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Types of Performance Characterization

@ White Box
e Evaluate Each Component: Component Transfer Function
o Needs Appropriate Random Perturbation Models for

@ Algorithm Inputs
@ Algorithm Outputs

@ Black Box

e Empirical Evaluation
e No Knowledge of Component Transfer Functions




Performance Characterization

@ An Algorithm has

e Inputs a and their data types

e Outputs b and their data types
o A Relationship Between Input and Output

@ Output b as a function of input a
@ Given a, b maximizes F(a, b)
@ Random Perturbation Model for Input a
@ Random Perturbation Model for Output b
@ Given Random Perturbation Distribution Acting on a
@ Determine Random Perturbation Distribution Acting on b

@ Determine Robustness

e Do large perturbations on a small fraction of the input data
cause a small perturbation on the output data?



Performance Characterization

Performance characterization has to do with establishing the
correspondence of the random variations and imperfections
which the algorithm produces on the output data caused by the
random variations and the imperfections on the input data.

(Haralick, 1994)




System Performance Characterization

A system performance characterization has a scoring function
that evaluates the goodness of the output. The system
performance characterization gives the distribution of the
scoring function value as a function of the parameters
describing the input perturbation and the tuning parameters.




Experimental Protocols

@ Population of ideal inputs
e Simple Random Sampling
e Stratified Sampling
@ Parameters of random perturbation distribution affecting
inputs
@ Tuning Parameter Settings

@ Scoring Function
@ Fix Tuning Parameters
e Estimate Scoring Function Distribution as a function of
Perturbation Parameters
@ Fix input
e Estimate Scoring Function Distribution as a function of
Tuning Parameters



Protocols

Modeling
Annotating
Estimating
Validating
Propagating
Optimizing

Haralick




Finding Points To Correspond

There are many methods that are used for finding point
correspondences from images of multiple cameras. Among
them are:

@ Corner Points

@ Interest Points

@ Dense Subimage Matching
@ Image Pyramids

@ Correlation

°

Distance




Finding Matching Points

Finding Matching points is often posed as an optimization
problem and uses sensor projection geometry constraints

Determine a Window Size
Maximize Normalized Cross-correlation
Minimize Normalized Distance
Minimum Description Length
Swarming

Simulated Annealing

Gradient Descent

Expectation Maximization
Mutual Information

Total Least Squares

Random Walks with Restart
SoftPosit

Energy Minimization



Performance Evaluation

Optimization and triangulation do not give a performance
evaluation.
Performance Evaluation includes:

@ Estimating the Covariance of the position of each 3D point

@ The rule for deciding whether or not to accept the
correspondences associated with an estimated 3D point

@ The resulting False Alarm - Misdetect Rate




Kinds of Optical Sensor Models

(a) Pinhole (b) Orthographic  (c) Pushbroom

?g’m

(d) Cross-Slit (e) Pencil (f) Twisted Ortho-
graphic

Figure: From Yu,McCillan, and Sturm, 2010




Stereo Correspondence Problem

Left view Right view

(a) Epipolar Geometry

(b) Uncertainty

Figure: From Unger and Stojanovic, 2013



Variety of Related Point Correspondence Problems

@ Simultaneous Pose and Correspondence

@ Sensors calibrated

@ Structure from Motion

@ Rigidity Checking

@ Wide Baseline Stereo Correspondence
@ Self-Consistency




Calibrated Sensors

@ Ground Truth Point Correspondences
@ Perspective Geometry

Standard Photogrammetric Procedure
e Projective Bundle Adjustment

@ Interior Orientation

e Exterior Orientation




The Multi-Image Point Correspondence Problem

@ There are N > 1 calibrated sensors
@ True but unknown sensor parameters 64, ..., 0N
@ 3D Point g whose position is not known

@ 2D Corresponding points xi, ..., Xy, the sensor projections
of g to the N sensors

@ &q,...,&y random perturbations of 2D sensor projection
points
@ Estimated sensor parameters 6, ..., 0y
@ Model:
® Xp= Pn(q, 0n)
Xn: Pn(q79n)+£n, n= 1,...,N
&nhas N(0,%¢,)
0 has multivariate uniform
01,...,0n,&1,. .., &N are independent



Bayesian Setting

In the Bayesian setting, true sensor parameters are considered
as random variables with independent a priori densities

p1(61) - .., pn(ON)




The Bayesian Estimation Problem

Estimate g = (x, y, z) to maximize

A

p(q’j\(h---v)/\(Naé'I?"'aeN)

This is equivalent to estimate q to maximize

A

p(5\(1ﬂ"'a5\(N7é\17"'79N7q)

(Bedekar and Haralick, 1995)




The Bayesian Estimation Problem

p(),\(17”'7)/\(N7é\17"')§N7q) — p(),\(17"‘75\(N|é\17'”7é\N7q)
XP(917-~79N7C’)

Given 61, ...,0y and g, the sensor projections X1, ..., Xy are
conditionally independent. Hence,

N
p(),\(‘]a"'aj\(N‘é‘]w"aéN?q) - Hpn(&n7|é17"‘7éN7q)

The sensor projection X, only depends on the 3D point g and
its associated sensor parameters 6,. Hence,
N

Hpnxna’917- 9N7 q) = Hpn()?n|énaq)

n=1



Conditional Independences

The calibration that established the estimates 6, are certainly
independent of each other and independent of the 3D point g.
Hence,

~

N
p01,--.0n,a) = p(q) [ Pa(dn)
n=1




The Optimization

N
P, &n, 01,00, 9) = p(@) [ [ oo(%n | 8n, @)pn(6n)

n=1

log p(Xi, .-, &n, 01, ., 0n,q) = Iogp(q)

z — Pa(0,0n)) %5, (%n = Po(a, 60))

+ Z log pn(6n)
n=1
where

" P, Py
Z)?n(qv 0”) = zin + aen (qv en)zen 60n (q 0 )

p(q) is the prior for 3D point g, taking into account all the 3D points that have
already been triangulated and p,(65) is a multivariate uniform.



Robustification

Objective Function

N N
log p(q) — % (%n — Pn(,0n)) Tx,(G: ) ™" (%0 — Pn(q,6n)) + D 10g pa(0n)

n=1 n=1

@ The perturbations are small

@ The optimization is only correct if in fact each %, does
correspond to the 3D point q

@ But sometimes the correspondence is not correct
@ Robustify the objective function




Covariance Propagation

@ The optimization provides an estimate g of g
@ The covariance ¥4 needs to be estimated

@ The consistency of g with respect to Xy, ..., Xy has to be
checked

(Haralick, 1994)




Covariance Propagation

X:(X1,...,XN)
X =(X,...,Xn)
F(g,X)=0

A

Minimize F(g, X)
G(q7 X) - %




Covariance Propagation

@ X, reprojection of estimated 3D point

Xn = Pn(a,én)

. A dPy OP,\" 0Py Py’
@0 = G, () + era ()

oP, P\ OP,_ [0P,\’
An Z"
"0 Z"q<8q) T q<8q)




Self Consistency Check

Empirically measure the predictive power of a score with
respect to a given algorithm, population of scenes and imaging
conditions.

Decide X, is a corresponding point if

(X0 — %n)' (Zz, + zgn)_1 (X0 —Xn) < T
Acceptance rate: the fraction of corresponding point sets that
are close enough to the sensor projection of their estimated 3D
points.

If X, is decided as not a corresponding point, look near x for a
corresponding point.
(Leclerc and Luong, 2003)



Scene and Image Populations

@ Textureless Regions
@ Textured Regions
@ Unoccluded Corners
@ Amount of Noise
@ Depth Discontinuities




Performance Characterization

Specify a population
Label the true corresponding points: Ground Truth
Use automatic procedure for finding corresponding points

Determine the projection of the 3D points

Consider only accepted points
Matching Error compared to Ground Truth

e Cumulative Distribution of distance to true position
e Threshold defining when distance is close enough
e Misdetect and False alarm rate

°
°
°
@ Estimate the 3D points
°
°
°




Misdetect False Alarm Rate

Misdetect Rate vs False Alarm Rate
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Tuning Parameters

Every algorithm has tuning parameters.

@ How the Tuning Parameters are set influences
performance

@ Some Tuning Parameters are set internal to program

@ Some Tuning Parameters can be user set
@ Default Settings vs Tuned Settings

@ What is the sensitivity of the result to the settings of the
tuning parameters?




Performance Surface vs Tuning Parameters

@ Ruggedness of Surface

@ Smoothness of Surface

@ Number of Local Optima

@ Ratio of Local Optima values to Global Optima

Crossley, Nisbet, and Amos (2013)




Performance Surface vs Tuning Parameters

@ Set a threshold 6 of minimum acceptable performance
@ Determine a hyperbox having the property

e The fraction f of tuning parameter values in hyperbox yield
performance > 6




Estimating Performance Hyperbox Boundaries

@ N Experiments
@ Choose tuning parameter M-tuples at random
@ Evaluate Performance

@ Determine Hyperbox Boundaries

e Tuning Parameters (a1p,...,amn), n=1,...,N
Goodness Function ¥
Acceptable Set A(0) = {n | Y(a1pn, ..., amm) > 0}
bm min = minneA Qmn
bm max = MaXpe A Omn
H= X%:1 [bm mins bm max]




Goodness Fraction

N Experiments
Choose Tuning Parameter M-tuples at random in H
o (a1py-.-,amn), n=1,....N

Evaluate Goodness ¥

Estimate Goodness Fraction
o f— linl W(a1n,l\.l..,aMn)>0}|

Estimate Worst Goodness
@ Vyorst = Minp—1, . nV(p, ..., 0umn)

7777

Find largest Hypercube H € H such that
® (v1,--.,7Mm) € He implies W(y1,...,vu) <6
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