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ABSTRACT

Our aim in this paper is to estimate the surface
constants of a planar work surface by using several laser
beams or similar light sources. The estimation is possible
when we know the beam positions and directions as
well as the images of beam spots on the planar work
surface. The more beams we use, the smaller will be the
estimation error. However, the number of beams we can
utilize, in practice, is limited in our application though
our theoretical anaysis treats the general case. Clearly,
the estimation errors will increase if the beam directions
are arbitrary. Therefore, we need to find a certain beam
pattern that can give the smallest estimation error. This
will be discussed in this paper.

1. Introduction

Robots are often introduced into production to solve
particular problems associated with labor practices or
unreliability. However, robot operation takes place in
an envirionment with numerous irregularities. Positions
of manipulated objects, and corresponding manipulator
configurations, often cannot be determined accurately
in advance. Assessment of all possible irregularities
is an extremely tedious job, but the appearance of
an irregularity can result in damage and significant
production delay. Therefore, it is preferable to have a
robot which operates by taking into account changes in
its environment, using its sensory system. This paper
suggests a sensory system designed for estimating the
surface constants of a planar work surface with respect
to the camera attached to the end of the robot arm.

Our sensory system consists of several laser beam

projectors and a camera (Fig 1) and the combination of
them is called the SHEE (Sensor Head End Effector).

laser beam

planar surface

Fig 1. Sensor Head End Effector

Of course, the number of beam sources to be used
for the estimation should be equal to or greater than
three. 'When these projectors project beams onto a
planar surface, we can obtain an image of the beam spots
appearing on the planar work surface. Now suppose that
we know the positions of the beam projectors and their
projection directions. Then we can determine how much
the camera is tilted with respect to the planar surface,
how far the camera is from the planar work surface, and
how we can adjust a robot arm so that we achieve the
parallelism of the optical axis of the camera.

As an example of industrial applications, the robot
equipped with SHEE can be used to paint complex
surfaces such as wings and body segments for aircraft
parts within a certain accuracy. Conventionally, paint
robots are operated in “lead-through programming”
technique wherein the end of the robot arm is moved to
specific positions and distances over and away from the
planar work surface, as required to perform a task. This
“traditional” method of programming robot path splines
is manual, very time consuming and error prone. Thus



the conventional process has adverse effect on operator
fatigue and safety, product quality, product rejection
ratios, production schedule, and paint booth availability
time., The new technique presented in this paper will
cover all these disadvantages because on-line processing
is possible if a computer is used to process the images
captured by a CCD camera.

Fig 2 shows various image patterns, for which
four parallel beam projectors are used. A particular
image pattern seems to be associated with a particular
position of a planar surface.
that such image patterns can be used as templates to
estimate the poses of planar surfaces. However, such
an approach is not preferrable. The above mentioned
one-to-one correspondence holds true only in noiseless
case. Even when noise is negligible, an enormous
number of templates must be test matched against an
image to account for possible changes in rotation and
magnification of templates. Of course, it is nearly
impoosible to predict uncertainties contained in the
results of this approach. For these reasons, our problem
will be treated analytically in this paper.

(a) {c)
(b) (d)

Fig 2. Image patterns of four beam spots on the plane
zsinfcosd+ ysinfsing + zcosf —d = 0 where d > 0.
Four beams are located at (a,0,0), (0,4,0), (—a,0,0),
(0,—a,0), respectively, where a = 35 : (a) § = 0°,
d =200 (b) 6 =0°d =250 (c) § = 30°, ¢ = 30°,
d = 200 (d) 8 = 30° ¢ = 30°, d = 250 (e) 8 = 45°,
¢ =30°, d =200 (f) § = 45°, ¢ = 30°, d = 250

So one might think

(e)

(f)

This paper is divided into four parts: estimation,
calibration, image processing, error propagation analy-
sis, and simulation. The estimation part provides the
theoretical basis for the estimation of surface constants
of a planar surface. The calibration part suggests a way
how to determine the beam positions and directions in
the camera reference frame. The image processing part
suggests a way how to apply for real applications. The
error propagation analysis part discusses how much the
estimation errors of the planar surface constants are af-
fected by the noise contained in beam spot images. By
experimental simulations we show how much estimation
errors can be expected for a certain beam configuration.
The operating characteristics of our algorithm is also
discussed in the simulation part.

In this paper, we will use the camera reference frame
to denote all 3-dimensional quantities. Our analysis will
not depend on whether the coordinate system is right-
handed or left-handed. By convention, the z-axis of the
camera reference frame is the optical axis of the camera
and its origin is at the center of perspective projection.
All vectors and points will be represented by column
vectors and a prime superscript will be used to denote
the transposition of matrices.

2. Estimation

In this part we investigate the following : how well
can we estimate the surface constants (surface normal
and distance from the origin) of a planar work surface
from the knowledge of the positions and orientations of
laser beams together with the images of beam spots on
the plane ?

2.1 Statement of the Problem

Let us assume that we know the positions and
directions of laser beams. Consider the following set
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where the (2, y, z,) are the beam positions, the
(an bn cn) are the beam directions and the d, are
scalars. If the point set P is on the planar surface
' Av+By+Cz+D=0 with A+ B2+ C? =1 and



D < 0, then we must have AX,, + BY, +CZ,+D =0
for n=1,---,N.

Also we assume that we know the coordinates of
image points of the beam spots on the planar work
surface. The set of image points can be expressed as

Uy, Un \ _ [ un Auy, e
()= () + (&%) mmren)
(2)
The (i, 9,)" are the measured quatities, the (u, v,)’

are the perspective projections (of the laser beam spots
on the planar surface) represented by
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and the (Au, Awv,) are the random errors(noise)
contained in the measured quantities (4, 9,)". In (3), f
denotes the focal length of the camera. In this paper,
the random errors are assumed to be the identically
independent Gaussian random vectors each of which has

0 d : a2 0
mean ( o | and variance [, |.

Now, we are given the positions and orientations of
N beams as well as the measured image points (@, )’
of the beam spots on the plane I'. We expect that
the inverse projected points of the measured image
points are the beam spots on the plane I'. In practice,
this rarely happens because the measured image points
usually contain some amount of noise. For this reason,
our goal should be the estimation of the plane equation
T':Az+ By+ Cz+ D = 0 for which
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is minimized under the constraint that the beam spots
(Xn Y, Z,)' are on the same plane. If the beam
spots (X, Y, Z,) are to be on a plane represented by
Az + By+ Cz+ D = 0, we must have, for all n,

AX, +BY,+CZ,+D=0 (5)
By averaging them out, we have
AX+BY+CZ+D=0 (6)

where X = (22;1 Xn)/N and so on. From (5) and (6),
we have, for all n,

AXn = X)+BYo =Y)+C(Z,-2)=0 (7)
which tells us that
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This condition can be expressed in the following form :
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where det[. ] denotes the determinant of its argument.

Use of a Lagrange multiplier will simplify our
complicated constrained problem. Suppose that we have
the function E(dy, ds, - -, dy) defined by

E(dl: dz: o 'ldN)
N
=Y wn[(ftn — un)? + (80 — va)?
n=1
+AC(d1,d2,'-',dN) (10)

where A is a Lagrange multiplier. The optimal condition
on F will be
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Since it is impossible to find algebraic solutions to
Eq. (11), we have to resort to numerical computation
in order to minimize E(d),dy,---,d,). If we manage
to find the global minimum point (cfl,rfg, : --,rfN) for
E(dy,ds,---,d,), the estimation of the surface constants
A, B,C, and D can be done by taking any four
equations from the overdetermined system (5). This
numerical method requires some iterations.

In stead of numerical computation, what if we
discard our constraint (9) and minimize each term of the
first summation of (10)? This will greatly simplify our
task and lead to algebraic solutions as can be seen in the
subsequent sections. In this method, we first estimate
each d, in the least squares sense. And then, using these
values of d,, we estimate the surface constants of the
planar surface under consideration as a solution of an
eigenvalue problem.

Since the constraint (9) is not employed by the
above algebraic method, it is not guaranteed that the so-
obtained estimated beam spots lie entirely on a planar
surface. So we might worry about whether the results
In fact, the
two methods (numerical and algebraic) return different
results every time. However, this fact is of little concern
since we are in noisy environment. Either method will
not give the exact surface parameters which can be a
solution in noiseless case. Therefore, the important thing

of these two methods are very different.



is to compare the statistics returned by the two methods.
Comparison of their statistics in Table 1 tells us that
there is no big difference between the two methods.

2.2 Estimation of d,

Under the assumption of Gaussian noise environ-
ment we can estimate the optimal value of d, in the
least squares sense. Let the objective function for each
n be

€n = (fin — ©n)? + (90 — v,)? (12)

Substituting (3) into (12) and expanding ¢, in partial
fractions, this equation can be written as
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where

H= fz{(zn:—" —xn)’ + (zni—" —ya)?} (14.1)
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Note that Eq.(13) is a quadratic expression. We can
easily see that ¢, becomes the minimum value when

2R?
2y +dnc, = ——L2 (15)
n n-n Rfl_l
The optimal value d,, for each n is then calculated as
. 2
R . 2R, (18)
cn  Rleg

These values will be used to estimate the surface
constants in the subsequent subsection.

2.3 Estimation of the Surface Constants
of the Plane I'

With the optimal values of d,, the estimated
positions of the beam spots on the planar surface can
be expressed as
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Now we estimate the equation of the planar surface
I' : Az+ By+ Cz + D = 0 under the constraints that

A’+B?+C?=1and D < 0. Since P is not guaranteed
to lie entirely on T', the estimation will be done in the
least squares sense. Using the Lagrange multiplier ), the
function to be minimized is

N
Ex =) wn(Apa+Bga+Cra+D)2+A(A%+B2+C2-1)

" (18)
The function F) has a minimum when
0By _ 0By 9B\ _9E\ _ 0B _ (19)
84 ~ 8B ~ 8C ~ 4D ~ 8
or
PPA+PGB+PFC +PD + XA =0 (20.1)
PIA+ @B+ TCHID+AB=0  (202)
PFA+TB+rIC+7D+AC=0  (20.3)
PA+IB+TC+ D=0 (20.4)
A2+ B*+C%?-1=0 (20.5)

where p = (ZnN=1 wnpn)/(zg;l wp) and so on. Substi-
tuting (20.4) into (20.1), (20.2) and (20.3), we get
(7 = P*)A+ (P7~ P)B + (T — PP)IC + A4 = 0
(PT - pDA+(¢* — ¢*)B + (77— gF)C +AB =0 (21)
(7 — pF)A + (77 — qF)B + (r? = #)C + XC = 0

or in matrix form

PP-p Pg-p7 Fr—pr\ [A A
Pi—-b7 ¢° -3 T-—qr Bl+xlB|=0
pr—pr qr—gi 12— 7l C C
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From the above expression we notice that our minim(izaz
tion problem turns out to be an eigenvalue problem. It is
well known that real symmetric matrices have real eigen-
values, the number of which is equal to the size of the
matrix. To find the desired surface normal of the pla-
nar work surface, we have to choose the unit eigenvector
(A B C)' for which the function £
N
E = wa(Apy + Bgn + Cro + D) (23)
n=1
takes on the minimum value. If we substitute (20.4) into
(23), then we have
N
E= Z Wn[(pn — B)A+ (g0 — §)B + (1, — F)CT* (24)
n=1

which can be written in a quadratic form

PP-p B-p7 pr—pr\ [A
E=(ABC)|pg—p7 ¢*—-73* q—gqr B
r—pF gr—gr r2—-72 ) \C



Let the A;(¢1 = 1,2,3) be the eigenvalues of the 3 x 3

matrix appearing in (25) and the (4; B; C;)' be the

corresponding unit eigenvectors. Then, for each A;, we
have

A

E = (A;BiC)X; | B;

G

=X 2 Anin (26)

where Anin is the smallest eigenvalue among {24, Az, Az}
Now we can conclude that the estimated surface normal
(Ji B €)' is the unit eigenvector associated with the
smallest eigenvalue of the symmetric matrix appearing
in (25) and the estimate D is obtained by

D=-Ap-Bj-CF (27)
If D is positive, then we should invert the direction of
the unit eigenvector (A B €)' by multiplying it by -1.

This kind of eigenvalue problems can be casily solved
with the existing software packages [1].

3. Calibration of Beam Positions
and Orientations

In section 2, we estimated the surface constants of
a planar work surface by assuming that we have a prior
knowledge about the exact positions and orientations of
laser beams projecting on the planar work surface. Prior
to use, however, the setup must be carefully calibrated
to determine precise values for the assumed quantities
(zZn Yn 2,) and (a, b, c,) for all n.

For calibration, we assume that the focal length f
of the camera is known to us, that the principal point
is at the center of the focal plane[3], that the optical
axis is perpendicular to the image plane and that we
can move each beam source mounted on a platform.
These assumptions may be too strigent in some sense.
However, the first three assumptions are related to the
camera calibration, which is not a major concern in this

paper.

3.1 Calibration of a Reference Point on
the z-axis

Suppose that a plane is perpendicular to the optical
axis. Then this plane will be represented by z = h(> 0).
Unfortunately, we do not know the exact value of h.
Hence we need to estimate the value of h to a certain
precision, which corresponds to the determination of the
position of the optical center (center of perspectivity).

Let us consider the two points x; and x2 on the
plane z = h which are represented by

T T2
Xi=j 1], Xz2= Y2 (28)
h h
and the corresponding image points which are represent-
ed by
Ui f T3
= = = 29.1
u] (“1) h(w) (29.3)
U2 f [z
us = == 29.2
. (%) h(w) 293)
Then the distance between u; and us is
P12 = V(w1 — ug)? + (v; — v3)? (30)
and the distance between x; and x5 is
ria = V(21— 22)2 + (31 — y2)? (31)
From (29), (30) and (31), we have
P12 = ‘ﬁ'nz (32)
or ,
h=f—=2 33
P12 (33)

which tells us that if we know the distance between
two points on the plane z = h and the corresponding
distance in the image plane, we can determine the value
of d. Here, a comment may be made on the relationship:
We have to take into consideration a certain amount of
measurement error in the distance ri3 on z = h and a
certain amount of measurement error in the distance p;,
on the image plane. If the measurement errors of interest
are assumed to be small, then we have, from (33),

Ah _ Ar;p  Appy
h 12 P12

As ry5 and pip become larger, the positional error Ah
becomes smaller.

(34)

3.2 Calibration of Beam Positions and
Orientations

Let us consider the points Py, -+, Py on the plane
Z = dl
1 Ty
PI: 0N :"':PN: UN (35)
dy d
and the points Q1, -, Qn on the plane z = dy
T1 N
Qi=|w ), ,Qnv=|uy~n (36)
dy ds



where d; > dy. Then we can adjust the beam positions
and orientations so that the z and y components of the
n-th beam position (z, y, 2z,)’, n =1, .-, N are equal
to those of P, (or @), respectively, and the n-th beam
passes through both P, and Q,. If d; — ds is large
enough, then these beams are, in effect, parallel to the
optical axis.

Now we have to determine the z component of each
beam position to a certain precision. We can change
the orientations of the laser beams to focus at a certain
point on the plane z = d3. Let the point be (0 0 d1)’.
Then the point on the plane z = d; through which the
laser beam emanating from (z, yn 2z,)" passes will be
(Zno Yno d2)’ where
41— dg Tn, Yno= :1 —& Yn (37)

1—2

— *n

Lno =
" dy — zn

and its perspective projection will be
Uno F {zno f{d _d2> ('En) 3
o i = == 38
('Un!)) dy (ynﬂ) dy (d1 — Zn Yn (38)

from which we have
" 5 J {8~ =
un[] + Vho = d_2 dl . xn + yn (39)

zn =di — (dl i dfz)i_..—\’‘13?1-'_9'72l (40)
" dy Viusg +v2,

We follow the above procedure repeatedly to calibrate

or

the positions of all laser beams.

If our calibration point is located at (0 0 d;)’,
then the orientation of each beam can be obtained by
normalizing the vector from the beam source position
to the calibration point. We don’t need, however, the
procedure from (37) through (40) if we desire a parallel
beam pattern. In that case, it suffices that z components
of all source positions are set to be zero.

4. Image Processing

In previous sections we have implicitly assumed that
we can determine the coordinates of beam spots on the
image plane. We need to contemplate on it since each
beam spot image occupies some area (usually, over 100
pixels) on the image plane.

A CCD camera contains an array of photodetectors,
a set of electronic switches, and control circuitry on
a single chip. By external clocking, the array can be
scanned element by element in any desired manner and

a video signal is output. This video signal is analog in
nature. To process the image by use of a computer, it
1s necessary to convert the incoming signal to a digital
form, which can be accomplished through the use of
A/D converters. Digital images produced as such are
usually stored in a frame grabber for processing. If the
horizontal spacing between consecutive photodetectors
is not the same as the vertical spacing on a CCD array,
the aspect-ratio-correction may be required to obtain a
digitized image in square pixel format, where the actual
spatial dimensions of each pixel will be 1 unit in the
horizontal direction and 1 unit in the vertical.

Fig 3. An Image displayed on the TV monitor

Images obtained with the SHEE consist of a back-
ground and several disk-like regions (Fig 3). Each disk-
like region corresponds to a laser beam. Qur analysis in
previous sections completely depends on the determina-
tion of image coordinates.

frequency distribution

gray scale

Fig 4. Histogram for the Image shown in Fig 3

If background lighting is arranged so as to be fairly
uniform, and we are looking for such regions that can
be contrasted against a background, segmentation can
be achieved simply by thresholding the image at a
particular intensity level. Ambient light illumination
and collimated beam spots are the two factors which
contribute to the histogram of our images. If the



intensity of ambient light illumination is a rather
uniform, the distribution of gray scale values of beam
spot images can be made well separated from the
distribution of those of a background by adjusting the
intensity of beam sources (Fig 4). The peak on the left
of the histogram corresponds to ambient light and the
peak on the right corresponds to collimated beams. If
there is no overlapping region for the two distribution,
then any values in the separating region can be chosen
By taking
a centroid of each segmented region, we obtain the
coordinates of beam spot images. During this process,
local interactions between adjacent CCD array elements
may blur the image to be processed if the intensity of
beam sources is high. When blurring occurs, the use of
polarizers is recommended to reduce such a degradation
phenomenon.

as a thresholding level for segmentation.

Though the coordinates of beam spot images can
be obtained in the above way, there still exists a
problem. That is, they are represented in pixel units.
Unless the physical dimension of the CCD array and
A /D conversion mechanism are known, some conversion
scheme has to be provided experimentally so that the
coordinates of image points be represented in usual
distance units such as millimeters or inches. Let us
consider the nonoverlapping two circular regions C; and
C3 marked on the plane I' at z = h. Let d denote the
measured center-to-center distance between C; and C.
We take the image and process it according to the above
method. Finally we can get the center-to-center distance
in pixel units. Let the distance be denoted by n;. Now,
we move the plane I' to z = h+ Ah. In a similar way, we
can get another center-to-center distance nyyaj in pixel
units. Let the pixel spacing be §, which corresponds to
the actual distance between consecutive pixels within the
camera coordinate system. Then the actual distances for
ny and npyan will be represented by npé and nppapé.
Using eq (32), we have the following relationship :

nybh = nh-l-Aké(h + Ah)
from which we have

fpoDREAR k3
(mh — nhtan)

Finally we have

Fi w}r(){Ah

NpNh+ AL

This conversion factor enables us to get coordinates of
image points in usual distance units. Of course, it

is important to measure the quantities d and Ah as
precisely as possible.

5. Error Propagation

In this part we see how the estimated surface
constants A, B, C and D are affected by noise contained
in the image points. For this purpose we will find the
covariance matrix for the surface constants. We know
that the planar work surface can be estimated from
a knowledge of beam positions x, = (z, yn zn) and
orientations a, = (ap b, ¢,) and the corresponding
image points @, = (@, 9), n = 1,---,N. As
mentioned earlier, the image points can be written as

ﬁn=un+Aun, n:].,"‘,N (41)

where u, = (u, v,)’ and Au, = (Au, Av,). The
information we have about Awuy, -, Auy is that they
are the identically independent Gaussian random vectors

with
o= ()

' g2 0
E[AunAun]:(O 2), n=1,--,N (42)

E[AunAumf] = (g g) y # m

Note that the surface constants A, B,C, D depend on
the u, through our noiseless model, for each n,

f(%Xn,an, dn(un), B)
= A(z, + da(un)a,) + By, + d,(ugn)b,)
+ C(zn +dn(un)en) + D=0 (43)
where § = (A B C D)'. If the quantities u,, + Au, are
observed, then the quantities A+ AA, B+ AB, C+AC,

D + AD are determined to satisfy the idealized model,
for each n,

f(xn)an;dn(un+ Aun);ﬁ+ Aﬂ) =0 (44)

where Af represents (AAABACAD). The errors
Auy, -, Auyn induce an error Af in the calculated
B+ Ap. The error propagation analysis determines what
the expected value of 8+ Af is and what the variance
of #+ Ap is. If the random errors Auy, --, Auy are
small, we can approximate our noisy model (44) as

J(%Xn,an,dn(un + Auy,), 8+ Af)
= f(Xn, an, dn(un), ) + g, Aup + K, AB  (45)



where the g, and hy, are the gradients of f with respect
to u, and g evaluated at (uy, 3), that is,

'
o= (2L 2£) (6.1
and )
= (.gz ar, oy %) 45.2)
With the above two models, we have
¢) Auy AA
B EY 4 vl B @7
InAun AD
where H is defined by
hy
Ba| (48)
hiy
Let the sigular value decomposition[1] of H be
H=USV (49)

Then the least squares solution of the overdetermined
system (47) is given by
g1 Auy
AB=-VS~1U! : (50)
gyAuy
From this expression it is clear that to the extent the

linearization approximation (47) is good, the expected
value of AF is 0 under our noise model (42), that is,

F[Af) =0 (51)
To determine the covariance matrix of f + A3 we
examine
g1Auy
ApAg =vSs~iU! _
gyAun
(Auy'gy - Aun'gy) USTIV! (52)

With the assumption (42) the expectation of AFAS’
gives the following covariance matrix :

g1 E(AuiAuy')gy
E(ABAS') = VST N
gy E(AunAuy')gy

=o?VS-U'DUS~V! (53)

us-tv’

where
9191
p=| -, (54)
ININ

Notice that this analytical form is dependent on o2, the
{Xn, an}n=1,..,v and 3. This covariance matrix provides
us with a measure of uncertainty in the estimated surface
constants.

6. Experiment

6.1 Error Measures

Our experiments are concerned with how much
the estimated surface constants A, B, C' and D will
deviate from the true values A, B, C and D. The first
three parameters A, B, C represent the direction of the
surface normal. Since the angle v between the true
surface normal and the estimated one

v=cos"}(AA+ BB + CC) (55)

will describe this discrepancy, we use this angle as
an error measure of direction. The last parameter D
represents the distance from the origin to the planar
work surface. We need to describe a difference between
the true value D and its estimate D). Another error

measure for this purpose is defined as
§=|D-D| (56)

Note that the distribution of error measures of
direction is a circular distribution. The mean di-
rection ¥ of 71, ---,y, is defined to be the direc-
tion of the resultant (vector sum) of the unit vectors
(cosy1 sinm)',---,(cosyn siny,). And a meaningful
measure of dispersion for a circular distribution is the
circular variance S, defined to be

STZI—R (57)

where R is the mean resultant length [2]

. 1o 1
R = - )2 — iy )2
(n E cosy;)? + (n ig_l siny;) (58)

=1
The mean and variance of the distance errors will be

obtained in a usual way. The mean distance error ¢ of
b1,-+-,0, 18 defined as

B .
6_;;6,- (59)



and their variance Var(8) is defined as

Var(6) = — (6 - 8)’ (60)

i=1

6.2 Error Rate

In the next subsection, we will see that there are four
parameters to be controlled in the experiments, namely,
a, p, o and d. Our experiments will be done by varying
two of them with others fixed. The results will be given
in the form of graphs to show the error variations versus
o for each parameter setting. And we will discuss the
influence of them on the performance of our algorithm.

The output of our algorithm will be analyzed in
the following way: If the positions and orientations of
the laser beams are carefully calibrated, then the errors
contained in the image points will produce small errors in
the surface constants. Since in practice we do not know
the true values of the surface constants, we will use the
covariance matrix to determine whether we accept an
estimate (output of the software) or not. We define

Vape = VGT(A) + V&T‘(B) + VJIT‘(C) (61)

where Var(A), Var(B), and Var(C) are estimated
variances of surface normals A, B, and C, respectively.
If Vage < Vp, then the estimates are declared to be
accepted. Unfortunately, it is the case that the decisions
made in this way are sometimes in error. There are two
kinds of errors, false alarm rate and misdetection rate
[4]. A false alarm rate Pp is the probability that an
estimate cannot be accepted in the above sense though
in fact the error is small. And a misdetection rate P
1s the probability that an estimate is accepted when in

fact the error is large. That is,

Pr = Pr(Vape > Vo |7 < %) (62.1)
Py = Pr(Vaee < Vo | 7> 70)

These errors can be calculated by using the following
numbers :

(62.2)

1. TT: the number of trials in which Vige < Vj
and v < 7o.

2. TF:  the number of trials in which Vagec < Vg
and v > 7¥o.

3. FT: the number of trials in which Vyge > Vo
and 1 < 7o.

4. FF: the number of trials in which Vige > Vi
and ¥ > 7o.

The sum of the above four numbers is equal to the
number of experiments. From (62), the false alarm rate
Pr is

FT

Pp= ——
F=FT 71T (63)
and the misdetection rate Py 1s
TF
Py = —
M= TE L FF 63)

These error rates will characterize our algorithm.
Through experiments, we will calculate these errors to
obtain the operating characteristics of our algorithm.

6.3 Experiments

6.3.1 Experimental Protocol

Our problem is tested by pgenerating simulated
data with various amounts of noise and measuring the
performance as a function of the amount of noise and the
values of the experimental parameters. Since a camera
equipped with a CCD array is promising for real-time
processing applications, we will perform the experiments
which can simulate such applications. Now we select one
among the commercially available CCD cameras. The
following is the specifications of the selected camera :

1. focal length f = 17.5 mm

2. equipped with a 1/2 inch CCD (570Hx485V
picture elements)

3. scan area of 6.39 x 4.88 mm
4. shooting distance of 20 mm thru co

5. framing angle of approx. 35° x 45° (at o)

As discussed earlier, our problem is to estimate the
equation of a planar surface given a certain number of
beam projectors with known positions and directions
as well as the noisy image points corresponding to the
beam spots on the planar surface. For our experiments,
it is assumed that these beam sources are movable on
a platform. Also it is assumed that the number of
beam projectors is four since that number is limited
in real applications. Notice that the beam projectors,
in practice, emit beams each of which transversal cross
section has a certain area. Then each of our image points
will occupy a certain area on the image plane. The area
i1s a collection of pixels whose gray scale values are higher
than those of the background. To get the coordinates



of the image points, we may use the thresholding and
centroiding techniques. Those values always contain
some amounts of uncertainties. For our experiments
such uncertainties are assumed to be Gaussian noise
with mean 0 and standard deviation o¢. Taking the
above discussions into consideration, we perform our
experiments which consist of the following steps (ull
distances units are represented in millimeters) :

1. The four beams are located at (a,aq,0),
(—a,a,0), (—a,—a,0) and (a,—a,0) and are
made to be focused at (0,0, p) which we call the
calibration point.

2. Choose a plane (work surface) defined by
zcosfcos¢g+ ycosfsing + zsinf —d = 0.

3. Determine the beam spot on the planar work
surface corresponding to each beam source.

4. Find perspective projections of the 3-D beam
spots and add identically independent Gaussian
noise with mean 0 and standard deviation o to
each component to get the image point set.

5. For each image point, find the distance between
the beam source and the 3-D beam spot in the
least squares sense. Then we get the estimated
locations of the beam spots.

6. From the estimated locations of 3-D beam spots,
we estimate the surface constants of the planar
work surface in the least squares sense.

7. Calculate the errors between the true values and
the estimated ones of the surface constants using
the error measures described in Section 5.1.

As can be seen in the above steps, the experimental
parameters that can be controlled are a, p, ¢, ¢, d and
o. Several experiments will be done by varying these
parameters. Estimation of surface constants will be done
with the eigensystem method discussed in Section 2.2
and 2.3.
6.1 and the error rates in Section 6.2 to characterize
In the first four
expeiments, § and ¢ will be varied uniformly in [0°, 30°]
and [0°, 360°], respectively.

We will use the error measures in Section

the performance of our algorithm.

6.3.2 Experiment 1

We would like to find how the surface constants are
affected by the calibration point and the noise standard
deviation. For this purpose, set @ = 35 and d = 200 and
vary p from 350 to 500 in steps of 50 and ¢ from 0.005
to 0.02 in steps of 0.005. For each parameter setting,

repeat steps from 1 to 7 at least one thousand times
and calculate the mean and variance of error measures
defined in section 6.1. In this experiment, we will also
use parallel beams. Fig 5 tells us that errors become
smaller as the calibration point approaches to infinity.
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Fig 5. Performance characteristics for various calibration
parameter values when the beam location and distance
parameters are set to ¢ = 35 and d = 200 while ¢ and
¢ are varied in [0°,30°] and [0°,360°], respectively :x
when p = 350, 4+ when p = 400, ¢ when p = 450, o when
p = 500, and * when p = oo.



6.3.3 Experiment 2

We would like to find how the surface constants are
affected by the size parameter of the laser beams and
the the noise standard deviation. For this purpose, set
p = 500 and d = 200 and vary ¢ from 25 to 40 in steps
of 5 and o from 0.005 to 0.02 in steps of 0.005. For
each parameter setting, repeat steps from 1 to 7 at least
one thousand times and calculate the mean and variance
of error measures defined in section 6.1. Fig 6 tells us
that errors become smaller as the beam location size
parameter becomes larger.
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Fig 6. Performance characteristics for various beam
location parameter values when the calibration and
distance parameters are set to p = 500 and d = 200
while # and ¢ are varied in [0°,30°] and [0°, 360°],
respectively : x when @ = 25, + when a = 30, ¢
when a = 35, and o when a = 40.

6.3.4 Experiment 3

We would like to find how the surface constants are
affected by the position of the work surface and the noise
standard deviation. For this purpose, set a = 35 and
p = 500 and vary d from 200 to 260 in steps of 20
and ¢ from 0.005 to 0.02 in steps of 0.005. For each
parameter setting, repeat steps from 1 to 7 at least one
thousand times and calculate the mean and variance of
error measures defined in section 6.1. Fig 7 tells us that
errors become smaller as the distance to the work surface
becomes smaller.
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Fig 7. Performance characteristics for various

distance parameter values when the beam location
and calibration parameters are set to ¢ = 35 and
p = 500 while # and ¢ are varied in [0°,30°] and
[0°,360°], respectively : x when d = 200, + when
a = 220, © when a = 240, and o when a = 260.



6.3.5 Experiment 4

The covariance matrix is given by (53). Since
this analytical form does not directly tell us of the
operating characteristics of our software, we will resort
to experiments. In this experiment, we set a = 25,
p = 500, d = 200 and ¢ = 0.005. For this parameter
setting, repeat steps from 1 to 6 at least one thousand
times, each of which we calculate angle error between
the true and the estimate surface normal and find the
corresponding covariance matrix. For these values,
calculate the false alarm rate and misdetection rate,
varing V5 within [0.00090,0.00135] in steps of 0.00005
and vy within [1°,5°] in steps of 2°. The results are
shown in Fig 8.
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Misdetection Rate

Fig 8. Operating Characteristic Curves for a = 25,
p = 500, d = 200 and ¢ = 0.005 while # and
¢ are chosen randomly in [0°,30°] and [0°,360°],
respectively : x when vy = 1°, ¢ when 7y = 3°,
o when ¢ = 5°.

6.3.6 Experiment 5

We used the covariance formula (44) in Experiment
4. Here we would like to verify its consistency
experimentally. For this purpose, set ¢ = 35, p =
500, d = 200, & = 15°, ¢ = 60° and vary ¢ from

0.005 to 0.02 in steps of 0.005. For each parameter

setting, repeat steps from 1 to 7 at least one thousand
times and calculate the mean and variance of error
measures defined in section 6.1. Table 2 tells us that the
experimental results comply with our error propagation
analysis.

6.3.7 Experiment 6

In the first three experiments, we have selected 6
randomly in [0°,30°]. However, the performances are
expected to vary for various 6’s. In this experiment, we
are interested in the sensitivity of error measures due to
the variation of # in that region. For this purpose, we
set a = 35, p = 500, d = 200 and & = 0.005 and repeat
steps from 1 to 6 at least one thousand times. It turns
out that performances are effectively the same along
the azimuthal direction. Fig 9 shows the performance
characteristics of our algorithm for various values of 6.
Notice that estimation errors are the smallest when the
plane is perpendicular to the optical axis.

(b) mean distance error

Fig 9. Directional performance characteristics for
a = 35, p = 500, d = 200 and ¢ = 0.005 while ¢ is
varied from 0° to 30° in steps of 1°.



7. Discussion

Our experiments were done on the assumption that
only Gaussian noise is involved. Although the noise
distribution to be considered in our problem may not
be Gaussian, our analysis and experiments under the
assumption give us valuable information on what we
should do in order to make estimation errors small. The
experimental results tell us that the larger the image
size (consisting of four image points) is, the smaller the
estimation error is. The diverging beam pattern may
give better results than the converging one since the
image size is less sensitive to the variation of distances
from the optical center to the planar surface under
consideration.

A particular beam pattern was employed for our ex-
perimental purpose. The desired beam pattern should
be the one for which the amount of uncertainty in the
estimated surface constants is minimized. Unfortunate-
ly, it is not easy to find it since the covariance matrix
(53) is not a separable form for the parameters involved.
There is one more thing we have to take into consider-
ation. When images are taken by a camera with CCD
array whose size is limited, all image points are not ex-

pected to lie on the scanning area of the CCD array for
an arbitrary beam pattern. Note that the desired beam
pattern is constrained by the following factors :

1. framing angle of a camera

2. range of the polar angle of the surface normal of
the planar work surface

3. range of the distance from the camera to the
planar work surface

Keeping these in mind, try to find the best beam pattern
for your purpose.
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Table 1. Statistics of numerical and algebraic solutions (the experimental protocol
in section 6.3.1 applies to this experiment) : (a) a = 35, p = oo, d = 200, and
o = 0.005 (b) a = 35, p = oo, d = 200, and ¢ = 0.010

numerical solution algebraic solution
1st moment 0.000283 0.000119 - 0.000094 0.017683 0.000292 0.000127 - 0.000097 0.018265
2nd moment 0.005194 0.005155 0.001370 0.286281 0.005197 0.005170 0.001377 0.288548
3rd moment | - 0.094386 -0.021583 -0.032779 -0.022318 | -0.080924 -0.023387 -0.028049 - 0.018708
4th moment [ 0.053572 0030234  0.183477  0.143661 | 0.089820  0.031032 0175099  0.131214
(a)
0.000027 -0.000001 - 0.000003 0.000638 0.000027 - 0.000000 - 0.000004 0.000652
covariance - 0.000001 0.000027 - 0.000006 0.001178 | - 0.000000 0.000027 - 0.000006 0.001193
matrix -0.000003 -0.000006  0.000002 -0.000359 | -0.000004 -0.000006  0.000002 - 0,000364
0.000638 0.001178 - 0.000359 0.081957 0.000652 0.001193 - 0.000364 0.083260
Ist moment | 0.000265 -0.000578 -0.000026  0.004539 | 0.000213 -0.000591 -0.000016  0.002427
2nd moment 0.010762 0.010793 0.002780 0.592500 0.010778 0.010826 0.002794 0.595689
3rd moment | - 0.019399 -0.174728 0.037547 - 0.027667 | - 0.022936 -0.179117 0.026182 - 0.017685
4th moment | - 0.093388 - 0.029517 0.039069 0.032538 | - 0.080536 - 0.006018 0.044454 0.079689
(b)
0.000116 - 0.000009 -0.000013 0.002662 0.000116 - 0.000008 - 0.000014 0.002700
covariance - 0.000009 0.000116 - 0.000026 0.005008 | - 0.000008 0.000117 - 0.000026 0.005059
matrix -0.000013  -0.000026  0.000008 -0.001513 | -0.000014 -0.000026  0.000008 - 0.001530
0.002662  0.005008 -0.001513  0.351056 | 0.002700  0.005059 -0.001530  0.354846




Table 2.

Experiments for verifying the error propagation analysis in section 5

(the experimental protocol in section 6.3.1 applies to this experiment) : The
experimental parameters are set to a = 35, p = 500, d = 200, § = 15°, ¢ = 60°,
and (a) o = 0.005, (b) ¢ = 0.010, (c) ¢ = 0.015, (d) & = 0.020.

analysis experimental results
mean 0.000000  0.000000  0.000000  0.000000 | 0.000313  0.000135 -0.000107  0.020203
0.000033 - 0.000002 -0.000004  0.000773 | 0000031 -0.000001 -0.000004  0.000760
(a) covariance | - 0.000002  0.000031 -0.000007  0.001338 |- 0.000001  0.000031 -0.000007  0.001386
matrix - 0.000004 - 0.000007  0.000002 -0.000414 | -0.000004 -0.000006  0.000002 - 0.000424
0.000773 0.001338 - 0.000414 0.094309 0.000760 0.001386 - 0.000424 0.095150
mean 0.000000 0.000000 0.000000 0.000000 0.000230 - 0.000637 - 0.000028 0.004657
0.000132 - 0.000007 -0.000016 0.003090 0.000134 -0.000010 - 0.000016 0.003131
(b) covariance | - 0.000007 0.000123 - 0.000028 0.005351 | - 0.000010 0.000136 - 0.000030 0.005875
matrix - 0.000016 - 0.000028 0.000009 - 0.001656 | - 0.000016 - 0.000030 0.000009 - 0.001776
0.003090 0.005351 -0.001656 0.377237 0.003131 0.005875 - 0.001776 0.404675
mean 0.000000  0.000000  0.000000  0.000000 | 0.000536 -0.000196 -0.000353  0.072045
0.000296 -0.000016 -0.000036  0.006953 | 0.000327 -0.000027 -0.000037  0.007428
(c) covariance | - 0.000016  0.000227 -0.000062  0.012040 |-0.000027  0.000284 -0.000062  0.012144
matrix - 0.000036 - 0.000062 0.000019 -0.003725 | - 0.000037 - 0.000062 0.000019 - 0.003822
0.006953 0.012040 - 0.003725 0.848783 0.007428 0.012144 - 0.003822 0.870428
mean 0.000000 0.000000 0.000000 0.000000 0.000244 0.000248 - 0.000650 0.126744
0.000527 -0.000029 -0.000064  0.012360 | 0.000537 -0.000064 -0.000058  ©0.011377
(d) covariance | - 0.000029  0.000493 -0.000110  0.021405 |-0.000064  0.000512 -0.000109  0.020593
matrix - 0.000064 -0.000110 0.000034 - 0.006623 | - 0.000058 - 0.000109 0.000033 - 0.006323
0.012360 0.021405 - 0.006623 1.508948 0.011377 0.020593 - 0.006323 1.420589




