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Abstract

We present a probabilistic graphical model that finds a
sequence of optimal categories for a sequence of input sym-
bols. Based on this mode, three algorithms are developed
for identifying semantic patterns in texts. They are the al-
gorithm for extracting semantic arguments of a verb, the
algorithm for classifying the sense of an ambiguous word,
and the algorithm for identifying noun phrases from a sen-
tence. Experiments conducted on standard data sets show
good results. For example, our method achieves an average
precision of 92.96% and an average recall of 94.94% for
extracting semantic argument boundaries of verbs on WSJ
data from Penn Treebank and PropBank; an average accu-
racy of 81.12% for recognizing the six sense word ′line′;
and an average precision of 97.7% and an average recall
of 98.8% for recognizing noun phrases on WSJ data from
Penn Treebank.

1 Introduction

Graphical models that lead to an optimization must de-

pendently thread through the sequence of class assignments

to optimize the joint probability of the class assignment

given the measurements, essentially use an implicit gain

function that specifies a gain of one if all the class assign-

ments are correct and zero if one or more of the class assign-

ments are wrong. No partial credit is given for some correct

assignments. This criterion leads to difficulties where noise

in the text data extraction can cause the resulting optimal

class assignments to hallucinate an incorrect yet seemingly

coherent result. In effect what happens here is that a noisy

or perturbed symbol at any position in the input sequence

can produce a wrong category path for the whole sequence.

This probabilistic graphical model presented in the paper

differs from existed graphical models: CRFs [5], HMMs

[9], MEMMs [8]. It gives partial credit and yet takes class

dependencies into account. The model is derived from the

probability function of a sequence of categories given a se-

quence of symbols by using the information carried on each

current symbol, the association between the current symbol

and the preceding symbol, and the association between the

current symbol and the succeeding symbol. Several bene-

fits result. First, we do not need to compute all category

paths and store them in order to determine the optimal cat-

egory path once the last symbol of a sequence has been

reached. As a consequence, for recognizing a new symbol

sequence, the time complexity is reduced from O(M2N)
to O(MN) while the memory complexity is reduced from

O(MN) to O(M) comparing with dynamic programming.

Furthermore, when we made a mistake on one symbol in a

sequence, it will not effect other correct decisions that have

been made or will be made for other symbols. Therefore,

the ratio of misclassification for the whole sequence of cat-

egories can be reduced. Indeed, this is the behavior we have

observed using this kind of model for three different types

of text pattern recognition.

2 Developing the Model

Let S =< s1, . . . , sN > be a sequence of N symbols.
Let C be a set of M categories, C = {C1, . . . , CM}. We
need to find < c∗1, . . . , c

∗
N >, c∗n ∈ C that best describes

S =< s1, . . . , sN >.

< c
∗
1 , c

∗
2 , ..., c

∗
N >= argmax

c1,c2,...,cN

p(c1, c2, . . . , cN |s1, s2, . . . , sN )

Our graphical model leads to the following representation
for the probability [3] [2] [4].

p(c1, . . . , cN |s1, . . . , sN ) =
∏N

n=1 p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)
∑

ck∈C

∏N
k=1 p(sk−1|sk, ck)p(sk+1|sk, ck)p(sk|ck)p(ck)

(1)

Because of the denominator is a constant for all ck ∈ C,
k = 1...N , therefore,

argmax
c1,..,cN

p(c1, c2, . . . , cN |s1, s2, . . . , sN )
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= argmax
c1,..,cN

N∏

n=1

p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)

=

N∏

n=1

argmax
cn∈C

p(sn−1|sn, cn)p(sn+1|sn, cn)p(sn|cn)p(cn)

(2)

2.1 Complexities

Time Complexity. By equation (1), to determine the cn

for a sn, we need to have four multiplications and M − 1
comparisons, where M is the cardinality of C. In the case of

a sequence of N symbols, we will have the time complexity:

Tc = 4 ∗N ∗ (M − 1) = O(N ∗M)

Memory Complexity. Because the global maximum prob-

ability is determined by each local maximal probability, for

a sequence of N symbols, we only need to store the infor-

mation of the current symbol. Therefore,

Mc = M = O(M)

3 Three Algorithms

Based on the model, we develop three algorithm for three

different tasks. Algorithm 1 is for extracting semantic argu-

ments of a verb; algorithm 2 is for classifying the sense of

an ambiguous word; and algorithm 3 is for identifying noun

phrases from a sentence.

3.1 Algorithm 1

Let T = (V,E, r,A, L) be a labeled rooted tree associ-

ated with a sentence, where V is a set of nodes, E is a set

of edges, E ⊆ V × V , r is the root, L is a function, s.t.

L : V → A, A is defined by [11]. Let π be a set of labels

related verbs, s.t. π ⊆ A. Let C = {C1, C2} be a set of

class categories, where C1 represents there is a path from

the current node to an adjacent node; C2 represents there is

not a path from the current node to an adjacent node. The

algorithm can be stated as follows:

• Apply equation (1) to find a path for each verb node x,

s.t. P(x) = τ1 → τ2 . . . → τK , where x ∈ V , L(x) ∈
π, and x is not a node in P ′(y), P ′(y) is a path that has

already been formed. Each τk ∈ V , k = 1, ...,K

• Find a set of roots R(x) = {ri|i = 1 . . . M}, where

ri ≤ τk, L(ri) �∈ π, and k = 1, ...,K.

• Form a labeled rooted forest F (x) = {T1, . . . TM},
where each Ti is a labeled rooted tree, rooted at r1 and

induced by the descendants of ri. T1 is associating

with a semantic argument of x.

3.2 Algorithm 2

Let C be a set of categories, C = {C1, C2, . . . , CM},
where each Cm is a predefined sense of the ambiguous sym-

bol st. The algorithm can be stated as follows:

• Determine contexts of st and form St = < st−i ...st...
st+j >.

• Apply equation (1) to find an optimal category se-

quence < c∗t−i . . . c∗t . . . c∗t+j > for St.

• Assign st to Cm if and only if:

max{#{c∗l |c∗l = Cm ∈ C, l = t− i, . . . , t + j}}

3.3 Algorithm 3

Let S be a sequence of symbols associated with a sen-

tence, S =< s1, ..., si, ..., sN >. Let C be a set of cate-

gories, C = {C1, C2, C3}, where C1 represents a symbol is

inside an noun phrase, C2 represents a symbol is not in an

noun phrase, C3 represents a symbol starts at a new noun

phrase. The algorithm can be stated as follows.

• Apply equation (1) to find an optimal category se-

quence < c∗1, . . . , c
∗
N > for S.

• Find {B1, . . . , BM}, each Bm is a block satisfying the

definition of B.

• B is a block if and only if:

1. For some i ≤ j, B = < (si, ci), (si+1, ci+1), . . .,

(sj , cj) >

2. ci ∈ {C1, C3}
3. cn = C1, n = i + 1, . . . , j

4. For some B′, if B′ ⊇ B and B′ satisfying 1, 2, 3

→ B′ ⇐⇒ B

4 Empirical Results

4.1 Experiments Set Up

We test our model by these three algorithms on data sets:

WSJ data from the Peen TreeBank and the PropBank [11],

CoNLL-2000 Shared Task Data [10], and data developed

by [6] and [1] for WSD. The evaluation metrics we have

used are precision , recall, f-measure (F1), and accuracy .

We have used 10-fold cross validation technique for obtain-

ing an average output.
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4.2 Results on the First Algorithm

We have tested our method on the data set developed

by [11], specifically, the WSJ section 00 from Penn Tree-

bank and PropBank. A total of 233 trees associates with

233 sentences and 621 verbs. Each verb has an average of

three semantic arguments. Hence about 2000 semantic ar-

guments are in total. For each sentence, Peen Treebank pro-

vides a corresponding parse tree (with an average accuracy

95%) while PropBank provides corresponding semantic ar-

guments (generated by human labels) of predicates in the

sentence.

Corresponding to 621 verbs, we found 621 paths by the

equation (1). For each path, a set of roots is found. Then

a set of labeled rooted subtrees is formed. The leaves of

each tree is associating with a semantic argument of a verb.

The test results are shown in Table 1. In average, each time

among the 1
10 semantic arguments that have been classified,

about 93% semantic arguments are correctly identified and

7% semantic arguments are classified wrong. By check-

ing these classified instances, we found that our method is

very effective in the case of a semantic argument being a

sequence of consecutive words. However, if a semantic ar-

gument consists of two or more word fragments, separated

by some phrases, our algorithm is less effective. The rea-

son is that these phrases are parts of leaves of a tree induced

from a root determined by our algorithm. This suggests us

that in order to exclude phrases from a semantic argument,

we need to develop a method so that a set of subroots is

needed to be found. Each of them corresponds to a frag-

ment of a semantic argument. Moreover, other misclassi-

fied instances may be generated by errors carried in original

syntactic trees.

Table 1. The first algorithm on WSJ data
Files Precision Recall F-Measure

20,37,49,89 % % %
Average 92.335 94.1675 93.2512
Standard

Deviation 0.6195 0.5174 0.4605

4.3 Results on the Second Algorithm

We have tested our method for identifying the sense

of a word on the data sets line, hard, serve, and interest.
The senses’ descriptions and instances’ distributions can be

found in [6] and [1]. In these data sets, line and interest
are polysemous nouns, hard is a polysemous adjective, and

serve is a polysmous verb. In our experiment, line has 6
senses, serve has 4 senses, hard has 3 senses, interest has 3

senses (other 3 senses are omitted due to lack of instances).

The test metric that we have used is accuracy.

We formed the context of each given target word by in-

cluding left four open class words and right four open class

words combining with the left word and the right word for

each of these words. Table 2 shows the test results. In the ta-

ble, Mean represents the average accuracy, Std represents

the standard deviation, MaxA represents the maximum ac-

curacy obtained from tests, and MinA represents the mini-

mum average accuracy obtained obtained from tests.

Table 2. The second algorithm on line, serve,
hard, interest data

Ambiguous Senses Mean Std MaxA MinA

word % % % %

Line (n)
6 81.16 1.92 84.50 78.0

3 85.25 2.13 91.70 81.05

Serve (v) 4 79.80 1.90 82.92 76.88

Hard (adj) 3 82.88 3.10 87.03 78.11

Interest (n) 3 92.10 2.21 95.50 86.00

By observing the experiment results, we found that mis-

classified instances are primarily generated by the ambigu-

ity of context words in our method. For example in Table 2,

comparing with three sense noun interest and three sense

noun line (we selected three senses at each time from six

senses and examined all twenty combinations), we found

that the accuracy of the word interest is almost 9% higher

than the one for the word line. Moreover, by examining

accuracies generated from each combination for the word

line, we found that some combination (S1S2S4) has the

highest average accuracy: 91.7% while some combination

(S1S3S5) has lowest average accuracy: 77.1%. The dif-

ference is almost 20%. By carefully checking these mis-

classified instances, We have learned that if two senses are

similar to each other, there are more chances that their con-

texts consist of same words. As a consequence, the ratio of

misclassification increases.

Moreover, by observing the results in Table2, we have

noticed that, whether a ambiguous word is a noun, an ad-

jective, or a verb, whether it has three senses, four senses,

even six senses, our model has achieved an average of accu-

racy 80%. This result is very encouraging and surpasses the

results published by other researchers [6] and [7]. More-

over, by observing the outputs of two polysemous nouns

line and interest, we found that as number of senses of a

polysemous noun increasing, the values of accuracies get

reduced. This suggests that nouns with larger number of

senses are more difficult to recognize than nouns with small

number of senses by our model. Furthermore, by observ-

ing the Means in column three, we have noticed that nouns
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are relatively easier to identify than adjectives or verbs. By

observing the Stds in column four, we have noticed that ac-

curacies generated by our model on adjective data is much

divergent than nouns or verbs.

4.4 Results on the Third Algorithm

We have conducted experiments for identifying NP

chunks on two kinds of data sets. One is CoNLL-2000

Shared Task data set and the other is WSJ data set from

Penn Treebank. On the first data set, three types of sym-

bols are designed to test our model. They are the lexicon

of a word, the POS tag of a word, and the lexicon and the

POS tag of a word. The results are shown in the table 3. By

comparing the results, we have noticed that if the model is

built only on the lexical information, it has the lowest per-

formance of F-measure 89.75%. The model’s performance

improved 3% on F-measure if it is constructed by POS tags.

The model achieves the best performance of 95.59% on F-

measure if both lexicon and POS tags are included.

The second data set we have used to verify our model is

the WSJ data from Penn Treebank: WSJ 0200 - WSJ 2999.

The main reason for using this data set is that we want to

see whether the performance of our model can be improved

when it is built on more data. In this experiment, based

on the result we have got from the CoNLL-2000 data, only

one type of symbols that we have used is lexicon+POS tag.

In this case, the training set is seven times larger than the

CoNLL-2000 shared task training data set. The test results

is shown in Table 3. Note, data inside parentheses in the

table represents stand divination.

Compared with the results on these two data sets, we

have noticed that the average precision is improved about

2.7% from 95.15% to 97.73% . The average recall is im-

proved about 2.8% from 96.05% to 98.65%. The average

F-measure is improved about 2.7% from 95.59% to 98.2%
as the training sets expended into the seven times larger.

This suggests a tradeoff between sizes of training sets and

the performances of our model need to be considered.

Table 3. The third algorithm on CoNLL− 2000
and WSJ data

Data Symbol type Precision Recall F-measure

% % %

CoNLL

Lexicon+POS 95.15 96.05 95.59

POS 92.27 93.76 92.76

Lexicon 86.27 93.35 89.75

WSJ
Lexicon+POS 97.73 98.65 98.18

(0.19) (0.14) (0.08)

5 Conclusions

We develop three algorithms for identifying three types

of semantic patterns: semantic arguments of a verb, the

sense of an ambiguous word, and noun phrases of a sen-

tence, in texts based on a probabilistic graphical model. By

this model, a sequence of optimal categories (or a path) for

a sequence of symbols (or nodes) is obtained in the way

of simple - no need dynamic programming, fast - O(NM),

and less memory spaces - O(M) compared with other ex-

isted models such as HMMs, CRF s, and MEMMs.

Moreover, because of the global maximum probability is

achieved by finding local maximal probabilities, the ratio of

misclassification can be reduced. Performances of these al-

gorithms on numbers of standard data sets demonstrate that

our method is effective and efficient.
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