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Abstract

Pose estimation is an essential step in many machine
vision problems involving the estimation of object position
and orientation relative to a model reference frame or
relative to the object position and orientation at a previous
time using a camera sensor or a range sensor. -

Solutions for three different pose estimation problems
are presented. Closed form least squares solutions are
given to the over constrained 2D-2D and 3D-3D pose
estimation problems. A simplified linear solution to the
2D perspective projection-2D perspective projection pose
estimation problem is also given.

Simulation experiments consisting of hundreds of thou-
sands of trials having varying numbers of pairs of corre-
sponding points, varying signal to noise ratio with either
Gaussian or Uniform noise provide data suggesting that
accurate inference of rotation and translation with noisy
data may require corresponding point data sets having
hundreds of corresponding point pairs when the signal to
noise ratio is less than 40 db.

1. Introduction

There are four pose estimation problems with point
data. Each arises from two views taken of the same object
which can be thought of as having undergone an unknown
rigid body motion from the first view to the second view. In
model based vision, one “view” provides data relative to the
model reference frame. In motion estimation and structure
from motion problems there is a rigid body motion of
the sensor, the object or both. In any case, in each
problem corresponding point pairs from the two views are
obtained from some kind of matching procedure. The pose
estimation problem with corresponding point data begins
with such a corresponding point data set. Its solution is
a procedure which uses the corresponding point data set
to estimate the translation and rotation which define the
relationship between the two coordinate frames.

In the simplest pose estimation problem, the data sets
consist of two-dimensional data points in a two-dimensional
space. Such data sets arise naturally when flat 3D objects
are viewed under perspective projection with the look angle
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being the same as the surface normal of the object viewed.
In the next more difficult pose estimation problem, the data
sets consist of three-dimensional data points in a three-
dimensional space. Such data sets arise naturally when 3D
objects are viewed with a range finder sensor. In the most
difficult pose estimation problems, one data set consists of
2D perspective projection of 3D points and the other data
set consists of either a 3D point data set, in which case it
is known as the camera calibration problem, or the other
data set consists of a second 2D perspective projection view
of the same 3D point data set. The latter case occurs with
time-varying imagery.

Section 2 derives a closed form least squares solution to
the pure 2D-2D pose estimation problem. Section 3 derives
a closed form least squares solution to the pure 3D-3D pose
estimation problem using a singular value decomposition
technique. The least squares solution for both the 2D-
2D and 3D-3D pose estimation problems are constrained
to produce rotation matrices which are guaranteed to be
orthonormal. Section 4 discusses a solution to the 2D
perspective projection—2D perspective projection pose es-
timation problem. Sections 3 and 4 contain experimental
results showing the effect of noise and number of data
points on the results.

2. 2D—2D Estimation

There are a variety of model based inspection tasks
which require the coordinate system of an object model to
be aligned with the coordinate system of a set of observa-
tions before the actual inspection judgements can be made.
One example is surface mount device inspection on printed
circuit boards. Here, the image processing produces, among
other measurements, the observed center position of each
device. The model stores, in the printed ¢ircuit board
coordinate system, the center positions, orientations, and
sizes of all devices. To determine whether each device
which should be present is present, and whether everything
observed to be present is actually present and in its correct
position and orientation first requires determining the re-
lationship between the coordinate system of the observed
image and the coordinate system of the model. Usually
this relationship is given by a two-dimensional rotation and
translation.




affect the linear convergence of the quasi-Newton solution
(a linear approximation), and yet will help prevent any
diverging solutions.

In conjunction with regularization we also apply a
line search procedure, an advanced “damping” technique
[CdB80]. The problem at hand is that the decreasing of the
function—here the distance measure of projected model
segments to the image segments—does not always guaran-
tee convergence. A simple example to illustrate this is in

[Na82,p.7).

5. Results and Conclusion

We implemented the above system in Franz-Lisp running
on a Vax with 4.3BSD Unix, displayed on a Sun 3/50 Tek-
tronix 4014 emulator. We were able to achieve convergence
for a range of -+ /- 40 degrees for angular variables and com-
plete range for translation. The number of iterations was
bounded by the number of variables.

In conclusion, we discussed the importance of the ver-
ification component in the overall vision system design as
both reducing the size of the search space of possible ob-
jects and instantiation of the parameters of even one ob-
ject, and of finalizing a match to a reliable degree. We then
implemented a system which performs correct viewpoint
and internal parameter determination, and incorporates
ways of improving the convergence to a correct solution.
We showed that expansion, scaling, translation and rota-
tion intra-component was not more difficult then the ini-
tial viewpoint determination problem itself, and outlined
problems encountered. Further research includes adding a
structure for general external constraints and the allowance
of any differentiable curve as the description of the model.
We state that we do not expect these areas to be too hard
to implement because in a certain sense we can view these
as an extensive parameterization of the model.
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Section 2.1 gives a precise statement of this problem
as a weighted least squares problem. Section 2.2 is a
derivation of the solution to the weighted least squares
problem.

2.1 Statement of Problem

In the simple two-dimensional pose detection problem,
we are given N two-dimensional coordinate observations
from the observed image: z,...,zy. These could corre-
spond, for example, to the observed center position of all
observed objects. We are also given the corresponding
or matching N two-dimensional coordinate vectors from
the model: g;,...,yn. In the usual inspection situation,
establishing which observed vector 'corresponds to which
model vector is simple because the object being observed
is fixtured and its approximate position and orientation
is known. The approximate rotational and translational
relationship between the image coordinate system and the
object coordinate system permits the matching to be done
just by matching a rotated and translated image position to
an object position. The match is established if the rotated
image position is close enough to the object position.

In the ideal case, the simple two-dimensional pose
detection problem is to determine from the matched points
a more precise estimate of a rotation matrix R and a
translation ¢ such that y, = Rz, +¢, n =1,..,N. Since
there are likely to be small observational errors, the real
problem must be posed as a minimization. Determine R
and ¢ which minimize the weighted sum of the residual
errors € = N wulys — (Rz, + t)|?. The weights w,,
N satisfy w, > 0 and fj w, = 1. If there is

n=1
no prior knowledge as to how the weights should be set,
they can be defined to be equal: w, = 1/N.

n=1,..,

2.2 Derivation

Upon expanding the previous equation and using the
fact that R=! = R/, there results € = 3,N_, w, [(y,. —t)(yn—
t) — 2(y, — t)'Rx, + xn:z:,,] Taking the partial derivative
of ¢ with respect to the components of the translation
t and setting the partial derivative to 0 and letting z =
N Wazn and § = SN w,y, there immediately results
7=Ri+t

Substituting 7 — Rz for ¢ in the expression for the
residual error we can do some simplifying and we obtain
€ = 2ney Wn(¥n = 9)(¥n — §) = 2(4n ~ 7)'R(2n — ) + (20 -
z)(z, - a‘v)]

"The counterclockwise rotation angle @ is related to the
rotation matrix by

R (2520

—siné
sind  cos@
We want to take the partial derivative of €2 with respect to
¢. Now we need a notation in which the two components of

T, and the two components of y, can be written explicitly.
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Letting
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s
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N—r

e (2
Tan
_ (% m— (T
- (52)’ and §= (?2)

then (yn — §)' B (2 ~ Z) = (yn1 — 1) c08 0(zp1 — 1) + (yn1 —
91)(=8in0) (T2 — Z2) + (Yn2 — 32)sin0(Tn1 — 21) + (Y2 —
72) cos (zn2—72) Then, setting to zero the partial derivative
of € with respect to 6 results in 0 = -2 w, [(y,,l -
91)(=sin0)(@n1 — 21) + (Y1 — §1)(— c0s 8)(zp2 — Z2) + (Y2 —
¥2) cos 0(Tp1 — Z1) + (Yn2 — ) (—sin 0)(zng — :22)] Letting

81

N

=2 wn

[(gn1 =) (201 - Z1) + (Ynz — J2) (Tn2 — T)]

2

B = an [(Yn1 = 71)(@n2 ~ Z3) = (Yn2 — Yo ) (@01 — z)]

=1

Then 0 = Asind + Bcosf Hence, cosf = Firagr and
sind = ——f— or cosf = 7457 and sinf = Vo

The correct value for § will, in general, be unique and
will be that 6 which minimizes €2. Thus the better of
the two choices can always be easily determined by simply
substituting each value for 6 into the original expression for
€2,
2.3 Experimental Results

For each trial, object data points were generated uni-
formly in the square [-2,2] x [-2,2]. A rotation angle was
chosen from the interval [-15,15] (in degrees) according
to a uniform distribution and the translation vector was
chosen from the square [-1,1] x [-1,1] also according to
a uniform distribution. Independent Gaussian noise was
added to the rotated and translated points and the signal
to noise ratio, defined as 20 log peak-to-peak signal/rms
noise, was varied between 0 db and 52 db. For each
different combination of signal to noise ratio and number of
corresponding point pairs, one thousand trials were made.

The mean absolute error of the rotation angle as a
function of signal to noise ratio for number of corresponding
point pairs varying between 8 and 200 was computed. For
number of corresponding point pairs equal to 8, the signal
to noise ratio must exceed 40 db to guarantee mean abso-
lute error of less than 1 degree while for 100 corresponding
point pairs the signal to noise ratio can go as low as 25
db while maintaining a less than 1 degree mean absolute
rotation error.
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Figure 1. Mean absolute rotational error as a function
of the number of corresponding point pairs for the 2D-2D
pose estimation problem.

The pattern for mean translational distance error is
similar. To maintain a mean translational distance error
of .01, which is a relative error of about .25%, requires 100
corresponding point pairs at a 32 db signal to noise ratio.
Using only 8 corresponding point pairs, even a signal to
noise ratio of 52 db provides a mean translation distance
error of about .03, or .75%.

Figure 1 shows rotational error as a function of number
of corresponding point pairs for a few values of signal to
noise ratio. Figure 1 suggests a rapid increase in expected
error when there are fewer than 50 corresponding point
pairs for a 35 db signal to noise ratio.

3. 3D-3D Estimation

3.1 Statement of Problem

Let y;..yy be N points in Euclidean 3-space. Let
R be a rotation matrix and ¢ be a translation vector.
Let zi,...,zy be the points in Euclidean 3-space which
match yi,...,yn. Each z, is the same rigid body motion
of y,. Hence each z, is obtained as a rotation of y, plus a
translation plus noise: z, = Ryn + t + n,. The simple 3D
pose detection problem is to infer R and t from zi,...,Zx
and ¥y, ..., Yn-

3.2 Derivation

To determine R and ¢ we set up a constrained least
squares problem. We will minimize °N_, ||z, — (Ryn + T)|I?
subject to the constraint that R is a rotation matrix, that
is, R’ = R~!'. To be able to express these constraints using
Lagrangian multipliers we let

i
R= (r;) where each r; is a 3 x 1 vector
t

The constraint R’ = R-!, then amounts to the six
constraint equations riry =1, rir, =1, rirs =1, rir; =
0, rirs = 0, r4r3 = 0 The least squares problem with
constraints given by these equations can be written as

minimizing € where € = YN Y3 (zar — Thyn — t)? +
z:=1 /\k(r;rk - 1) + 2/\4Ti7’2 + 2A57‘i7‘3 + 2)57"27‘3

Tn1 ynl tl
Tn =\ Tp2 |y Yn=\Yn2 ), and t= iy
Zn3 Yn3 t3

Taking the partial derivative of €2 with respect to ,,
and setting these partials to zero results in SN (2. —
Ry, — t) = 0 By rearranging we obtain ¢t = T~ R7 where
T= #Zf:x z, and T= 5 Eﬁ:l Yn.

Thus once R is known, t is quickly determined. Sub-
stituting # — Ry for ¢ in the definition of €2, there results

N 3 3
e = ZZ(:I:nk ~Tn —Tp(Yn — y))2 +> " Ae(rpre - 1)
n=1lk= k=1

+ 2X4riry + AsriTa + AeThTs

B Ty (%
T=|Zy )|, T=\|7,}-
T3 Us

Now we take partial derivatives of €2 with respect to the
components of each y,. To write things more compactly, by
22 we mean a 3x 1 vector whose com t th tial
= ponents are the partia
derivative of €2 with respect to each of the components of
Tn. Then,

-

de? . - / 7 T

B, = 202 (2 =T =110 =)0 - D)D)
+2M171 4 2242 + 2)573

o¢? X = / 7 7

3_7‘2 = ;2(&'”2 - T — Tz(yﬂ - y)) (yn - y) (_1)
+ 2/\27‘2 + 2/\47‘1 + 2Ae7’3

de? u e / a7 T

873 = 'gl 2(1},‘3 - T3 ra(yn - y)) (yn - y) (_1)
+ 2/\37‘3 + 2A57'1 + 2/\6T2

Setting these partial derivatives to zero and rearranging we
obtain

N

Z(yn = G(Yn—T)'T1+ M1+ Aara + AT =

n=1

3 (@ns — ) (v — 7

n=1
N
S (Yn =T)(Yn = T)'T2+ Aar1 4 Aoy + Aers =
n=1
N
D (@n-T)(ya-7)  (a)
n=1
N
Z(yn ) (Yn = T)'r3+ AsT1 + AeT2 + Aars =

n=1

f:( ) -7)



A A X

Let A = 52, (v - D)vn - 7 A = ( A s Ae,)

As Ae A3
and B = (b;b;b5). Then Eq.(a) can be simply rewritten as
A R’ + R'A = B. Multiplying both sides of Eq.() by R we
have RA R + A=RB. Since A= A’, (RAR')'= RAR'.
Since both RAR’ and A are symmetric, the left hand side
must be symmetric. Hence, the right hand side is also
symmetric. This means, R B = (RB)’ The solution for R
now comes quickly. Let the singular value decomposition
of B be B = UDV where U and V are orthonormal and
D is diagonal. Then RUDV = (UDV)R'=V'DU'R'. By
observation, a solution for R is immediately obtained as
R=V'U".

3.3 Experimental Results

Over 144,000 simulation experiments were done in
which 3D points were chosen at random. A random rota-
tion and translation are chosen and a corresponding point
data set was created by rotating and translating the initial
set. of points and adding noise. The rotation and translation
was then estimated.

The number of corresponding point pairs was varied
between 10 and 200 in 9 steps. The signal to noise ratio,
which is defined as 20 log (range of 3D points/standard
deviation of noise), was varied between 8 db and 70 db in
8 steps. The noise distribution type was varied between
Gaussian and Uniform. For each calculation one thousand
trials were run.

Figure 2 illustrates a typical experimental result. It
shows the mean angle error of the rotation, in degrees, as a
function of signal to noise ratio with Gaussian noise. The
plot indicates that when the number of 3D points is 25, then
the RMS error of the rotation will be less than 3 degrees
when the signal to noise ratio is greater than 25 db.
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Figure 2. Mean rotation angle error versus signal to
noise ratio with Gaussian noise. Corresponding point data
set sizes vary between 10 and 200 pairs. Each point on the
graph represents 1,000 trials.
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Figure 3 shows rotation angle error plotted as a func-
tion of number of points in the coresponding point data sets
for varying levels of Gaussian noise. This plot clearly shows
that when the number of corresponding point data pairs is
below 40, the estimated values are unreliable. When the
number of corrsponding point data pairs is above 40, the
estimates improve for increasing- sized sets.
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Figure 3. Mean rotation angle error versus number of
points with Gaussian noise.

4. 2D Perspective—2D Perspective
Projection Pose Estimation

The estimation of three-dimensional motion parameters
of a rigid body is an important problem in motion ayalysis
(Tsai and Huang!). Its applications include scene analysis,
motion prediction, robotic vision, and dynamic industrial
process.

There has been much literature contributing to 3D pa-
rameter estimation, but few of these contributions system-
atically discuss the effect of noise. Roach and Aggarwal®
develop a nonlinear algorithm and deal with noisy data.
Their results show that accuracy is improved by increasing
the number of correspondence point pairs; but the number
of corresponding point paris in their experiments is too
few (15 corresponding point pairs). J.Q. Fang and T.S.
Huang* use real world images to measure the noise effect
on 3D parameter estimation. However, in order to get good
matching, only a limited range of rotation angles is used,
and it also has some constraints in translation range. In
this paper we relax the rotation angle range and translation
constraint. The relation between the error and noise level
is obtained under a variety of corresponding point pairs.
A simplified linear algorithm presented by Zhuang and
Haralick? is used to get 3D motion parameters.




4.1 Simplified Linear Algorithm

In this section we review a simplified algorithm to
determine the 3D motion parameters of a rigid body from:
two sequential perspective views. The rigid body is in
motion in the z < 0 half plane. Let the two views be taken
at ¢, and %, respectively, ¢t; < t;. Therefore we have P; =
(z1,y1,21)" = object space coordinate of the point at time
t1, P = (Z2,Y2,22)" = object space coordinate of the point
at time t,, (X1,Y1) = image point at t;,and (X5,Y2) =
corresponding image point at #,. where X; = z,/z1, Y1 =
y1/21, X, = 5112/22, Y, = yz/zz

The rigid body motion equation relating P, and P, is
as follows: ‘

Py,=R P+ T,

Tt T2 T3
Ry = Ty Ts5 Te
Tz Tg Tg
To = (t01t02t03)'
and also RoR} = I (I is a 3 x 3 identity matrix), T is a
3 x 1 translation vector. If we use a camera 3D coordinate

system centered at the optical center, then the Euler angles
can be determined from R, as follows:

()

where

ry = cos cosl

r9 = sint cos §

r3 = sinf

r4 = sint cos @ + cos P sin ¢sin ¢
75 = cos 1 cos ¢ + sint) sin fsin ¢
r¢ = cosfsin @

r7 = sin sin ¢ 4 cos P sinf cos
rg = —costsin ¢ + sin+) sin f cos ¢

ry = cosf cos @

4.2 The Two View Motion Equation

Recall that the 3D coordinates of a point before and
after motion are related by Eq.(b). Taking any nonzero
vector T which is colinear with T, and taking its cross-
product with both sides of Eq.(b), we obtain (z5/2:)T x
(X2,Y2,1) = T x [Ro(X1,Y:,1)] and after taking the inner
product of both sides of this equation with (X,,Ya,1),
(X»,Y2,1)(T x Ro)(X1,Y1,1)" = 0 Define the motion param-
eter matrix £ by F = T x Ry, This equation states that
for any image corresponding point pair (X,,Y;), (Xa,Y3)
the 3 x 3 matrix satisfies the following Two—View Motion
Equation which is linear and homogeneous in the nine
elements of E:

(X27y'271)E(X17:Y171) =0 (C}
Any T x Ry with T x Ty = 0 satisfies Eq.(c). Moreover,

such a colinear vector T' has one degree of freedom when
To # 0 or three degrees of freedom when 7o = 0. Thus
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the general solution of the Two-View Motion Eq.(c) has at
least one degree of freedom when Ty # 0 or three degrees
of freedom when Ty = 0.

As mentioned above, Ty # 0 must have a rank 8, and
To = 0 must have rank 6. Under the surface assumption
(Zhuang, Haralick, and Huang?) the number of image
corresponding point pairs must be 8 when T, # 0, or
greater than or equal to 6 when Ty, = 0. The geometry
interpretation we use assumes that the object is stationary
and the camera is moving. Let the origin of the camera
system be O and O’ respectively before and after motion.
Then the surface assumption holds if and only if the 3D
points corresponding to the observed image points do not
lie on a quadratic surface passing through O and O’ when
Ty # 0 or a cone with its apex at O when T, = 0.

4.3 Decomposing F

E has two decompositions; T x Ro(-T') x R}y with R,
being an orthonormal matrix of the first kind. In or-
der to determine the correct decomposition we note that
E = [Ty, Teors, Tors. Hence, its three columns span a 2D
space and also ||E|| = v2||T||. Therefore we can get three
constraints as follows: Rank (E) =2, |E|| =2||T}|, E'T =0
We can use the least square method to solve this equation
for T' and obtain the value of the T vector from the other
two constraints. Since T' is colinear with Ty, Ty should
have the same orientation as T" or —T. Taking a cross-
product with both sides of Eq.(b) by (X,Y2,1) we obtain
21(X>,Ys,1) x [Ro( X1, Y1,1)] + (X,Y2,1) x Tp = 0 Since
z < 0, it implies that T, has the same orientation as
T or (-T) if and only if (X,Y>,1)" x [Ro(X1,Y3,1)] has
the same orientation as (X5,Y2,1) x T or [(X2,Ys,1) x T.
This implies it has the same orient,ation if and only if
S ({0, Y2, 1) % [Ro(X3,Y3,1) 1} (X0, Ya, 1) x T >) 2
0 or < 0. Once the correct T is determined, the true R,
could be uniquely determined through F = T x R, as
follows: Ro = [E; x E3,E3 x E1,E1 x E;] = T x E where
E =[E,, E,y, E3)

4.4 Experimental Results
By mapping 3D spatial coordinates into image frame,
and then adding noise to the points before and after motion,

we obtain
()= (75 ko 8) () + ()

Signal is related to object image size, and noise may
come from camera error, digitization, or corresponding
point extraction error.

In the simulation experiments, the 3D spatial coordi-
nates before motion (zi,y1,21), true rotation matrix, and
true translation vector are generated by a random number
generator. Then the 3D spatial coordinates after motion
(%2,y2,22) are calculated in the natural way. Projecting
the 3D spatial coordinates into the image frame we get



image coordinates. Noisy image data is obtained by adding
Gaussian or Uniform noise with zero mean to the image
coordinates. The rotation matrix and the translation vector
are then determined by the simplified linear algorithm. To
make sure the corresponding point pairs follow the surface
assumption, the generated data are checked before being
used. As the number of corresponding point pairs increases
the probability of the set not satisfying the surface assump-
tion is very small.

In the first set of 64,000 experiments, the object image
size is a square whose sides extend from -2 to 2. The signal
to noise ratio (SNR) changes from 92 db to 26 db in 8 steps
corresponding to a noise standard deviation varying from
0.0001 to 0.2. The Euler angles vary from -15 to 15 degrees.
The number of corresponding point pairs varies from the
8-point pairs to 110-point pairs in 4 steps. One thousand
trials are done for each variation. The standard deviation
of the trial results are negligible for SNR greater than 70
db.

The results are shown in Figure 4.  When noise-free,
the error between the calculated value and true value
is zero for all cases. Depending on kind of noise and
number of corresponding point pairs, the error increases
very rapidly when the signal to noise ratio gets below a
knee value. Table 1 shows the minimum signal to noise
ratio to guarantee a less than 1 degree error on a function
of numbers of corresponding point pairs and kind of noise
distribution. Other experiments with larger data sets show
that the error is reduced by increasing the number of
corresponding point pairs. However, the accuracy does not
increase much as the number of corresponding point pairs
increases from 200 to 500.
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Figure 4. Mean angle error between the estimated
rotation angles and the true rotation angles versus the
Gaussian noise level for four corresponding point data set
sizes of 4 to 110 pairs. Each point on the graph represents
1,000 trials.

263

Rotation Angles
No. of Point Pairs 8 20 50 110
Gausian 75 57 52 50
Uniform 74 56 52 49

Translation Vector
No. of Point Pairs 8 20 50 110
Gausian 105 78 73 68
Uniform 106 78 72 68

Table 1. SNR (db) for error mean in 1 degree.

5. Conclusion

We have presented solutions to three of the four pose
estimation problems and have characterized the perfor-
mance of these algorithms in simulation experiments with
the noise model being additive Gaussian noise or Uniform
noise. We have observed in these experiments a knee
phenomenon. When the signal to noise ratio gets to be
below a knee, the RMS error skyrockets. When the number
of corresponding point pairs gets to be below a knee value,
the RMS error also skyrockets.

Future simulation will be involved in broadening the
noise model to include slash noise, Cauchy noise, and noise
due to a fraction of the corresponding point pairs being
incorrectly matched. Future statistical work will be in
making the least squares solutions robust. This will involve
using an iterative weighted least square technique where the
weights at each iteration are related to the residual errors.
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