
A Performance Evaluation Protocol for
Graphics Recognition Systems

Ihsin T. Phillips 1, Jisheng Liang 2, Atul K. Chhabra 3, and Robert Haralick 2

1 Department of Computer Science/Software Engineering,
Seattle University, Seattle, Washington 98122

2 Department of Electrical Engineering,
University of Washington, Seattle, Washington 98195

3 Bell Atlantic Network Systems, Advanced Technology,
500 Westchester Avenue, White Plains, NY 10604, USA

A b s t r a c t . This paper defines a computational protocol for evaluating
the performance of raster to vector conversion systems. The graphical
entities handled by this protocol are continuous and dashed lines, ares,
and circles, and text regions. The protocol allows matches of the type
one-to-one, one-to-many, and many-to-one between the ground truth and
the recognition results.

1 I n t r o d u c t i o n

Systems which convert existing paper-based drawings into electronic format are
in demand and a few have been developed. However, the performance of the pro-
totypes and commercial systems is either unknown, or only reported in a limited
way by the system developers. An evaluation for these systems, or their sub-
systems, would contribute to the advancement of the field. Responding to this
need, a dashed-line detection competition for developers of dashed-line detection
algorithms was proposed and took place during the first International Workshop
on Graphics Recognition at Penn State University, in 1995. A benchmark[l] was
developed and used in that competition. That benchmark includes a perfor-
mance evaluator and a software tool that automatically generates dashed-line
test images and the corresponding groundtruth.

In this paper, we extend that protocol to evaluate the performance of graph-
ics recognition systems on images that contain straight lines (solid or dashed),
circles (solid or dashed), partial arcs of circles (solid or dashed), and text blocks.
(Engineering drawings primarily use a combination of these geometric elements.
Therefore, despite being restricted to these simple entity types, the evaluation
protocol is applicable to a wide variety of drawings. Upgrading the evaluator to
handle other types of entities is straight forward. To do this, one needs to pro-
vide the evaluator the parameters of the entity or entities and the performance
evaluation criteria.) To evaluate a given recognition system, the system is tested
on a set of pre-selected test images. (The groundtruth for the test images must
be reliable.) The results of the recognition system are matched, using the cri-
teria defined in this protocol, with the corresponding groundtruth of the test

373

images. The matching results are the numbers of one-to-one matches, one-to-
many matches, many-to-one matches, as well as the numbers of false-alarms and
misses. Performance measurements for the recognition system can be formulated
using a linear combination of some or all of the matching results.

Our evaluator is designed to be used by recognition system researchers and
developers for testing and enhancing their recognition algorithms. The evaluator
allows the users to select ' text-only', 'graphics-only', or 'all' option for their
systems performance evaluations. The ' text-only' evaluation option is designed
for recognition systems that detect only the text blocks in the input image. The
'graphics-only' evaluation option is designed for recognition systems that detect
only the graphical entities. The 'all' evaluation option is designed for systems
that can detect both graphics and text blocks.

This paper is organized as follows: In Sect. 2, we give a brief review of some
related work. In Sect. 3 we specify the pm'ameters for the entities. The protocols
for performance evaluation and entity matching are given in Sect. 4. In Sect. 5,
we present the matching criteria for each pair of valid combinations. The precise
definitions of the line-to-line matching functions are given in Appendix A.

2 P r e v i o u s W o r k

Performance evaluation and benchmarking have been gaining acceptance in all
areas of computer vision. An overview of this area is available at [2]. Performance
evaluation of graphics recognition is still a very young field; objective and quan-
titative methods for evaluation of graphics recognition have been proposed very
recently [1, 3, 4, 5]. Kong et al. [1] propose a quantitative method for evaluating
the recognition of dashed lines. Hori and Doermann [3] propose a quantitative
performance measurement methodology for task-specific raster to vector conver-
sion. Wenyin and Dori [4] present a protocol for evaluating the recognition of
straight and circular lines. All of these methods are limited in their applicability.

Kong et al. [1] use angle, distance, relative overlat~, and offset between line
segments for evaluating line matches and for detecting line styles. They use
several arbitrary and rigid thresholds. They do not allow for fragmentation of
detected lines.

Hori and Doermann [3] instantiate and extend Haralick's framework for per-
formance characterization in image analysis [6], in an application-dependent
manner, for measuring the performance of raster to vector conversion algorithms.
The 'applications' addressed in the work are thinning, medial line finding, and
line fitting - all low level techniques that do not completely constitute vectoriza-
tion. It is hard to extend the work to evaluate a complete vectorization system.
Hori and Doermann's protocol does not distinguish between detection rate and
false alarm rate. It does not include an overall evaluation metric. It does not
allow for fragmentation of detected lines.

Wenyin and Dori [4] propose performance evaluation indices for straight and
circular line detection. Detection and false alarm rates are defined at both the
pixel level and the vector level. Pixel level performance indices (measures of
shape preservation) are not appropriate when dealing with real images that

374

contain severe distortion introduced by warping and other defects in the hard
copy drawing and by the scanning/imaging system. Attempts to obtain a high
pixel recovery index would unnecessarily require the detected vectors to be true
to the distorted shape of the imaged lines, thereby making the detected lines
fragmented. Wenyin and Dori weight all true positives and false positives by
their respective lengths. This is inappropriate if the goal of the evaluation is
to measure the cost of post-processing operations that are necessary to correct
the mistakes of veetorization. The time for manual post processing does not
depend significantly on the length of a true positive, a missed entity, or a false
positive. Time taken for adding or deleting a line in a CAD tool does not depend
significantly on the length of the line.

Neither of the above methods addresses the extraction or separation of text
from graphics. It is not possible to evaluate graphics recognition systems on
realistic drawings without accounting for text in the drawings. Wenyin and Dori
[5] propose a protocol for evaluating text-graphics separation. In this protocol,
the quality of the recognized text boxes is measured using Qb, the basic quality,
and Qyr, the fragmentation quality. The protocol does not explicitly penalize
overlapping text boxes; they are penalized in an indirect way. Qfr implicitly
penalizes overlap among recognized text boxes. For N recognized text boxes
that are identical and have a 100% overlap with a text box in the groundtruth,
Qyr would be 1 / v ~ . The theoretical basis for penalizing overlapping text box
recognition by 1/x/-N is not stated. Moreover, the protocol of [5] does not allow
one to accept one of the N identical text boxes as a good match and to label
others as false alarms. Therefore, this penalty term cannot be used to measure
post-processing/editing cost.

3 E n t i t y Def in i t ion

3.1 Entity Specification

Currently our evaluator handles seven types of entities: solid and dashed lines,
solid and dashed arcs, solid and dashed circles, and text areas. The specification
of the parameters for these seven types are given below.

- Solid or dashed line type: For a solid or dashed line segment, the parameters
are: the entity type indicator (a solid line or a dashed line), the x- and y-
coordinates (this is equivalent to the c- and r-coordinate system of the image
coordinate system given in Appendix A) of the two end points (no special
ordering for the two points) and the orientation of the line. The orientation
we use here is in degree, clock-wise with respect to x-axis. (See Fig. 1.)

- Solid or dashed circle type: For a solid or dashed circle, the parameters are:
the entity type indicator (a solid or a dashed circle), the x- and y- coordinates
of the center, the radius, and the thickness of the circle arc.

- Solid or dashed arc (partial circle) type: For a solid or dashed arc, the pa-
rameters are: the entity type indicator (a solid or a dashed arc), the x- and
y- coordinates of the center, the radius, the beginning and the ending angles

375

. i,- x - - - - - - - . - - - - - - - - , - - - - i,- x

line~ l i n e / 135o

(a) (b)

Fig. 1. The orientation of the line in (a) is 45 degrees, in (b) is 135 degrees.

(in a clock-wise order, in degrees) of the arc. The orientation of the begin-
ning and ending angles for arcs are also in degrees, clock-wise with respect
to x-axis. In some cases, the beginning angles can be larger than the ending
angles. (See Fig. 2.)

. i,, x
_ / -'** " ' .

.x" arc ' .
" . 45 o 135"

Endinr ~ngie Reg~nn~g angle

(a)

270" B¢#nning angle

1 3 ~ - "
E ~ g ungk-

(b)

Fig. 2. The beginning and ending angles of two arcs. In (b), the beginning angle of the
arc is larger than the ending angle of the arc.

- Text area type: A text area is represented by a rectangular box and its
orientation. The parameters are: the entity type indicator (a text area), the
x- and y- coordinates of any two opposite corners of the rectangle, and the
orientation of the longest side of the rectangle.

3.2 Va l id E n t i t y T y p e C o m b i n a t i o n s

To speed up the matching score computation, we compute only those pairs hav-
ing potential matches (e.g., line with line, etc.). The matching score for all in-
comparable combinations are set to zero. The following is the list of the valid
entity type combinations. Others combinations are considered as incomparable.

- Solid-line with solid-line
- Solid-circle with solid-circle
- Solid-arc with solid-arc

Dashed-line with dashed-line
- Dashed-circle with dashed-circle
- Dashed-arc with dashed-arc
- Solid-line with solid-arc

376

- Dashed-line with dashed-arc
- Solid-arc with solid-circle
- Dashed-arc with dashed-circle
- Text-area with text-area

4 P e r f o r m a n c e E v a l u a t i o n P r o t o c o l

4 . 1 E v a l u a t i o n O v e r v i e w

Recognition]
System's parameters I

Detected
ent i ty v e c t o r f i e

Engineering
Drawing Image

Groundtruth t
entity vector file]

I

~ / J User's Options

, Legend:
i

] I Object/file t
i ' (D , Process/program

Data Flow
1 .

Ent i ty m a t c h i n g
s core tab le Table entity vector file entity vector file

False-alarm
entity vector file

Fig. 3. The object-process diagram of our evaluator

Inputs to the evaluator are entities (in ASCII vector format) of the recog-
nition algorithm's output and the corresponding groundtruth. (Figure 3 shows
an object-process diagram of our evaluator.) Since there are seven types of enti-
ties (solid and dashed tines, solid and dashed arcs, solid and dashed circles, and
text areas) that are Mlowed, the evaluation protocol and the matching criteria
are designed differently for each of the combinations. The matching scores for
each pair is computed according to the pair's entity type combination, using
the matching criteria defined for this combination. (These criteria are defined in
Sect. 5.) A match-score table is produced from the matching score computation.

From the computed match score table, we search for all the one-to-one
matches, resolving the problems of the one-to-many matches and the many-to-
one matches, as well as, those false-alarms and misses. The matching results are
the numbers of one-to-one matches, one-to-many matches, many-to-one matches,

377

as well as the numbers of false-alarms and misses. Performance measurements for
the recognition system can be formulated, using a linear combination of some or
all of the matching results, which when weighted by application specific weights
can be summed to produce an overall score relevant to the application.

4.2 Evaluation Protocol

The performance (accuracy) of a detection algorithm can be measured by count-
ing the number of matches between the entities detected by the algorithm and
the entities in the groundtruth, and the numbers of misses and false alarms.
We consider a perfect result of a detection algorithm, if each and every one of
the entities in the detected list matches one and only one entity of the same
type in the groundtruth list and vice versa. The following is the protocol of this
computation.

Step 1: Obtain the detected entities and the entities' parameters and form a
detected entities list (D-list) for the entities and the parameters.

Step 2: Obtain the groundtruth entities and the entities' parameters and form
a groundtruth entities list (G-list) for the entities and the parameters.

Step 3: Compute the matching score table. (See Sect. 4.3).
Step 4: Compute the one-to-one matches, resolving the problems of several

matches, either from the detections or from the groundtruth. (See Sect. 4.4).
Step 5: Compute the one-to-many and many-to-one partial matches.
Step 6: Compute the false-alarms and the misses. (See Sect. 4.6).

4.3 Matching Score Table Computat ion

The matching score table is computed as follows. We compute the matching
scores (ranging from 0 to 1, 1 being a perfect match) for each pair (with a valid
combination) of entities, one fl'om D-list (detected entities) and one from G-list
(groundtruth entities), using the matching criteria defined (in Sect. 5) for the
pair's combination. The matching score for all invalid combinations are set to
zero. A two-dimensional data structure, the match-score table, is used to store the
results of this computation. A higher matching score indicates a higher degree
of match between the corresponding pair of entities. Figure 4 illustrates such a
table. Blanks are read as zeros.

Note that entries in each row i of the match-score table represent the match-
ing results from the i-th entity in the D-list to all entities in the G-list. Within
a given row, a single entry having a high score value indicates a potential good
match of the pair corresponding to that entry.

4.4 Comput ing One-to-One Matches

The protocol for computing the entity one-to-one matdles is as follows.

378

M a ~ h - S c o r e Table

gl g2 g3 g4 g5 g6 g7 g8 g9 gl0

dl .85 .14

d2 1 ,(3

d3 .1 .9 ,I

d4 .95 .9

d5 .25 .3 ,86 .3 .88

d6 1.0

d7 ,06 .91 .93

dg ,91

F i g . 4 . An example of a match-score table

Step 1: We compute a two-dimensional match-count table from the computed
match-score table. The entry match-count(i, j) is set to 1 if the match-score(i,
j) is greater or equal to upper-threshold, otherwise, it is set to zero. Currently,
the upper-threshold is set to .85. However, we allow users to set their own
threshold. Figure 5 illustrates the match-count table (on the right) which is
computed from the match-score table on the left.

Match-Score Table

gl g2 g3 g4 g5 g6 g7 g8 g9 g l0

dl ,85 .14 dl

d2 1 ,~ i i ' d~ 1
d3 . i t ,9 .1 d3

d4 .9' .9 ~ d4

d5 .25 ,3 .86 .3 .88 d5

d6 1.0 d~

d7 .06 ,91 .93 d~

d8 .91 d~

Match-count Table

gl g2 g3 g4 g5 g6 g7 g8 g9 g l0

1L
1

1

1

1

1

1

1 1

1

Fig. 5. An example of a match-count table (on the right)

Step 2: Two projection profiles (D-profile and G-profile) are computed from the
match-count table, the result of Step 1.
The entry D(i) is computed as the sum of the matches in the i-th row of the
match-count table. Likewise, the entry G(j) is computed as the sum of the
matches in the j-th column of the match-count table. Figure 6 illustrates the
D-profile and the G-profile computed from the match-count table.
The interpretation of these two profiles can be as follows:

- One-to-one matches: An i-th D entity has a one-to-one match with a j- th
G entity, if

• D(i) is a one,
• the match-count(i, j) is one,
• and G(j) is one.

379

Match-count Table D-profile

gl g2 g3 g4 g5 g6 g7 g8 g9 gl0 _ _ /

dl 1 1
dg 1 1
d2 1 1
d4 1 1 2
d_ ~ 1 1 2

d~ 1 .~ l
d'~ 1] 1 2

I d8 1 1

G P'°file---" I 01: I:l ' I l l 't :l °l :1 °1

Fig. 6. The two projection profiles for the match-count table of Fig. 5

(If the detection algorithm produces a perfect result, all entries in the
D-profile and the G-profile will be one.)

- Many-to-one conflicts: An entry in G-profile, say G(j), is greater than
one. That is, there are multiple D entities matching with the j-th entity
is G-list.

- One-to-many conflicts: An entry in D-profile, say D(i), is greater than
one. That is, the i-th D entity matches two or more entities in the G-list.

- False-alarms: A zero entry in the D-profile indicates that no strong match
is found from this D entity to any of the entities in the G-list.

- misses: A zero entry in the G-profile indicates that no strong match is
found from this G entity to any of the entities in the D-list.

Step 3: Compute the one-to-one match list.
For each D(i) that is equal to one, we a t tempt to locate the pair (i, j) such
that both G(j) and match-count(i, j) are one, a one-to-one match (d2 and d3
in Fig. 7). We put the pair, (i, j), in the one-to-one match list, and set D(i)
and G(j) to -1 (block the two entities from further consideration). Figure 7
illustrates the result of one-to-one matching. There are two such pairs.

Match-Score Table
gl g2 g3 g4 g5 g6 g7 g8 g9 gl0

dl .85 .14!

d2 1,1
d? A .9 .I
d4 ,95 . 9
d5 .2.* .3 .86 .3 .88
d(1 .C

d% .06 .91
d~ .91

.93

Match-count Table D-profile
gl g2 g3 g4 g5 g6 g7 g8 g9 gl0 _ , l /

;;W-1

t 1 1 21
1 1 2t

1 1 21
1 II

-1/ - l /
G - p r o f i l e ~ 0[2 [2LA/[1 1 ~ 2 [0[2 t 0[

Fig. 7. One-to-one matching (the resulting one-to-one matches are circled)

380

Step 4: Resolving the many-to-one conflicts.
For each D(i) that is equal to one (but did not produce a one-to-one match
in Step 3), we locate the pair (i, j) such that match-count(i, j) is one, but
G(j) is greater than one. (There are three such pairs in Fig. 7): (dl, g7), (d6,
g2), and (dS, g2).)
Without lost of generality, let D(i) and D(k) be one and let G(j) be two
(meaning that there are two D entities, say i-th and k-th, matching with the
j-th entity in G-list, such as (d6, g2), and (dS, g2) in Fig. 7),

Case 1: We select the pair (i, j) if match-score(i, j) > = match-score(k, j).
And

- we put the pair (i, j) in the one-to-one match list;
- we set D(i) and G(j) to -1, and
- we decrease D(k) by one.

For example, if i = 6, we would select the pair (d6, g2) over (d8, g2) in
Fig. 7.

Case 2: We select the pair (k, j) if match-score(k, j) > match-score(i, j) and
D(k) is a one. And,

- we put the pair (k, j) in the one-to-one match list;
- we set D(k) and G(j) to -1, and
- we decrease D(i) by one.

The example, if i = 8, we still select the pair (d6, g2) over (d8, g2) in
Fig. 7.

Case 3: match-score(i, j) < match-score(k, j) and D(k) is greater than one,
(dl and d4 with g7, in Fig. 7).
In this case, we would not select the pair (k, j) if there is a column t, in
row k such that match-score(k, t) > match-score(k, j). In this case, we
would select the pair (i, j) instead. And we handle this case as in Case
1.
The example in Fig. 7, dl and d4 match g7, a many-to-one conflict. The
pair (dl, gT) is selected instead of (d4, gT) since the match-score(d4, g5)
has a higher score than the pair (d4, gT).

A similar treatment is done if G(j) is greater than two. This step is repeated
until no more D(i) is equal to one.

Step 5: Resolving the one-to-many conflicts.
For each D(i) that is a two, let j and k be the two entities in G-list that match
with the i-th entity in the D-list. If match-score(i, j) > = match-score(i, k),
we put the pair (i, j) in the one-to-one match list and set D(i) and G(j) to -1,
and decrease G(k) by one. Otherwise, we put the pair (i, k) in the one-to-one
match list and set D(i) and G(k) to -1, and decrease G(j) by one. A similar
treatment is done if G(j) is greater than two. This step is repeated until no
more D(i) is two or greater.

4.5 C o m p u t i n g P a r t i a l M a t c h e s : O n e - t o - M a n y and M a n y - t o - O n e

At the end of the one-to-one entity matching (Sect. 4.4), the value of each D(i)
indicates whether the i-th entity has a one-to-one match. In particular, if a D(i) is

381

a -1, it indicates that the i-th entity in D-file has a one-to-one match, otherwise,
it indicates tha t it does not have a one-to-one match. (The same idea for the
entities in G-file.) One could, for example, consider each D(i) > = 0 a false alarm
and each G(j) > = 0 a miss detection.

However, it may be the case that a detected entity which does not have a
one-to-one match may in fact match with a group of two or more groundtruth
entities. For example, a detection algorithm may have located a text bounding
box on the input image that includes several text lines, while those text lines
are given one text bounding box each in the groundtruth file.

Therefore, to give partial credits to the detection algorithms for finding one-
to-many partial matches, we do as follows.

For each D(i) > = 0 in the D-profile, we collect a list of all entities j in G-
profile, such that G(j) is also > = 0 (also did not have a match by any D entity)
and the score in the match-score(i, j) is greater than the lower-threshold (so that
we would not include any noise). Currently, the lower-threshold is set to .05.
However, we allow users to set their own threshold. If the sum of the scores for
the entities in the collected list is greater than the upper-threshold, we consider
the i-th D entity having a one-to-many partial match to those j entities in the
collected list. And we set D(i) and all those G(j) to -1.

A similar protocol is applied to find the many-to-one matches (many detected
entities matching with one groundtruth entity).

4.6 False-alarms and Miss-Detect ions

Finally, the false-alarms are those i entities having their D[i] values > = 0, and
the miss-detections are those j entities having their G[j] values > = 0.

5 M a t c h i n g C r i t e r i a

5.1 Line-Line Matching Protocol and Criteria

This protocol is for both solid lines and dashed lines. Let d be a line entity in
the D-entity-list and g be a line entity in the G-entity-list. Let match-score(i, j)
be the corresponding entry of d and g. To mark the entry (i, j) , we compute the
followings:

Step 1: If d and g have the same endpoints (a perfect match), we set match-
score(i, j) to 1 and skip the following steps.

Step 2: We compute the angle between d and g as the included angle between
these two line segments (see Fig. 8). If the angle between d and g is less
than 5 degrees, angle(d, g) _< 5, we continue to the next step, otherwise the
match-score(i, j) is set to zero.

Step 3: We compute the distance, lIDist(d, g), between d and g. The lIDist(d, g)
is computed as the average of the orthogonal distance from the midpoint of
d to g and the orthogonal distance from the midpoint of g to d (see Fig. 9).
IfllDist(d, g) ~ OH, we continue to the next step, otherwise the entity-match-
table is set to zero.

0 Ii, c

II

r

(a) I orient(ll)- orient(12)l < 90 °

382

0 . c

(b) I orient(ll)- orient(12)l >90 °

Fig. 8. Angles of two line segments

\ J m 2

tIDist (t j, l~) = (plDist (ml, t2) + ptDist (m z, II)) / 2

Fig. 9. Line-line distance of two line segments

Step 4: Next, we compute the relative overlap function, overlap(d,g, ag), of d
and g with respect to the orientation of g. If overlap(d, g, ag) is at least 20%
of both d and g. we set match-score(i, j) to zero. Otherwise, we compute the
relative overlap.
The relative overlap of two line segments ll and 12 is defined as the ratio
between the overlap function overlap(ll , 12, a) and the length of the longer
segment: Relat iveOver lap(l l , 12, a) = overlap(ll,12,c~) m~×(t~gth(h),l~gtn(12))

Step 5: The match-score(i, j) is computed as:
Rela t iveOver lap(l l 12, c~) - angte(d,g) __ UDi~t(d,g)

' 1 8 0 0t~

For a precise definition of these functions see the Appendix A. The threshold
values used here were determined heuristically based on the dimension of the
entities. However, we allow these threshold values to be set by the user.

5.2 Arc-Arc Match ing Protoco l and Criteria

This protocol is for both solid arcs and dashed arcs.
Let AI be an arc entity in the D-entity-list and and A2 be an arc entity in

the G-entity-list. Let C1 and 6'2 be the centers of A1 and A2, and let - ~ 1 and R2
be the two radii (see Fig. 10).

Let match-score(i, j) be the entry that stores the matching result for this
pair. The protocol for computing match-score(i, j) is as follows:

Step 1: If the two arcs, A1 and A2, are identical (with the same centers, same
radii, same beginning and end angles), we set match-score(i, j) to 1 and skip
the following steps.

383

,,,,,,,,,,,,,, ~

AT~

C1

Fig. 10. An example of arc-arc entity pair

Step 2: We compute the point-to-point distance, ppDist(C1, C2), between the
two centers Ct and C2. If this distance is greater than Occ, we set match-
score(i, j) to zero, and skip the following steps.

Step 3: We compute the absolute difference between the two radii, RadiusDist
(R1, R2) = tR1 - R21. If this distance is greater than 0RR, we set match-
score(i, j) to zero, and skip the following steps.

Step 4: We compute the ratio of these two radii, RadiusRatio(R1,R2) =
rain(R1 , R 2) max(re,R2)" If this ratio is smaller than 85 percent, we set match-score(i,

j) to zero, and skip the following steps.
Step 5: We project A1 onto A2, take the portion of A2 that is within this

projection, and call it A3. The projection is defined as follows. We construct
two lines, 11 and 12, from the center of A~ to the two endpoints of At to
infinity. The wedge between these two lines (also within the beginning and
the ending angles of A~) is the projection of A1. (See Fig. 11).

,\,\ ,,,;/ "AI

"~'+ Cz
CI

, ,,'
', ,'

'.~+ c2
C!

(a) (h)

Fig. 11. (a) The projection of A1 onto A2, (b) A3, the portion of A2 within the
projection

Similarly, we project A2 onto A1 and take the portion of A1 that is within
this projection, call it A4 (see part (d) in Fig. 12).

Step 6: If either A3 or A4 exists, we set the match-score(i, j) to zero and skip
the rest. In the case that Both A3 and A4 exist, we define a line segment L1
from the two ends of A3 and another line segment L2 from the two ends of
A4.

Step 7: Taking L1 and L2, we apply the line-line matching criteria to this pair.

3 8 4

,../ / A, !

" - :+4. c:~ "'~+cz
C1 CI

(c) (d)

Fig. 12. (c) The projection of A2 onto A1, (d) A4, the portion of A1 within the pro-
jection

The match-score(i, j) for this pair is the result of the line-line matching result
times F , an adjustment. Without lost of generality, let L1 be shorter than
L2 and the distance between the two ends of A2 be greater than that of
At. Then F is computed as the ratio of the length of L1 and the distance
between the two ends of A2.

5.3 Arc-Line Matching Protoco l and Criteria

This protocol is for solid-arc with solid-line pairs and dashed-arc with dashed-line
pairs.

Let A1 be an arc entity in the D-entity-list, and let C1 be the center and R1
be the radius of A1. Let L1 be a line entity in the G-entity-list (see Fig. 13).

At_..
~k L~

"4-
C1

Fig. 13. An arc-line entity pair

Let match-score(i, j) be the entry that stores the matching result for this
pair. The protocol for computing match-score(i, j) is as follows:

Step 1: We construct two lines, 11 and 12, from the center of A1, to the two
endpoints of L2. We also construct a new line segment, R2, from the center
of A1 to the midpoint of L2. In the sense, we are constructing an artificial
arc, A2, taking C~ as its center, R2 as its radius, and the orientation of 11
as its beginning angle, and the orientation of 12 as its ending angles (see
Fig. 14).

385

II . 12

AI 1.. :

CI

Fig. 14. Construction of the new triangle and the new line segment

Step 2: We compute the absolute difference between R1 and R2, JR1 -- R2I. If
this distance is greater than 0RR, we set match-score(i, j) to zero, and skip
the following steps.

Step 3: We project the artificial arc, A2, onto A1, take the portion of A1 between
11 and 12, and call it An. If A3 does not exist, we set match-score(i, j) to zero
and skip the rest. In the case that A3 exists we construct a new line segment,
Lt, from the new arc A3 (see Fig. 15).

"" L2

ae
C1

Fig. 15. The new line segment, L1, which is constructed from Aa

Step 4: Taking L1 and L2 , we apply the line-line matching criteria to this pair.
The match-score is set to the result of the line-line matching result times F,
an adjustment. Without lost of generality, let L1 be shorter than L2 and the
distance between the two ends of A1 be greater than that of A2. Then F is
computed as the ratio of the length of L1 and the distance between the two
ends of A1. If either Lt or L2 exist, we set the match-score(i, j) to zero.

5.4 Arc -Circ l e M a t c h i n g P r o t o c o l and Cr i ter ia

This protocol is for solid-circle with solid-arc pairs and dashed-circle with dashed-
arc pairs.

Let A1 be an arc entity in the D-entity-list and and Cir be a circle entity in
the G-entity-list. Let C1 and C2 be the centers of A1 and Cir2, and let /1~ 1 and
Re be the two radii.

386

Let match-score(i, j) be the entry that stores the matching result for this
pair of entities. The protocol for computing match-score(i, j) is as follows:

Step 1: We project A1 onto Cir2, take the portion of the Cir2 that is within
this projection, and call it A2. In the sense, we are constructing an artificial
arc, A2, taking C2 as its center, R2 as its radius, and the orientations of the
two sides of the projection as its beginning and ending angles.

Step 2: We construct a line segment, L1, from the two ends of A1 and another
line segment, L2, from the two ends of A2. Taking L1 and L2, we apply the
line-line matching criteria to this pair. The match-score is set to the result
of the line-line matching result times F , an adjustment. F is computed as
the inside angle of A1 divided by 360.

5.5 Circle-Circle Match ing P r o t o c o l and Criteria

This protocol is for both solid and dashed circles.
Let Cirl be a circle entity in the D-entity-list and and Cir2 be a circle entity

in the G-entity-list. Let C1 and C2 be the two centers and let R1 and R2 be the
two radii (see Fig. 16).

Fig. 16. A circle-circle entity pair

Let match-score(i, j) be the entry that stores the matching result for this
pair of entities. The protocol for computing match-score(i, j) is as follows:

Step 1: If the two circles, Cirl and Cir2, are identical (with the same centers
and the same radii), we set match-score(i, j) to 1 and skip the following
steps.

Step 2: We compute the point-to-point distance, ppDist(C1, C2), between the
two centers C1 and C2. If this distance is greater than Oct, we mark the
entry as a non-match and skip the following steps.

Step 3: We compute the absolute difference between the two radii, RadiusDist
(R1, R2) = IR1 - R21. If this distance is greater than 0RR, we mark the entry
as a non-match and skip the following steps.

387

Step 4: If both ppDist(C1, C2) and RadiusDist(R1, R2) are equal to zero (two
identical circles), we set match-score(i, j) to 1 and skip the following steps.

Step 5: We compute the ratio of these two radii, RadiusRatio(R1,R2) =
rain(R1 ,R2) max(R1,R2)" If this ratio is smaller than the preset threshold, we mark the
entry as a non-match, otherwise, the entry is marked as a match.

Step 6: The matching score for this pair is

Radius Ratio(Rl , R2) -
ppDist(C1, C2) RadiusDist(R1, R2)

rain(R1, R2) rain(R1, R2)

5.6 Text-text Matching Protocol and Criteria

A text area is represented by a rectangular box and its orientation. The rectan-
gular box is described by the x- and y- coordinates of an?, two opposite corners
of the rectangle, and the orientation of the longest side of the rectangle.

Let tl be a text entity in the D-entity-list and let t2 be a text entity in the
G-entity-list. Let P1 and t?'2 be the two opposite corners of tl and let Q, and Q2
be the two opposite corners of t2.

Let match-score(i, j) be the corresponding entry of tl and t2. The computa-
tional protocol for the match-score(i, j) is as follows:

Step 1: If tl and t2 are identical (a perfect match), we set match-score(i, j) to
1 and skip the following steps.

Step 2: Let Pmi~t be the midpoint of the diagonal line of tt and let Q-~id
be the midpoint of the diagonal line of t2. Without lost of generality, let
ppDist(P1, P.e) > ppDist(Qt, Q2). That is, tl has longer diagonal than that
of t2. We construct a circle centered at P,~iCt with radius equal to the diago-
nal of t l . If both the corner points of t2, Q1 and Q2, are outside of this circle
(this means that there is no overlap between tl and t2), we set match-score(i,
j) to zero, and skip the following steps. (The step is designed to limit the
search space.)

Step 3: Next, we compute the other two opposite corners of tl and t2, so that
each of the text boxes is now represented as a rectangle. Let P and Q be the
two rectangles.

Step 4: We compute the intersection of P and Q, call it, I. If I is empty, we
set match-score(i, j) to zero. Otherwise, we compute the area of P, Q, and

I. And we set match - score(i,j) = ~ (I) marc(area(P),are~z(Q))"

6 A p p e n d i x A: L i n e - L i n e M a t c h i n g C r i t e r i a F u n c t i o n s

Image Coordinate S y s t e m

An image is given by columns and rows of pixels. In a bi-level binary image, a
foreground pixel has the value 1 and a background pixel has the value 0. We use
the Column-Row coordinate system, (c-coordinate, r-coordinate), to represent

388

0 C-axis C-1
c

• ~, I m a g e

R-1

Fig. 17. The column-row coordinate system for an image. The origin (0,0) is at the
top-left corner pixel of the image. The image has R rows and C columns.

a pixel 's posi t ion within an image. The origin of this system, (0,0), is at the
top-lef t corner pixeI of the image (see Fig. 17).

Let d be a line ent i ty in the D-entity-list and g be a line enti ty in the G-
entity-list. The following functions are needed for the line-line match ing criteria.

t ~ - P r o j e c t i o n o f a L i n e S e g m e n t

The a -p ro j ec t ion of a line l = (c l , r l , c2 , r2) is the project ion of l onto the
given or ienta t ion a E (- 9 0 °, 90°]. The a -p ro j ec t ion of l, proj(1, a), is also a line
segment , its two endpoints (c l , r l) and (4 , r~) are the project ions of (cl, F1)and
(c2, r2) onto the or ienta t ion a , respectively.

c~ = cos a (e l cos a + r l sin a)

r~ = sin a (c l cos a + r l sin a)

c.~ = cos a(c2 cos a + r2 sin a)

r~ = sin a(c~ cos a + r2 sin a)

If]a-or ien t (1) l < 90 °, pro j (l , a) is given by (c~,r' ' r' " - 1, e2, 2), otherwise, it is given
!

by (c~, r ; , cl, r~).

p~roj(~,a) = ~ (4 , r ' 1 , 4 ,~) if la - o~'i~t(1)l <_ 9O °

[(4, ~;, 4 , ~) otherwise

389

O v e r l a p o f T w o L ine S e g m e n t s - A R e l a t i o n s h i p F u n c t i o n

The a-overlap of two line segment 11 and 12, overlap(ll,12, a), is a relationship
function of 11 and 12 with respect to a given orientation a.

Suppose T~ and Td are two given thresholds, which are determined by ap-
plication and user. T~ is a threshold for the angle of two line segments, Td is a
threshold for the line-line distance. If angle(ll, 12) is not greater than T~, and
llDist(ll, 12) is not greater than Td, we say that 11 and 12 are sufficiently close.

The a-overlap of ll and 12 is defined as the length of the common part of
their a-projections if ll and 12 are sufficiently close, and is defined as 0 otherwise.
The function overlap(ll, 12, a) is

overlap(li, 12, a)

{ length(proj(ll, a) n proj(12, a))
= if angle(ll, I2) < Ta, and lIDist(li, 12) <_ Td

0 otherwise

R e l a t i v e O v e r l a p

The relative overlap of two line segments 11 and 12 is defined as the re~tio be-
tween the overlap function overlap(t1,12, a) and the length of the longer segment:

overlap(l1,12 ,~)
rnax(le'r~gth(ll),length(l,2)) "

References

1. B. Kong, I. Phillips, R. Haralick, A. Prasad, and R. Kasturi. A benchmark: Perfor-
mance evaluation of dashed line detection algorithms. In R. Kasturi and K. Tornbre,
editors, Graphics Recognition: Methods and Applications', First International Work-
shop, University Park, PA, USA, August 1995, Selected Papers, volume 1072 of
Lecture Notes in Computer Science, pages 270 285. Springer, Berlin, 1996.

2. ECVNet. Benchmarking and Performance Evaluation web site. http://pandora.
imag.fr/ECVNet/benchmarking.html.

3. O. Hori and S. Doermann. Quantitative measurement of the performance of raster-
to-vector conversion algorithms. In P~. Kasturi and K. Tombre, editors, Graphics
Recognition: Methods and Applications, First International Workshop, University
Park, PA, USA, August 1995, Selected Papers, volume 1072 of Lecture. Notes in
Computer Science, pages 57-68. Springer, Berlin, 1996.

4. L. ~Venyin and D. Doff. A protocol for performance evaluation of line detection
algorithms. Machine Vision and Applications, 9(5/6):240 250, 1997. Special Issue
on Performance Characterisitics of Vision Algorithms.

5. L. V~enyin and D. Dori. A protocol for performance evaluation of algorithms fbr
text segmentation from graphics-rich documents. In Proceedings of Second IAPR
Workshop on Graphics Recognition, pages 317-324, Nancy, France, August 1997.

6. R. Haralick. Perfbrmance characterization in image analysis: Thinning, a case in
point. Pattern Recognition Letters, 13:5-12, 1992.

