(x, 0 )+---ax--(X, 0 )LI.XNxt+----ae-(X, 0 )L1.0 Kxt 

But since 0 + Ll.0 extremizes F(X + LI.X, 0 + L1.0), g(X + LI.X, 0 + L1.0) = 
0. Also, since 0 extremizes F(X, 0), g(X, 0) = 0. Thus to a first order 
approximation, 

8g 8g 
o = ax(X,0)LI.X + 80 L~-0 

Since the relative extremum of F is a relative minimum, the K X K matrix 

a9 ap 
ax(X,0) = 820(X,0) 

must be positive definite for all (X,0). This implies that 

is non-singular. Hence 

exists and we can write: 

This relation states how the random perturbation LI.X on X propagates to 
the random perturbation Ll.0 on 0. If the expected value of LI.X, E[LI.X), 
is zero, then from this relation we see the E[LI.0] will also be zero, to a first 
order approximation. 

This relation also permits us to calculate the covariance of the random 
perturbation Ll.0. 

---- ·-----~ 
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!:£>.9 E(.tl-0.6.0'] 

= E[ -( ag )_1 ag .tl.X( -( ag )_1 ag .tl.X)'] 
a0 ax a0 ax 

( ag )-1~E(.tl.X.tl.X']( ag )'( ag )'-1 
a0 ax ax a0 

= ( ag )-1 ag!: ( ag )'( ag ),-
1 

a0 ax £>-x ax a0 

Thus to the extent that the first order approximation is good, (i.e. E(.tl-0] = 
0), then 

!:e = !:£>.9 

The way in which we have derived the covariance matrix for .6.0 based on 
the covariance matrix for .tl.X requires that the matrices 

ag ag 
a0 (X,0) and ax(X,0) 

be known. But X and 0 are not observed. X+ .tl.X is observed and by some 
means 0 + .6.0 is then calculated. So if we want to determine an estimate i;e 
for the covariance matrix !:9, we can proceed by expanding g(X, 0) around 
g(X + .tl.X,0 + .6.0). 

ag ag 
g(X,0) = g(X+.tl.X,0+.6.0)- ax(X+.tl.X,0+.6.0).tl.X- ax(X+.tl.X,0+.6.0).6.0 

Here we find in a similar manner, 

This motivates the estimator i;£>.9 for !:£>.9 defined by 

ag - 1 ag 
(a0 (X + .tl.X,0 + .6.0) ax(X + .tl.X,0 + .6.0)!:£>-x 

ag I ag t-1 

X ax(X + .tl.X,0 + .6.0) (a0(X + .tl.X,0 + .6.0) 

So to the extent that the first order approximation is good, i;e = i:£>-e· 
The relation giving the estimate i;e in terms of the computable 

ag • ag • 
a0 (X+ .tl.X, 0) and ax (X+ .tl.X, 0) 

means that a covariance matrix for the computed e = 0 + .6.0 can also be 
calculated at the same time that the estimate e of 0 is calculated. 

~~-~--~--~--------



6 Validation 
Software for performing the optimization required to compute the estimate 0 
is often complicated and it is easy for there to be errors that are not imme­
diately observable (like optimization software that produces correct answers 
on a few known examples but fails in a significant fraction of more difficult 
cases). So a key issue in testing is whether the software is producing the right 
answers in the hard cases and whether the statistical properties of the answer­
s it produces are similar to the statistical properties we expect. Both these 
kinds of issues can be handled by doing a significant number of experiments 
whose results can be used in a hypothesis test that everything is as it should 
be. 

Consider what happens in a hypothesis test: a significance level, a, is 
selected. When the test is run, a test statistic, say ~, is computed. The 
test statistic is typically designed so that in the case that the hypothesis is 
true, the test statistic will tend to have its values. distributed around zero, 
in accordance with a known distribution. If the test statistic has a value say 
higher than a given tk, we reject the hypothesis. Else we do not reject, in 
effect tentatively accepting the hypothesis. The value of tPo is chosen so that 
the probability that we reject the hypothesis, given that is the hypothesis is 
true is less than the significance level a. 

In the case that we do not know the distribution of the test statistic, 
but we do know its mean and variance, we can still do the hypothesis test by 
independently generating the test statistic a number of times. So suppose that 
we repeat the test M times. The mth repetition generates a test statistic ~m· 
So after M repetitions we have observed the M independent and identically 
distributed statistics th, ... , ~M. Let the mean and variance of the each of 
the test statistics be denoted by Jl and u2, respectively. Calculate the mean 
test statistic ~ = iT L;~=l ~m· Let to be chosen so that the probability that 
a Normally distributed random variable will have a value greater than t0 is 
less than the significance level a. With M large enough so that the mean test 
statistic approaches being a Normal, under the hypothesis, the probability 
that ~ will be less than 7Nto + Jl is equal to a. 

To test the hypothesis that 0 is unbiased and that the covariance matrix 
:Et~.e for the 0 is calculated 

:E = ( ag )-l.!!!L:E ( ag )'( ag )'-l 
e a0 ax t~.x ax a0 

we can fix a value for a, the significance level of the hypothesis test. We can 
fix u, the noise standard deviation. We can fix M, the number of different 
tests and we can fix J, the number of repetitions of each test. Each test 
consists of randomly choosing a configuration xNxl and the associated 0. 
Each repetition of the test independently randomly generates a perturbation 
b..X which is added to X thereby forming the observed X+ b..X. From the 
observed X+ b..X, the estimate 0 is calculated by the optimization technique 
or whatever computational technique. The distribution of 0 is not known. 
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But to a first order approximation, the expected value of each e is known 
to be 0 and the covariance of each e is known to be E9. Hence, after 
J repetitions, the experimentally determined 0 should have a multivariate 
Normal distribution with mean 0 and covariance Ee/J. Therefore, the test 
statistic 

J(0- 0)'E9 -
1(0- 0) 

will have a x-squared distribution with N degrees of freedom. So for each of 
the M different tests we generate a test statistic which is x-squared distribu­
tion with N degrees of freedom. Since each of these tests is independent, if 
we sum the test together we obtain a test statistic, say T, which is x-squared 
distribution with M X N degrees of freedom. So to perform the test, we de­
termine the value t0 satisfying that the probability of ax-squared distributed 
random variable with N X M degrees of freedom taking a value greater than 
to is equal to the significance level a. Then if the test statistic T is greater 
than t0 , we reject the hypothesis. If the test statistic T is less than or equal 
to to, we tentatively accept the hypothesis. 

Once we have accepted the hypothesis that the expected value of the ran­
dom vector e is 0 and that e has covariance Ee, where 

E. = ( ag )_1 ag E ( ag )'( ag )'-
1 

9 a0 ax t::.x ax a0 

we can test the hypothesis that the estimated covariance matrix f;e is indeed 
an estimate for Ea. We can perform M different tests. For each test, we 
will randomly generate a configuration X and corresponding 0. Each test 
will have J repetitions in which a perturbation 6X is added to X and the 
corresponding e and f;e is calculated. The resulting J estimated covariance 
matrices can be averaged together forming the experimental average covari­
ance matrix Ee and the squared difference between the diagonal and upper 
half entries of Ee and Ee · should then be sufficiently small. If enough of 
the M tests result in squared differences which are sufficiently small then we 
accept the hypothesis. 

Another hypothesis we can test is whether the experimentally determined 
covariances are sufficiently close to the theoretically predicted covariances. 
Here for each configuration X and associated 0, we perform J repetitions 
calculating the estimate Sj on the jlh repetition. The experimentally deter­
mined covariance Ee is given by 

- 1 J I E· = -E· {0·- 0){0·- 0) e J ;=1 J 1 

As J gets large we should observe that the difference between the analytically 
derived covariance Ee and the experimentally determined covariance Ee goes 
to zero. 



7 Conclusion 
Making a successful vision system for any particular application typically re­
quires many steps, the optimal choice of which is not always apparent. To 
understand how to do the optimal design, a synthesis problem, requires that 
we first understand how to solve the analysis problem: given the steps of 
a particular algorithm, determine how to propagate the parameters of the 
perturbation process from the input to the parameters describing the pertur­
bation process of the computed output. The first basic case of this sort of 
uncertainty propagation is the propagation of the covariance matrix of the 
input to the covariance matrix of the output. This is what this paper has 
described. 

This work does not come near to solving what is required for the gen­
eral problem, because the general problem involves perturbations which are 
not additive. That is, in mid and high-level vision, the appropriate kinds of 
perturbations are perturbations of structures. Now, we are in the process of 
understanding some of the issues with these kinds of perturbations and expect 
to soon have some results in this area. 
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