PREMIO: An Overview

Octavia I. Camps, Linda G. Shapiro, and Robert M. Haralick

Intelligent Systems Laboratory
Electrical Engineering Department, F'T-10
University of Washington
Seattle, WA 98195, U.S.A.

Abstract

A model-based vision system attempts to {ind a corre-
spondence between features of an object model and
features detected in an image. Most [eaturc-based
matching schemes assume that all the [eatures that
are potentially visible in a view of an object will ap-
pear with equal probability. The resultant matching
algorithms have to allow for “errors” without really un-
derstanding what they mean. PREMIQO is an object
recognition /localization system under construction at
the University of Washington that attempts to model
some of the physical processes that can cause these
“errors”. PREMIO combines techniques of analytic
graphics and computer vision to predict how leatures
of the object will appear in images under various as-
suinptions of lighting, viewpoint, sensor. and image
processing operators. These analytic predictions are
used in a probabilistic matching algorithim to guide
the search and to greatly reduce the search space. In
this paper, which 1s a discussion of work in progress,
we describe the PREMIO System.

1 Introduction

The design of a model-based vision syvstem able to rec-
ognize and locate an ebject in an image is an arduous
process that involves trial and error experiments and
requires a great deal of expertise [rom the designer.
The automation of the design process is highly desir-
able; it would produce more effective procedures in less
time, reducing the software cost of vision systems and
expanding their use. Although previous work on au-
tomating the design of vision systems have liad some
success (6, 4, 16, 12, 17], there is still much work to
be done on the object recognition and pose estimation
problems. Ve believe that most of the limitations of
the previous systems can be removed by the use of
a more realistic model of the world. Ilence. a better
way ol representing the interactions hetween the ob-
ject representation schemes and the light sonrces and
sensor properties must be found.

An example of the difficulties that a working vision
system must address is illustrated in figure 1. Figure
| {a) shows a grayscale image of a scaled-model of the
satellite “Solarmax”. Figure 1 (b) shows a naive pre-
diction, which does not take into account the lighting
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and sensor characteristics of the edges that would be
detected by an edge detector applied on the image of
figure 1 (a). Figure 1 (c) shows the actual output of
an edge detector where several of the predicted edges
are fragmented or missing altogether. Knowledge of
the degree to which each edge boundary might break
up under different lighting and viewing conditions is
essential. This knowledge ensures that the inductive
matching phase does not have incorrect expectations
that cause the search to look for something that does
not exist and that the deductive hvpothesis verification
phase can employ a proper statistical test in which as-
sumptions about what should be there match the real-
ity of what s there.

2 PREMIO: A Model-Based
Vision System

Most feature-based matching schemes assuime that all
the features that are potentially visible in a view of
an object will appear with equal probability. The re-
sultant matching algorithms have to allow for “errors”
without really understanding what they mean. PRE-
MIO (PREdiction in Matching Images to Objects)
is an object recognition/localization system under con-
struction at the University of Washington [8] that at-
tempts to model some of the physical processes that
can cause these “errors”. PREMIO uses CAD mod-
els of 3D objects and knowledge of surface rellectance
properties, light sources, sensors characteristics, and
the performance of feature detectors to build a model
called the Vision Model. The Vision Model is used to
generate a model called the Prediction Model that is
used to automatically generate vision algoritlhims. The
system Is illustrated in Figure 2. PREMIO’s Vision
Model is a more complete model of the world than the
ones presented in the literature. It not only describes
the object, light sources and camera geometries, but it
also models tleir interactions. The Vision Model has
five components: (1) a 3D topological model of the pos-
sible objects. deseribing their geometric properties and
the topological relations between their faces, cdges,
and vertices; (2) a surface physical model, formed by
a general model of the light reflection of surfaces and
the physical characteristics describing their materials;
(3) alight source and sensor geometrical model, repre-
senting their configuration in space; (4) a light source



(b) Edge prediction without taking
lighting and sensor into account,.

(c) Output of an edge operator.

Figure 1: Problems in Feature Prediction.
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Figure 2: PREMIO: A Model-Based Vision System

and sensor physical model, describing their physical
characteristics, and (5) a detector model describing
the performance of the feature detectors available to
the system.

The system has two major subsystems: an offline
subsystem and a online subsystem. The oflline sub-
system, in turn, has three modules: a Vision Model
generator, a feature predictor, and an aulomatic pro-
cedure generator. The Vision Model generator trans-
forms the CAD models of the objects into Lheir topo-
logical models and incorporates them Into the Vision
Model. The feature predictor uses the Vision Model
to predict and evaluate the features that can be ex-
pected to be detected in an image of an object. The
output of the Prediction Module is organized as the
Prediction Model. The automatic procedure generator
takes as its input the Prediction Model and generates
the matching procedure to be used. The online sub-
system consists of the matching procedure generated
by the offline subsystem. It uses the Vision Model,
the Feature Prediction Model, and the input images,
first, to hypothesize the occurrence of an object and
estimate the reliability of the hypotheses, and second,
to determine the object position relative to the camera
and estimate the accuracy of the calculated pose. We
discuss each in turn.

3  The Vision Model

The Vision Model in a machine vision systemn is a rep-
resentation of the world where the system works. A
representation is a set of conventions about how to de-
scribe entities. Finding an appropriate representation
is a major part of any problem-solving ellort, and iy
particular in the design of a machine vision systent,
The entities that mnust be described by our represen-
tation of the world are the objects to be imaged and



the characteristics that these images will have. These
characteristics depend on: the geometry of the object;
the physical characteristics of the object surlaces; the
position of the object with respect to the sensors; the
light sources and other objects; the characteristics of
the light sources and the sensors, and ultimately, the
characteristics of the device that “observes” the image.

3.1 Object Models

PREMIO assumes that it has available PADL2 CAD
models of all the possible objects to be imaged. PADL2
is a constructive solid geometry (CSG) modeler de-
signed by H. B. Voelcker and A. G. Requicha at the
University of Rochester. Its primitives are spheres,
cylinders, cones, rectangular parallelepipeds, wedges
and tori.

PREMIO’s object model is a hierarchical, relational
model similar to the one proposed in [27]. The object
model is called a topological object model because it not
only represents the geometry of the objects but also the
relations among their faces, edges, and vertices.

The model has six levels. A world level that is con-
cerned with the arrangement of the different objects in
the world. An object level that is concerned with the
arrangement of the different faces, edges and vertices
that form the objects. A face level that describes a
face in terms of its surfaces and its boundaries. A sur-
face level that specifies the elemental pieces that form
those surfaces and the arcs that form the boundaries.
Finally, a 1D piece level that specifies the elemental
pieces that form the arcs.

The type of surfaces that a PADL2 model can have
are the surfaces of its primitives: planes, spheres, cylin-
ders, cones and tori. To represent these surfaces PRE-
MIO uses the same representation that PADL2 uses:
an implicit mathematical expression that represents
the corresponding primitive in a “natural” coordinate
system that makes this expression as simple as possi-
ble. An object modeled with PADL2 can only present
boundary arcs that result from the interscction of its
primitives. To represent these curves we also [ollowed
PADL?2 choice: a parametric expression for cach coor-
dinate, with a range interval for each parameter, that
represents the curve in a “natural” coordinate system
that makes these expressions as simple as possible.

To create the topological object model [rom the
PADL2 model, PREMIO uses the boundary [ile rou-
tines provided by PADL2. These routines give access
to all the information concerning the face surfaces and
the boundary arcs of the objects, but do not provide
a direct way to extract the boundary, edge and vertex
information that we need. To find the boundaries ol a
face, its arcs must be grouped together to form closed
loops. This can be done using the algorithm developed
by Welch [31] to find closed loops in an undirected
graph. At the same time the edge and the vertex in-
formation can be updated. The edge relation provides
a way to relate two faces that have an arc in comman,
while the vertex relation relates all the avcs that have a
vertex in common. These two relations are very useful
in the prediction of image features.
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3.2 Object Surface Model

Given the physical propertics of a material, it is possi-
ble to predict the properties of images of this material.
Different materials reflect the light in different ways,
producing different intensity values in the image. A
reflection model of a surface is a series of equations
designed to predict the intensity values of points in a
scene. Given the light sources, the surface, and the po-
sition of the observer, the model describes the intensity
and spectral composition of the reflected light reach-
ing the observer. The intensity of the reflected light
depends on the intensities, sizes, and positions of the
light sources and on the reflecting ability and surface
properties of the material. The spectral composition of
the reflected light depends on the spectral composition
of the light sources and on the wavelength-selective re-
flection of the surlace.

The light reflected by a small region of a material can
be broken down into three components: ambient, dif-
fuse and specular. The ambient component describes
the amount of light reaching the surface by reflection
or scattering of the light sources or other background
illuminators. Usually, ambient light can be assumed to
be equal for all points on the surface and is reflected
equally in all directions.

Most real surfaces are neither ideal specular (mirror-
like) reflectors nor ideal diffuse (Lambertian) rellectors.
Buchanan [7] has evaluated several reflectance models
and concluded that Cook and Torrance’s model [10] is
the most accurate when the incident light is completely
unpolarized. llowever, in general light is partially po-
larized. Y1 [32] derived an extension of Cook’s model
for polarized light. PREMIO uses this model.

3.3 Light Sources and Sensors Models

Image formation occurs when a sensor registers radia-
tion that has interacted with physical objects. Ilence,
it is important to include the light sources and sen-
sor models in our vision model. A light source model
must describe ils position in space, ils size and shape,
and its wavelength components. A sensor model 1ust
describe its position in space, its response to the radi-
ation input, and its resolution. In the offline system
of PREMIO, the sensor and the light source positions
are known. The sensor and light sources are placed on
the surface of a sphere centered at the origin of the
object coordinate system, called the reference sphere.
The points on the reference sphere constitute a con-
tinuous viewing space. The viewing space is sampled
[32] in a way such that the distance between any two
neighboring points in the discrete viewing space is ap-
proximately the same,.

The image intensity of a given point P in a given
surface 1s given by [32]:

I= /CSQ(A)(!w;V LRy (NI + RLA)TL(A))dA
(1)

where N is the unit normal to the given surface at P,
L is the unit vector in the direction of the light source



from P, C is the lens collection factor, S is the sensor
responsivity, Q is the spectral distribution of the illu-
mination source, « is solid angle, Ji and J| ave the
illumination intensities of the parallel and perpendic-
ular polarized incident light, and R and R are the
bi-directional functions for the parallel and perpendie-
ular polarized incident light.
The lens collection factor, C, is given by [32]:

T,oa, 2
C=—=(=) costa .

=35

where f is the focal distance of the lens, a is the diame-
ter of the lens, and « is the angle between the ray from
the object patch to the center of the lens. The sensor
responsivity S, is in general a function of the wave.
length of the incident light. However, for monochro.
matic sensors it can be approximated to one, regardless
of the wavelength of the incident light.

(2)

4 Feature Prediction Module

Given a vision model representing the world. the goal
of the prediction module is threefold: (1) it has to
predict the features that will appear on an umage taken
{rom the object from a given viewpoint and under ziven
lighting conditions; (2) it has to evaluate the usefulness
of the predicted features, and (3) it has to organize
the data produced by (1) and (2) in a efficient and
convenient way for later use. Qur approach to this is
analytic.

4.1

There are two different approaches to the use of CAD-
Vision models for feature prediction: synthetic-image-
based prediction and model-based feature prediction.

Synthetic-image-based feature prediction consists of
generating synthetic images and extracting their fea-
tures by applying the same process that will be applied
to the real images. Amanatides (1] recently surveyed
different techniques used in realistic image generation.
A particularly powerful technique used to achieve re-
alism is ray casting: cast a ray from the center of pro-
Jection through each picture element and identily the
visible surface as the surface that intersects the ray
closer to the center of projection. Bhanu et al (3] used
ray casting to simulate range images for their vision
model.

Model-based feature prediction uses models of the
object. of the light sources and of the reflectance prop-
erties of the materials together with the laws ol physics
to analytically predict those features that will appear
in the image for a given view without actually generat-
ing the gray-tone images. Instead. only data structures
are generated. This is a more difficult approach, hyt
it provides a more computationally efficient framework
suitable for deductive and inductive reasoning. This is
the approach used by PREMIO.

Predicting Features
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4.2 Model-Based Feature Prediction

The model-based feature prediction task can be di-
vided into three steps: The first step is to find the edges
that would appear in the lmage, taking into account
only the ohject geometry and the viewing specifica-
tions. The result is similar to a wireframe rendering of
the object, with the hidden lines and surfaces removed,
The second step is to use the material reflectance prop-
erties and the lighting knowledge to find the contrast
values along the edges in a perspective projective im-
age, and to predict any edge that may appear due to
highlighted or shaded regions on the image. The third
and last step is to interpret and group the predicted
edges into more complex features such as triplets, cor-
ners, forks, holes, etc.

4.2.1 Wireframe Prediction

The problem of determining which parts of an object
should appear and which parts should be omitted is
a well-known problem in computer graphics. A com-
plete survey of algorithms to solve the “Hidden-Line,
Hidden-Surface” problem can be found in [29]. A par-
ticularly efficient way of solving this problem is using
an analytical approach, hy projecting the object sur-
[ace and boundary equations onto the image plane and
determining whether the resulting edges are visible or
not. This approach obtains the edges as a whole, as
opposed to the ray casting approach, which finds the
edges pixel by pixel. The aim of the solution is to com-
pute “exactly” what the image should be; it will be
correct even il enlarged many times, while ray casting
solutions are calculated for a given resolution. Hence
this is the preferred method for our application.

In order to analytically predict a wireframe we need
to introduce the following definitions:

Def. 4.1 A boundary is a closed curve formed by
points on the object where the surface normal is dis-
continuous,

Def. 4.2 A limb is a curve formed by points on the
surface of the object where the line of sight is tangent
to the surface, i.e. perpendicular to the surface normal.

Def. 4.3
boundary

A conlour is the projection of a Jimb or a
onto the image plane.

Def. 4.4
intersect.

A T-junclion is a point where two contours

Def. 4.5 A cusp pointis a limb point where the line
of sight is aligned with the limb tangent.

The edges in an Image are a subset of the set of
contours. A piece of a contour will not appear in the
image if its corresponding boundary or limb is part of a
surface that is partially or totally occluded by another
surface closer to the point of view, Since the visibil-
ity of a contour only changes at a cusp point or a T-

Junction point, it follows that to find the edges on the

image the following steps have to be taken: (1) find all



the limbs and cusp points, (2) project the houndaries
and limbs to find the contours and all the T-junctions
and (3) determine the visibility of the coqtours lJy find-
ing the object surface closest to the point of view at
cach T-junction and cusp point.

Finding Limbs and Cusp Points

To find the analytical expressions for the limbs and
cusp points, PREMIO uses an approach similar to the
one used in [22], but designed for PADL2-modelable
objects instead of generalized cylinders.

Let P, with object coordinates (Xg, Yo, Zp) be the
projection center and let P with object coordinates
(X,Y, Z) be a point on a limb on the surface S defined
by the implicit equation f(X,Y,Z) = 0. 'Then, the
vector of sight ¥ from Fg to P is given by:

F=(X =Xo,Y — Y0, Z — Zo) (3)

and the normal N to the surface S is given by:

§o (2L 9F of i)
X' 8y 8z
In order for P to belong to the limb curve. /7 must
be on the surface § and the line of sight inust be per-
pendicular to the normal ¥ at P. llence the limb
equations are given by:

0
0 (5)

i

#-N
{ HXY.2)

Once the limb equations are solved, a limb can be
expressed in a parametrized form:

X = )ir(i)
Y = Y-(t) Emin S t S tmac (6]
Z = 2(1)

Then, the tangent vector T to the limb is given by:

& ax ay 8z
e (W‘?ﬁ’t”a_f)

Since a cusp point C'is a limb point where the line of
sight is aligned with the linb tangent, its coordinates
must satisfy the following equations:

Txd = 0
X = X(1) 3
}" = },(i‘) t)'ui” S £ S !H!((J‘ ( )
zZ = Z{t)

This procedure is performed in O(s) time where s is
the number of curved surfaces of the object.

Finding the contours and T-junctions

To find the contours, the limbs and boundaries of
the object are projected onto the image plane; to find
the T-junctions the intersections of the countours are
found. The intersection detection problem for n pla-
nar objects has been extensively studied and it can be
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solved in O(n log n+s) time 23], where s is the number
of intersections. In our case, the objects are the set of
contours. For PADL2 primitives, the limb curves are
either circles or straight lines, while the boundaries can
be either straight lines, conics or more complex curves.
Since the perspective projection of a straight line is an-
other straight line, and the perspective projection of a
conic is another conie, we can find a closed [orm so-
lution for the intersections between the contours that
result from projecting straight lines and conics. To find
other type of T-junctions, a numerical approach must
be used.

Determining Visibility

The next step is to determine the edges and surfaces
that are hidden by occlusion. Appel [2], Loutrel [19],
and Galimberti and Montanari [11] have presented sim-
ilar algorithms for analytical hidden line removal {or
line drawings. They define the quantitative invisibil-
ity of a point as the number of relevant faces that lie
between the point and the camera. Then, the prob-
lem of hidden line removal reduces to computing the
quantitative invisibility of every point on each relevant
edge. The computational effort involved in this task is
dramatically reduced by the fact that an object’s visi-
bility in the image can change only at a T-junction ar
at a cusp point. At such points, the quantitative in-
visibility increases or decreases by 1. This change can
be determined by casting a ray through the point and
ordering the corresponding object surfaces in a “tooth-
pick” manner along the ray. Hence, if the invisibility
of an initial vertex is known, the visibility of each seg-
ment can be calculated by summing the quantitative
invisibility changes.

The quantitative invisibility of the initial vertex is
determined by doing an exhaustive search of all rel-
evant object faces in order to count how many faces
hide the vertex. An object face is considered relevant
if it “faces” the camera, i.e. its outside surface normal
points towards the camera. A face hides a vertex if
the line of sight to the vertex intersects the face sur-
lace and if the intersection point is inside the boundary
of the face. To propagate the quantitative invisibility
from o1e edge to another cdge starting at its ending
vertex, a correction must be applied to the quantita-
tive invisibility of the starting point of the new edge.
The complication arises from the fact that faces that
intersect al the considered vertex may hide edges ema-
nating from the vertex. This correction factor involves
only those faces that intersect at the vertex. For an
object with e edges, f faces, and with an average of 3
faces meeting at each vertex, the computational time
needed to remove its hidden lines using this algorithm
s O(f+2x3xe)

4.2.2  Using Material and Lighting Knowledge

Boundaries of objects shiow up as intensity discontinu-
ities in an image. A line segment that is potentially
visible in a set of views of an object may appear as a
whole, disappear entirely, or break up into small seg-
ments under various lighting assumptions depending
upon the contrast along the edges and the detector
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Figure 3: Feature and relationships example

characteristics. Hence, to complete the prediction pro-
cess PREMIO needs to calculate the intensity values
along the predicted wireframe.

The contrast at an edge point is computed as the
difference in the intensity of the reflected light from
two small neighboring patches at each side of the edge.
These intensities, in turn, are obtained by using ray
casting and the surface reflection 1nodel at a finite
number of points along the edges. To represent the
contrast along the edge, a contrast graph is fitted with
piece-wise continuous polynomials using a regression
analysis technique [32].

4.2.3 Interpreting and Grouping Features

A feature is an entity that describes a part of an ob-
Ject or an image. Simple features such as edges can
be interpreted by themselves, or can be grouped to be
considered as higher-level features. Matching percep-
tual groupings of features was suggested first by Lowe
[20]. Henikoff and Shapiro [15] have found useful for
object matching arrangements of triplets of line seg-
ments called inferesting patterns. Other uselful high-
level features are junctions, and closed loops [21].

In PREMIO a feature is an abstract concept; it can
be a point, an edge, a triplet, a hole, a junction, or
a higher-level combination of any of these. A feature
has a type that identifies it, a vector of aftribuies that
represent its global properties, and a real number be-
tween 0 and 1 called its strength. The strength is a
measurement of the confidence of the feature being of
a particular type.

A feature participates in spatial relationships with
other features. Each such relationship is represented
by a relational tuple, which consists of a fypc specily-
ing the relationship and a vector of related fealures that
participate in that relationship. Associated with every
relational tuple of features there is a real number be-
tween 0 and 1 called the strength of the relational tuple.
"The strength is a measurement of tle confidence of the
feature vector satisfying the specified relationship.

As a simple example, consider the parallelogram
shown in figure 3. It can be described in terms of
its four sides and the relationships among them. In

this case, the features are the four sides of the par-
allelogram Iy, l», I3 and l;. Each side has associated
the attribute length and it is related to the other three
features by the relationships adjacent and parallel.

4.3 Evaluating Predicted Features

After a feature is predicted its potential utility must be
evaluated. PREMIO uses the concepts of detectability,
reliability and accuracy of a feature. The detectabil-
ity of a feature is defined as the probability of finding
the feature using a given detector on an image taken
with a given sensor. Therefore, its value depends not
only on the feature, but also on the sensor and detector
models. The reliability of a feature is the probability
of correctly matching the detected feature to the cor-
responding one in the model. Two features that look
very similar to each other, should not be considered as
very reliable since each of them can be mistakenly iden-
tified as the other. In general, the reliability is closely
related to the distinguishability power of the feature;
L.e. a unique feature immediately matches the model,
and therefore is highly reliable. The feature accuracy
is a measure of the error or uncertainty propagated
from the detected feature to a geometric property of
the object. This means that if, {or example, we delect,
astraight line in the image, we want to bound the error
of its location and orientation. Ilence, the accuracy is
calculated taking into account the sensor and detector
models,

4.4 Output of the Predictor Module

For a given object and a given configuration of light
sources, and sensors, the output of the predictor mod-
ule is a hierarchical relational data structure similar to
the one defined in section 3. This structure is called a
prediction of the object. Each prediction contains a set
of features, their attribute values such as detectability,
reliability, and accuracy, and their originating three-
dimensional features. The prediction has at least five
levels: the image level, an object level, one or more fea-
ture levels, an arc level and a 1D piece level. The hnage
level at the top of the hierarchy is concerned with the
imaging conditions that generated the prediction, the
general object position, and the background inforina-
tion. The object level is concerned with the different
features that will appear on the image and their inter-
relationships. The feature levels describe the features
in terms of simpler features, down to the arc level. The
arc level describes the arcs in terms of 1D pieces. Fi-
nally, the 1D-picce level specifies the elemental picces
that form the arcs.

5 Using Prediction in
Matching

The predictions that PREMIO produces arc powerful
new tools in recognizing and determining the pose of a
3D object. In order to take advantage of these tools, we
have developed an entirely new matching algorithm, a



pranch-and-bound search that explicitly takes advan-
tage of the probabilities obtained during the predic-
{ion stage to guide the search and prune the tree. The
matching algorithm represents a large theoretical ef-
fort that is actually independent of the PREMIO sys-
tem, and it is fully described in [9]. The algorithm has
been implemented as a C program and tested indepen-
dently on data specifically generated to fit the abstract
paradigm for the probabilistic search.

The matching algorithm can be thought
ways, as a relational matching algorithm and
strained branch-and-bound search. The theory hehind
branch-and-bound search is well known [13]. Rela-
tional matching has been expressed in several different
formalisms. Early papers concentrated on graph or
subgraph isomorphisms [30]. This led to many algo-
rithms for discrete relaxation and the introduction of
probabilistic relaxation [24]. The exact matching prob-
lem was generalized to the consistent labeling problem
(14] and to the inexact matching problem [26]. This
was extended further to the problem of determining the
relational distance between Lwo structural descriptions
(28, 25]. Some recent related work includes structural
stereopsis using information theory [5] . The present
algorithm differs from all of these in ils allempt 10 pro-
vide a solid theoretical probabilistic framework for the
matching problent and the search.

of in two
as a con-

5.1 Definitions and Notation

Models and images are represented by their fcatures,
the relationships among them, and the measurements
associated with them. As in the consistent labeling
formalism [14], we will call the image features units
and the model features labels. The matching algorithm
must determine the correspondences between the units
and the labels. Formally, a model M is a quadimple M
={(L,R, fr,gr) where L is the set of model features or
labels, R is a set of relational tuples of labels, [1 is the
attribute-value mapping that associates a value with
each attribute of a label of L. and gg is the strength
mapping that associates a strength with each relational
tuple of . Similarly, an wmage I'is a quadruple I =
(U,8, fu,9s) where U is the set of image features or
units, S is a set of relational tuples of units, fu is the
atiribute-value mapping associated with U, and gs is
the strength mapping associated with 5.

The relational matching problem is a special case of
the pattern complex recognition problem [13]. Anim-
age is an observation of a particular model. Let M =
(L, R, fr.yr) be the model, and [ = {5, fii.ys) be
he observed image. Not all the labels in 1. partici-
pate in the observation, only a subset of luhels 11 € L
is actually observed. Furthermore, only the relalional
tuples of labels representing relationships among labels
in H can be observed, and only a subset of them are
actually observed. The set U consists of the unrecog-
nized units. Some of the units ohserved in U corue from
labels in H; others are unrelated and can be thought
of as clutter objects.

The relational matching problem is to find an un-
known one-to-one correspondence hi: L — U between a
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subset of L, H, and a subset of U, associating some la-
bels of L with some units of U. The mapping h is called
the observation mapping, and 1t must satisfy that the
number of labels associated with units and the num-
ber of relations preserved in the observation are max-
imized. Notice that the matching process consists not
only of finding the model M, but also of finding the
correspondence h and its domain H, which are the ex-
planation of why the model M is the most likely model.
Tn general we scek to maximize the a posteriori prob-
ability P (M, h)l). That is, we want to maximize the
probability of the model being M and the obser vation
mapping being h, given that the image I is observed.

The relational matching problem requires a search

procedure that can identify the model M and the map-
ping h such that P(M, h\I

lational matching cost of an observation mapping h,

C(M,h,I)is defined by,

) is maximized. Lf the re-

C(.«"\I,h,]) = _log P(M, h,f) , (9)

then maximizing P (f\ff, h,I) is equivalent Lo minimize

the relational cost of h.

The relational cost C can
terms, each one representing
cost of the mapping [9]:

be broken down into five
a different aspect of the

c(M,h,I) = B Cir+ Co+ Gyt Cpg »  110)

where
Cy = —h:\gP(M),
Cy = —logP(UJz.\M),
Cr, = —1ogP(fU)U,M,h.),
Cs = dlogP(S’U,;‘\-I,h),
Cos = —logP(gS’U,fu,M,h).

The cost Car is the model cost. This is the cost
associated with the model being considered, and it pe-
nalizes the selection of models whose prior probability
of occurring, P(A), is low.

The costs Cy and Cy,, ave the label-unil assignment
costs, and they evaluate how well the labels and units
match through the mapping . Cy is the part of the
cost that penalizes for the differences of sizes between
tle set of observed features U and the set of features of
the model L. C, is the part of the cost that penalizes
the “differences” hetween labels and their correspon-
dent units. The costs Cy and Cj,, are given by [9]:

M))

—logky — Nylogksay

¢ = —log(P(plu o fui)

(11)




where Ny = #L + #U — 2#4H, ky>0and 0 < gy <1
are constants and are determined for each model from
the predictions using regression analysis techniques, p
is a suitable metric function, fy o h is the composition
of fy with h, and fr|, represents the attribute-value
mapping fr restricted to the labels in the domain H.

The costs Cs and C,, are the relational structural
costs and they evaluate how well the relationships
among the labels are preserved by the mapping h. Cs
is the part of the cost that accounts for the differences
between the set of observed relationships S and the
set of relationships of the model R. Cyg is the part of
the cost that penalizes the “differences” between the
relational tuples of labels and their correspondent rela-
tional tuples of units. The costs Cs and Cgg are given

by [9):
Cs =
Cpe =

—log k. — Ny logar
—log (P(p(hogg,gﬁ)’ﬂf)) . (12)

where N, = #(R—So h=1) + #(S — Roh), by >0
and 0 < g, < 1 are constants and are determwined flor
ecach model from the predictions using regression anal-
vsis, So h~! is the composition of & with the inverse
mapping of h, h=! Roh is the composition ol 2 with
h, p is a suitable metric function, and yg o i 1s the
composition of gs with A.

5.2 Partial Matching

Finding the full mapping h would require a [ull tree
search. But, only a few correspondences betwecn units
and labels are needed to hypothesize a match between
an object and a model and to estimate the object’s
pose. The number of correspondences needed is de-
termined by the number of degrees of freedom that
the matched features fix. Instead of finding the entire
mapping h, we would like to find a partial match
that is a restriction of h, in the following sense:

Def. 5.1 Given two one-to-one mappings i and m,
such that Dom(m) € Dom(k), and m(l) = h({) for all
| € Dom(m), we say that the function h is an exten-
sion of the function m, and that the function m is a
restriction of the function h. The order of the exten-
sion h with respect to m is the difference between the
cardinalities of the sets Dom(h) and Dom(m).

Let m: L — U be a partial mapping assigning some
labels to some units. The mapping m partitions the
sots of features L and U into the sel of wsed [eatures
the match and the set of residual features 1o, those
not used in the match. Figure 4 gives a dingram of
the sets L and U showing the partitions induced by a
partial match m.

Let L* be the set of used labels, L™ the set of resid-
ual labels, U¥ the set of used units, and U™ the set
of residual units induced by the partial mapping m.
Consider the set E; = {ext;j(m)}, of all the possible
extensions of m of order j tila,t assign some labels to
some units. The maximum possible order of an exten-
sion of mm is given by: J = min {#L7, "} . Tlie st

Figure 4: Partition of the sets of features induced by
a partial match.

E = {ext(m)} of all possible extensions of m can be
expressed as the union of all the extensions of different
orders: E'= Upej<s Eis and its cardinal is given by:

g=d

S )

§=0

The probability that the “true” observation mapping
h is an extension of a partial mapping m — that is the
probability that the observation mapping A that max-

imizes the probability P(M, h, I) belongs to the set

E = {ext(m)} of all possible extensions of the partial
mapping m 1s given by [9]:

P, .Pe . e L.
P(;‘\-[,(m,L“),he E,]) _ oM rif(. Py

Py~
(13)
where,
Py = P(M
g=d
PU = kf #qu_]’ 1j
j=0
j=J
Ps = keked a5 Y g
j=0 hielr;
i=J " I
B = g o™ 30 P(ﬁ(fr;oh,-,,l'r_;,, )l.W)
=0 h€E; '
ij=J
Py 22 k;Zq;"‘U Z P(P(hicﬂs,_fm)‘f\f')
j=0 h.€eE;
ij = #L"+#U" —2j
Ny; = #(R—=Sohi")+#(S—Roly).

Although the terms Ps, Py, , and P, cannot be
calculated unless all the possible extensions /i; € E



Figure 5: Partition of the sets of relational tuples in-
duced by a partial match.

are considered, they can be upper bounded by values
depending only on m and not on its extensions [9].
These upper bounds can be found by noticing that
the partial mapping m induces a partition of the sets
of relational tuples S and R into three types of sets:
the set of used relational tuples, the set of pariially
used relational tuples, and the sets of restdualrelational
tuples, depending on whether all, some, or none of the
features in the feature vector of the tuple have been
associated a correspondent through the mapping m.
Figure 5 gives a diagram of the sets R and S showing
the partitions induced by a partial match m. Then, it
can be shown [9] that

p(M, m, h € E, 1) 2 B (14)

where
i=d N "
Pmaz: ‘Mkfer#E]qffJQr rmaz; ) (15)
=0

where Nrmaxj = #R'I'#S_Rmaxj_' mazwj and an.rj
and Spmar; are the total number of relational tuples of
labels and units with at most j labels or units without
a correspondent in the mapping m.

5.2.1 Matching by Tree Search

The matching process can be thought of as a state
space search through the space of all possible interpre-
tations X. The state space T is called the malching
space and it is defined as follows:

Def. 5.2 The maiching space, &, is the state space of
all possible interpretations, in which each state ¢ is
defined by an observation mapping h, with degrec of
match k, = #Dom(h,).

The search through the state space X can be
achieved by doing an ordered search on a tree 7 such
as the one shown in figure 6. Each node in T rep-
resents a unit and each of its branches represents an
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Figure 6: Search tree 7.

assignment of the unit to a label. A search state o in
¥ is represented by a path P in the tree 7. In the rest
of th~ paper, the terms “path” and “partial mapping”
will be used interchangeably.

A path P defines an observation mapping mp, and
it has an associated cost Cp = C(mp, M,I) defined in
equation (9). The matching process consists of find-
ing the path P* such that its associated observation
mapping mp- has the least cost.

A match can be found by using the well known
branch—-and-bound tree search technique. In the stan-
dard branch and bound approach during search there
are many incomplete paths contending for further con-
sideration. The one with the least cost is extended one
level, creating as many new incomplete paths as there
are branches. This procedure is repeated until the tree
is exhausted.

5.2.2 Improved Branch—and-Bound Search

Branch and bound search can be improved greatly if
the path to be extended is selected such that a lower
bound estimate of its the total cost is minimal. Those
branches that have an estimated total cost greater than
the maximum cost allowed can be pruned.

Let m be a partial mapping and m; be an extension
of m. The relational matching cost of m is given by

Cp, = —log P(M’, ml,l). An underestimate of C,,,,
is found by finding an upper bound of P(fli", ml,I).

Let h™ be the true observation mapping. Since h* €
E is one of a set of disjoint events, the probability

P(M, m,h* € B, 1

the probabilities of these events:

) can be expressed as the sum of

P(M,m,h* e E,I) =Y P(M,m, 1) .
h€B

Hence, for an extension m; we have

P(ﬁ-{,ml,f) < P(M,m,h" € B, 1) < Poas . (16)



Step 1: Initialization.
Form a queue Qp of partial matches, and let Py be the
initial partial match.
Step 2: Iterate over current paths.
Until Qp is empty, do
Begin
P := FRONT(Qp)
m ;= partial mapping associated with P
Cyn 1= relational cost of m
Step 2.1: Test if P can be extended.
If the path P can be extended,
Begin
Step 2.1.1: Select next label.
Look for two tuples, one from R and one
from S whose components are not all
matched, that are compatible. Two relational
tuples are compatible if they have the same
number of features and they agree on the
features that have been already matched.
The relational tuples that are partially
matched should be checked before than those
that are not.
Step 2.1.2 Extend the path
For eachu € U™, do

Begin
hy 1= pagh m extended with the pair
(4, ).
P’ := path associated with the
mapping h1.
Ch, := relational cost of k1.
I'p, 1= underestimate of the

cost of the extensions of hy.
Step 2.1.2.1 Compare with e.
Ty <e¢
Begin
Step 2.1.2.1.1 Finished?
I FP(P')=6and Cy, <e¢
Begin
P’ is a satisfactory match.
Exit .
End if.
Step 2.1.2.1.2 Add P’.
BACK(Qp) :=P'.
End if.
End for.
Step 2.1.3 Resort the queue.
Sort @Q-p by underestimated cost.
End if.
End until.
Step 3: End of Algorithm
Announce failure.

Figure 7: Matching Algorithm

The matching algorithm is given in figure 7. The al-
gorithm is being independently tested using controlled
experiments designed under a rigorous experimental
protocol [9]. So far, it has been tested on more than
4000 runs for models with five and seven labels, and
with ordered binary and ternary relational tuples. Fig-
ure 8 is a plot of the ratio of the number of paths
pruned to the total number of paths opened during
the search. The graph shows that the use of the un-
derestimate bound of the cost results in a high pruning
ratio (from 30% to nearly 80% of the tree), and hence
greatly reduces the computational time.

6 Summary and Future Work

Our research consists of two parallel activities: theoret-
ical developments, and test of the resulting theory by
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Figure 8: Pruning Ratio

the implementation of the PREMIO system, which
is implemented as a set of routines with over 39000
lines of C language on a SUN system running Unix.
PREMIO has two major subsystems: an offline sub-
system and a online subsystem. The offline subsystem,
in turn, has three modules: a vision model genera-
tor, a feature predictor, and an automatic procedure
generator. We have proposed the use of a complete
model of the world, the Vision Model, that incorpo-
rates PADL2 CAD models, surface reflectance proper-
ties, light sources, sensors, and processing models to
symbolically predict the features that will appear on
the images of the objects being modeled. The pre-
dictions are organized in a Prediction Model that pro-
duces the knowledge base of the probabilistic matching
algorithm,

For the vision model, we have implemented a hier-
archical, topological representation of the objects in
the world, using as input their PADL2 CAD models.
The prediction module can now predict line segments
feature for objects with planar surfaces. The prob-
abilistic matching algorithm is being tested indepen-
dently using artificial data generated under a rigorous
experimental protocol. The results obtained so far are
promising in that a large percentage of the tree be-
ing searched is pruned by the matching procedure pro-
posed. The remaining work is to integrate the parts
of the system and test it on real image data. On the
basis of our results so far, we expect PREMIO, when
fully integrated, to solve many of the difficulties that
most CAD-based vision systems encounter.

References

[1] J. Amanatides. Realism in computer graplics: A sur-
vey. [EEE Computer Graphics and Applicalions, T:44—
56, January 1987.

[2] A. Appel. The notion of quantitative invisibility.
In Proc. ACM National Conference, pages 387-393,
1967.



(3]

[6]

(8]

[10]

[11]

(12]

(23]

(18]

(1]

(17]

B. Bhanu, T.Henderson, and S.Thomas. 3-D model
building using CAGD techniques. In Proc. [EEE
Computer Vision and Pattern Recognition, pages 234—
239, June 1985.

R.C. Bolles and R.A. Cain. Recognizing and locat-
ing partially visible objects: The local-feature focus
method. Int. J. Robot. Res., 1(3):57-82, Fall 1982.

K. L. Boyer and A. C. Kak. Structural stereopsis for
3-d vision. IEEE Transactions on Systems, Man and
Cybernetics, PAMI-10(2):144-166, March 1988,

R.A. Brooks. Symbolic reasoning among 3-D models
and 2-D images. Artificial Intelligence, 17(1-3):285-
348, 1981.

C.G. Buchanan. Determining surface orientation from
specular highlights. Master’s thesis, Dep. Comp. Sc.,
Univ. of Toronto, Toronto, Ontario, Canada, 1986.

Octavia I. Camps, Linda G. Shapiro, and Robert M.
Haralick. PREMIO: The Use of Prediction in a CAD-
Model-Based Vision System. Technical Report EE-
ISL-89-01, Department of Electrical Engineering, Uni-
versity of Washington, 1989.

Octavia [. Camps, Linda G. Shapiro, and Robert M.
Haralick. A probabilistic matching algorithm for
object recognition. Technical Report EE-ISL-90-08,
Department of Electrical Engineering, University of
Washington, 1990.

R.L. Cook and K.E. Torrance. A reflectance model for
computer graphics. ACM Trans. on Graphies, 1{1):7-
24, January 1982.

R. Galimberti and U. Montanari. An algorithm for
hidden-line elimination. Comm. ACM, 12(4):206-211,
April 1969.

C. Goad. Special purpose automatic programming for
3D model-based vision. In Proc. of the Image Under-
standing Workshop, pages 94-104, June 1983.

R.M. Haralick. The pattern complex. In Roger Mohr,
Theo Pavlidis, and Alberto Sanfcliu, editors, Struc-
tural Pattern Analysis, pages 57-66. World Scientific
Public. Co, 1989.

R.M. Haralick and L. G. Shapiro. The consistent
labeling problem: part i. [EEE Trans. on Pattern
Analysis and Machine Intelligence, PAMI-1(2):173-
184, April 1979.

J. Henikofl and L. Shapiro. Interesting patterns for
model-based matching. In ICCV, 1990.

P. Horaud and R.C. Bolles. 3DPO: A system for
matching 3-D objects in range data. In A.P. Pent-
land, editor, From Pizels to Predicates, pages 359-370.
Ablex Publishing Corporation, Norwood, New Jersey,
1986.

K. Ikeuchi. Generating an interpretation tree from a
CAD model for 3D-Object recognition in bin-picking
tasks. /nt. J. Comp. Vision, 1(2):145-165, 1987.

21

(18]

[19]

(20]

(21]

[27)

28]

(29]

(30]

(31]

(32]

Richard E. Korf. Search: A survey of recent results.
In Howard E. Shrobe and The American Association
for Artificial Intelligence, editors, Ezploring Artificial
Intelligence, chapter 6, pages 197-237. Morgan Kaul-
mann Publishers, Inc., 1988.

P. P. Loutrel. A solution to the hidden-line problem
{or computer-drawn polvhedra. I[EFE Trans. on Com-
puters, 19(3):205-210, March 1970.

D. G. Lowe., Three—dimensional object recognition
from single two-dimensional images. Artificial Intel-
ligence, 31:355-395, 1987.

H. Lu and L. G. Shapiro. Model-based vision using
relational summaries. In SPIE Conference on Appli-
cations of Artificial Intelligence VII, March 1989,

J. Ponce and D. Chelberg. Finding the limbs and
cusps of generalized cylinders. [Int. J. Comp. Vision,
April 1987,

I'. P. Preparata and M. [. Shamos. Computational Ge-
ometry: An Introduction. Springer-Verlag New York
Inc., 1985.

A. Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene
labeling by relaxation operations. IEEE Trans. Syst.
Man Cybern., SMC-06, June 1976.

A. Sanfeliu and K. S. Fu. A distance measure between
attributed relational graphs for pattern recognition.
IEEE Transactions on Systems, MAn and Cybernet-
ics, SMC-13(13):353-362, May 1983.

L.G. Shapiro and R.M. Haralick. Structural descrip-
ticns and inexact matching. IEEE Trans. on Pattern
Analysis and Machine Intelligence, PAMI-3(5):504-
519, September 1981.

L.G. Shapiro and R.M. Haralick. A hierarchical rela-
tional model for automated inspection tasks. In Proc.
1st IEEFE Int. Conf. on Robotics, Atlanta, March 1984.

L.G. Shapiro and R.M. Haralick. A metric for compar-
ing relational descriptions. [EEE Trans. on Pattern
Analysis and Machine Intelligence, PAMI-T7, 1985,

I. E. Sutherland, R. F. Sproull, and R. A. Schumacker.
A characterization of ten hidden-surface algorithms.
Compuling Surveys, 6(1), March 1974.

J. R. Ullman. An algorithm for subgraph homomor-
phisms. J. Assoc. Comput. Mach., 23:31-42, January
1976.

J. T. Jr. Welch. A mechanical analysis of the cyclic
structure of undirected linear graphs. Jowrnal of the
Association for Computing Machinery, 3(2):205-210,
April 1966.

Seungku Yi. fllumination Control Expert for Machine
Vision: A Goal Driven Approach. PhD thesis, Depart-
ment of Elcctrical Engineering, University of Washing-
ton, Seattle, Washington, 1990.



