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Abstract

The opening of a model signal with a convez, zero-
height structuring element is studied empirically. Ez-
periments are performed in which the input signal
model paramelers and the opening length are varied
over an acceptable range and the corresponding grey
level distributions in the opened signal are fii {0 Pear-
son distributions. Nezl, regressions are used {o relate
the Pearson distribulion parameters to the input pa-
rameters, resulting in equations that may be used o
predict the effect of an opening. Finally, characteri-
zalion ezperiments show that the mazimum absolute
errors between actual and predicted cumulative distri-
butions using these regression equalions have ¢ mean
0f 0.036 and a standard deviation of 0.011 (for a range
of zero to one); the worst-case mazimum absolute er-
ror encountered between the cumulative distributions
15 0.066.

1 Introduction

Morphological opening operations are useful in dis-
criminating between lengths of sequences which are
well above background in a signal. To analyze algo-
rithms for this detection task, it is necessary to know
how a stochastic signal changes when it is opened.
Because this operation is nonlinear, expressing it as
a transformation of random variables becomes in-
tractable even for quite simple random input signal
models [5]. As an alternative to the analytical solu-
tion, we study the opening of a model signal by a con-
vex, zero-height structuring element empirically, using
the Pearson system to parameterize the distributions
in the opened signal.

We model the input signal as a sequence of mutu-
ally independent Normal random variables well above
the zero-valued background. Next, we show that the
input variables affecting the grey level distributions
in the opened signal are: the input signal mean and
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variance; the length of the opening structuring ele-
ment; and the translation class' of a particular pixel in
the opened signal. The empirical determination of the
opened signal’s distribution consists of varying these
four input parameters over an acceptable range and
running Monte Carlo experiments to determine the
resulting distributions. These empirical distributions.
which correspond to each processed set of experimen-
tal input variables, are fit to Pearson distributions (2],
which are also described by four parameters. Thus,
the experiments provide several data points indicating
the relationships between sets of experimental input
variables and the four Pearson parameters. Regres-
sion analysis is then performed to describe these rela-
tionships mathematically. Given the regression equa-
tions to predict the Pearson parameters of the opened
signal, we are interested in the error between the ac-
tual and predicted distributions; thus a separate set of
Monte Carlo trials is run to characterize these errors.
As we are interested in the expected cumulative grey
level distribution function for our particular applica-
tion, the root mean square error and maximum ab-
solute error between the actual and simulated cumu-
lative grey level distributions are calculated for each
input parameter set.

In summary, two Monte Carlo studies are made
to determine an empirical relationship estimating the
change in the average grey level from the transfor-
mation of random variables associated with opening
a random grey level signal with a specific model by
a simple zero-height structuring element. The follow-
ing sections elaborate upon the input random signal
model, opening process, and assumptions made by this
estimation; also, the experiments are described in de-
tail.

!We define the translation class of a pixel to be the number
of translations that the structuring element can make in the
non-zero support of the sequence and contain that pixel. It is
related to both the length of the sequence and the length of the
structuring element.



2 Random Signal Model

The random signal model describes the signal to be
opened by a convex zero-height structuring element.
Consider a discrete one-dimensional signal f(z) which
is a sequence of A consecutive positive, non-zero ran-
dom variables amid a zero-valued background. With-
out loss of generality, it may be assumed that the sup-
port F of non-zero f(z) is {0,1,...,A — 1}. Now al-
low the grey level f(z) at each z € F to be a Normal
random variable with mean b and variance o?. Fur-
thermore, let the random variables f(1),..., f(A) be
mutually independent. If several such sequences were
present in the signal with lengths Ay, Ay, ..., and if
each sequence were separated from the other by the
zero-valued background, it may be shown that the
the sequences are opened independently. Therefore,
the input random signal may be parameterized by:
its mean b, its variance ¢2, and the distribution of
lengths of its non-zero sequences. The mean and vari-
ance of a signal will be used as input variables for the
Monte Carlo studies; an analysis of the morphological
opening operation will yield a method to transform a
distribution of sequence lengths to a third parameter
used as an input variable for the experiments.

3 Morphological Opening Operation

Given the random signal described above, we would
like to describe the grey level distribution of its open-
ing with a one-dimensional, convex, zero-height struc-
turing element. Let the structuring element k be of
length Ty. Since the structuring elernent is convex, its
support /' may be given by K = {0,1,..., Ty — 1}.
By definition [3], an opening is an erosion followed by
a dilation:

(1)

fok=(fok)dk,

where the erosion is given by (f & k)(z)
minzex[f(z + z) — k(z)] and the dilation by (f @
k)(z) = maz sex [f(z — z) + k(z)]. Substituting
k(z) = 0 for all z and letting f'(z) = (f © k)(z),

definition 1 becomes

(fok)(z) = maz[f'(x — T\ +1),..., f(z)).

(2)

Note, however, that any member of {f(z),..., f(T) —
1+ z)} which is zero-valued (i.e., background) will
cause f'(z) to be zero, also. Careful inspection of
equation 2 at different values of z reveals that these
degenerate zero-valued arguments give rise to different
distributions for (f o k)(z). The most obvious conse-
quence of the opening is that (f o &£)(z) is zero for all
locations  that are members of a sequence of length
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A < T. This implies that the opening length T} act-
s as a length threshold for the sequences in the input
signal. Next, note that f(z) is positively correlated to
f(z+1), f'(z+2), ..., f'(z+T»—1), which hinders the
theoretical analysis of the transformation of variables
introduced by the dilation. However, because the ran-
dom variables f(z), z = 0,1,...,A — 1, are indepen-
dently and identically distributed, f'(z) 2 f'(z—Az)
for z € F' and z — Az € F'. From this, it follows that

maz[f'(z), ..., f'(z + ¢ —1)] 2
maz(f'(z ~ Az),..., f'(z — Az + ¢; — 1)] (3)
for all Az such that z — Az,...,.z2 Az +¢; -1 €
F'. Therefore, the number of non-zero elements from
which the maximum is chosen (e; in equation 3) distin-
guishes the distributions ( fok)(z) at different values of
z. This number of elements corresponds to the num-
ber of translations that the structuring element may
make in the non-zero support F' of the input model
and still contain the point z (see Figure 1), so we will
refer to ¢, as the {ranslation class of the pixel at point
z.

Now, using the concept of the translation class,
equation 2 may be rewritten with its degenerate
terms removed by introducing another random vari-
able H(ct) such that H(e;) = maz[f'(0),..., f'(c: —
1)], where ¢; is the translation class of the distribution
at z. In terms of this new variable, the grey level dis-
tribution of (fok)(z) may be broken down into several
cases, which are given below. If A < T},

(fok)(z) 0. (4)

Ty <A<2Ty ~1,

H(z+1)for0<z < A-T)

(fok)(z)E{ HA-Th+1)for A=Th <z < T
HA-z)for Ty <z < A
(5)
IfA>2T -1,
P H(z+ 1) for 0 <z < Ty
(fok)z)=¢ H(T\)forTh <z <A =T (8)

H(T)\—r)for)\—T,\S:r:<)\

These relationships describe the transformation of
any distribution of sequence lengths, A, Ag,..., to a
weighted combination of distributions H(c;), where
¢ = 1,2,...,T\. This ability to transform a length
distribution to a function of the translation class im-
plies that the third parameter for the Monte Carlo
studies should be the translation class, whose range



depends upon the length of T of the opening struc-
turing element. Therefore, the fourth input variable
to the Monte Carlo studies must necessarily be the
length Ty of the opening structuring element.
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Figure 1: Illustration of the translation classes c; of
impulses within a signal, whose non-zero support is 7,
opened by a convex structuring element K.

4 Pearson Parameters

Now that the input parameters (the signal mean b,
the signal variance o2, the opening length T}, and the
translation class ¢;) causing variation in the opened
signal pixels’ grey level distributions have been iden-
tified, a protocol can be established to observe these
grey level distributions as the input parameters are
varied over a specified range. We chose Pearson distri-
butions to model the opened signal pixels’ grey level
distributions because they can flexibly describe uni-
modal distributions. Pearson distributions have four
parameters which may be computed given the first
four moments of a distribution. These four parame-
ters are estimated as the input is varied. Each step of
this experimental protocol is discussed in more detail
below.

4.1

Several images are generated so that each image
provides a sample of grey levels for a given combina-
tion of the input variables {b, ¢2, and T, } and for all of
the translation classes ¢, such that ¢, € {1,2,...,T)}.
First, an image containing 5,000 independent line seg-
ments of length 27y on a zero-valued background is
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created such that the grey levels of the pixels with-
in the line segments are independent Normal random
variables with mean b and standard deviation o. Nex-
t, the image is opened with a zero-height line-shaped
structuring element of length 7. Finally, the mask
image which indicates the translation classes of the
pixels in the model image is generated. Since the
length of the line segments in each image is twice the
length of the structuring element used to open that
image, each experimental image contains two pixels
per line segment that represent each translation class,
yielding a sample of 10,000 pixels per translation class.

The input parameters are sampled as follows to cre-
ate the opened images: mean () of the pre-opened
normal distribution = 80, 99, 118, 137, 156; standard
deviation (o) of the pre-opened normal distribution =
5, 10, 15, 20, 25; opening length (T}) = 2, 4, 8, 16, 32;
and translation class (¢;) =1, 2, ..., T). All possible
combinations of the &, ¢, and T\ values listed above
are generated. These experimental images, then, pro-
vide the statistics which are used to fit the grey level
distributions resulting from each set of input parame-
ters to a Pearson model by estimation of the Pearson
parameters.

4.2 Estimating the Pearson Parameters

The method of moments [2] is used to estimate the
Pearson parameters of the grey level distributions in
the opened images described above. A Pearson dis-
tribution is parameterized by its mean py/, its vari-
ance (g, the root of its coefficient of skewness VB,
and its coefficient of kurtosis G5. In this method, the
sample mean (u1/) and its second, third, and fourth
central moments (u2, ua, and pg, respectively) are
used directly to estimate the Pearson family parame-
ters for the sample as follows [2]: fi1/ = pit; fip = po;

———

VB1L = na/p23'%; and By = py/us?. The sample mo-
ments are gathered for all translation classes in each
experimental image. Sheppard’s corrections [2] are
then applied to the moments to correct for the integer
binning of the grey levels, and the Pearson parameters
are calculated from the corrected moments using the
relations given above. Scatterplots of the resulting es-
timated Pearson parameters versus the experimental
input parameters (b, o, Ty, ¢¢) are shown in Figure 2.

5 Regression of Pearson Parameters

The sets of estimated parameters corresponding to
different input signal, opening, and translation class
parameters are useful only if they can be mathemati-
cally related to the Pearson model parameters. To ac-
complish this, a multivariable regression is performed



for each of the Pearson model parameters on functions
of the four input variables. For each regression model
used, the bases are calculated from the original data
and then supplied to the regression. The final relation-
ships between each of the Pearson parameters and the
input variables and summaries of the regressions are
given below.

5.1 Mean of Opened Sample

The empirical expression obtained for the mean is:

fdyf = b+ a(—0.4512 — 0.4715 In Ty + 0.4297%). (7)
)Y

This regression produces a coeflicient of determination

of r> = 1.0000 and an F-statistic of 35538134 on 4 and
1546 degrees of freedom, yielding a p-value of 0.

5.2 Variance of Opened Sample

The empirical expression obtained for the variance
is:

= ey y2
(03417 2 ~0.6601(£)%]

(8)
This relationship 1s obtained by regressing the natural
logarithm of the variance estimates on (lneo, InTh, ¢,
and c¢?). The regression has a coefficient of determi-
nation of 72 = 0.9981 and an F-statistic of 207425.6
on 4 and 1545 degrees of freedom, yielding a p-value
of 0.

[y = —0.064261'99502—;0'43906

5.3 Skewness of Opened Sample

The empirical expression obtained for the root of
the coefficient of skewness is:

—

/By = 0.0672 — 0.0637T}, + 0.0035T2 — 0.000173

» Ct Ct \o Ct \3
1665 — — 1.5254(— .2 ) 9
+0.1 DT)\ 1 (T,\) +1 164(,1_:\) ()

The coefficient of determination for this regression is
r? = 0.8703 and its F-statistic is 1726.218 on 6 and
1543 degrees of freedom, yielding a p-value of 0.

5.4 Kurtosis of Opened Sample

The empirical expression obtained for the coeffi-
cient of kurtosis is:

By = 2.7470 + 0.0215T) — 0.0006T2 — 0.9779%
A

+3.9935(%)2 . 2.4765(%)3, (10)
A A

This regression produces a coefficient of determination
of r2 = 0.8885 and an F-statistic of 2460.367 on 5 and
1543 degrees of freedom, yielding a p-value of 0.

th

5.5 Analysis of Regression Results

The 72 values of the regressions performed indicate
that suitable regression models have been used for the
mean and the variance of the opened signal samples,
whereas we have not been able to fit the coefficients of
skew and kurtosis quite as well. Since the mean and
variance have a more profound effect upon the output
distributions, we are willing to accept more error in
the other parameters. The manner in which this error
affects the predicted distributions is the topic of the
next section.

6 Error Characterization

To compare the predicted output distributions giv-
en the input variables, a separate error characteri-
zation experiment is performed. In this experimen-
t, the input variables are sampled differently than in
the experiment used to gather the estimated grey lev-
el moments. Opened model images are then gener-
ated according to this new sampling scheme and his-
togrammed. The sampled values of the input vari-
ables are also used to generate predicted grey level
distributions for each opened model image using the
regression results of Section 5 as the parameters of
the Pearson distributions. The actual and predicted
grey level cumulative mass functions are compared in
terms of their mean square errors and their maximum
absolute errors.

6.1 Generating Actual Distributions

The input variables are sampled and used to gener-
ate images as in Section 4.1. The samples are taken as
follows: mean (b) of the pre-opened normal distribu-
tion = 85, 100, 115, 130; standard deviation (o) of the
pre-opened normal distribution = 6, 12, 18, 24; open-
ing length (73) = 5, 10, 15, 20; and translation class
(e:)=1,2,...,Ty. Each opened model image is then
histogrammed to obtain its probability mass function
and its cumulative mass function is computed.

6.2 Predicting Grey Level Distributions

For each sample described by a unique (b, o, T}, ¢)
combination, the parameters of the output grey level
(Pearson) distribution are predicted using the regres-
sion results in equations 7 through 10. Since we would
like to compare the predicted distributions to the actu-
al distributions for these cases, the predicted Pearson
parameters are used to compute the predicted binned
distributions to be used for comparison. The Pearson
distributions are computed using a method which esti-
mates eleven percentage points given the four Pearson



parameters [1]. A four-point polynomial interpolation
(using Neville’s algorithm [4]) is then performed at in-
teger range values to give the binned predicted output
cumulative distributions. The limits of the grey level
ranges are taken from the ranges of the corresponding
actual distributions (thus, the total probabilities of the
two mass functions are not necessarily equivalent).

6.3 Prediction Errors

Given the actual and predicted distributions (i.e.,
the probability and cumulative mass functions for each
case), the errors between these distributions corre-
sponding to each (b, o, Th, ¢;) combination are sum-
marized by a mean square error and a maximum ab-
solute error describing the discrepancies between the
cumulative mass functions.

The average and worst case root mean square errors
encountered between the actual and predicted cumu-
lative mass functions are 0.015 and 0.023, respectively.
One should note that the mean square error does not
indicate whether there is a bias or other structure in
the error (e. g., it may be heaviest in the steepest tail),
so it must be used with caution. Since we are inter-
ested in using the cumulative distributions in future
algorithms, this statistic would be useful if the pre-
dicted cumulative probability at any grey level could
be described by some zero-mean random variable giv-
en a particular set { b, o, T\, ¢; } of input variables.
Considering our data, this assumption does not seem
appropriate. Instead, we consider the maximum abso-
lute errors that we make in predicting the cumulative
grey level distributions of opened signals.

The maximum absolute error between the predicted
and actual grey level cumulative distribution functions
indicates the largest prediction error that one is like-
ly to make at any point in the distribution. As with
the mean square error, the maximum absolute errors
found in the characterization experiments do not ex-
hibit much structure as functions of the input param-
eters. Therefore, we consider the collection of maxi-
mum absolute errors for each prediction in the charac-
terization as a single sample. The largest of these er-
rors encountered in the characterization is 0.066, their
mean is 0.036, and their standard deviation is 0.011
(where the range of the cumulative probabilities is be-
tween zero and one). These statistics may be used to
predict an approximate upper bound on the difference
between the actual and predicted grey level cumulative
distributions of a pixel in an opened signal. regardless
of the values of the input parameters (provided that
they’re within the range of the characterization).

558

7 Conclusion

In conclusion, a model has been established to al-
low the investigation of the grey level distributions of
classes of pixels associated with the transformation of
random variables induced by a morphological opening
operation. A Monte Carlo simulation of the opera-
tion was performed to obtain the first four grey level
moments of several populations corresponding to dif-
ferent input signal and opening process parameters.
Next, four multivariable regressions were performed
to mathematically describe the four Pearson distri-
bution parameters (obtainable by a transformation of
the moments) as functions of the input signal and
opening process parameters. These relationships may
now be used to describe the expected grey level dis-
tributions of this particular signal model following an
opening operation. Finally, a second experiment was
performed to characterize the error in the predicted
moments given a particular method of computing the
Pearson distributions.

The value of this work lies in: (1) the use of an ex-
plicit model under which the opening operation may
be analyzed; (2) the development of prediction equa-
tions for the Pearson parameters, which may be used
in characterizing processing algorithms; and (3) the
characterization scheme, which provides a means to
approximate the error associated with the predicted
grey level cumulative distribution of a class of pixels
in an opened signal, as well as a means to check the
errors if the regression models and/or the grey level
(Pearson) distribution computation method change.
Knowing the average grey level distribution in a sig-
nal comprised of these model sequences is useful if one
wants to follow an opening operation by a point op-
erator which depends only upon the grey level value
of the pixel (e.g., thresholding). Thus, this study is a
first step toward the empirical analysis of the opening
operation and is sufficient to study our simple detec-
tion algorithms.
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Figure 2: Scatterplot of the input parameters (the signal mean b, the signal standard deviation o, the opening length T, and the translation
class ¢;) versus the estimated Pearson parameters (the mean fy/, the variance g, the root of the coefficient of skewness \/F. , and the coefficient



